Frühholz, Sascha and Dietziker, Joris and Staib, Matthias and Trost, Wiebke and Malmierca, Manuel S. (2021) Neurocognitive processing efficiency for discriminating human non-alarm rather than alarm scream calls. PLOS Biology, 19 (4). e3000751. ISSN 1545-7885
journal.pbio.3000751.pdf - Published Version
Download (1MB)
Abstract
Across many species, scream calls signal the affective significance of events to other agents. Scream calls were often thought to be of generic alarming and fearful nature, to signal potential threats, with instantaneous, involuntary, and accurate recognition by perceivers. However, scream calls are more diverse in their affective signaling nature than being limited to fearfully alarming a threat, and thus the broader sociobiological relevance of various scream types is unclear. Here we used 4 different psychoacoustic, perceptual decision-making, and neuroimaging experiments in humans to demonstrate the existence of at least 6 psychoacoustically distinctive types of scream calls of both alarming and non-alarming nature, rather than there being only screams caused by fear or aggression. Second, based on perceptual and processing sensitivity measures for decision-making during scream recognition, we found that alarm screams (with some exceptions) were overall discriminated the worst, were responded to the slowest, and were associated with a lower perceptual sensitivity for their recognition compared with non-alarm screams. Third, the neural processing of alarm compared with non-alarm screams during an implicit processing task elicited only minimal neural signal and connectivity in perceivers, contrary to the frequent assumption of a threat processing bias of the primate neural system. These findings show that scream calls are more diverse in their signaling and communicative nature in humans than previously assumed, and, in contrast to a commonly observed threat processing bias in perceptual discriminations and neural processes, we found that especially non-alarm screams, and positive screams in particular, seem to have higher efficiency in speeded discriminations and the implicit neural processing of various scream types in humans.
Item Type: | Article |
---|---|
Subjects: | European Scholar > Biological Science |
Depositing User: | Managing Editor |
Date Deposited: | 13 Mar 2023 06:24 |
Last Modified: | 23 May 2024 05:38 |
URI: | http://article.publish4promo.com/id/eprint/751 |