Diffusive mediator feedbacks control the health-to-disease transition of skin inflammation

Sudo, Maki and Fujimoto, Koichi and Baker, Ruth E. (2024) Diffusive mediator feedbacks control the health-to-disease transition of skin inflammation. PLOS Computational Biology, 20 (1). e1011693. ISSN 1553-7358

[thumbnail of journal.pcbi.1011693.pdf] Text
journal.pcbi.1011693.pdf - Published Version

Download (3MB)

Abstract

The spatiotemporal dynamics of inflammation provide vital insights into the understanding of skin inflammation. Skin inflammation primarily depends on the regulatory feedback between pro- and anti-inflammatory mediators. Healthy skin exhibits fading erythema. In contrast, diseased skin exhibits expanding erythema with diverse patterns, which are clinically classified into five types: circular, annular, arcuate, gyrate, and polycyclic. Inflammatory diseases with expanding erythema are speculated to result from the overproduction of pro-inflammatory mediators. However, the mechanism by which feedback selectively drives the transition from a healthy fading erythema to each of the five types of diseased expanding erythema remains unclear. This study theoretically elucidates the imbalanced production between pro- and anti-inflammatory mediators and prospective treatment strategies for each expanding pattern. Our literature survey showed that eleven diseases exhibit some of the five expanding erythema, thereby suggesting a common spatiotemporal regulation underlying different patterns and diseases. Accordingly, a reaction-diffusion model incorporating mediator feedback reproduced the five observed types of diseased expanding and healthy fading patterns. Importantly, the fading pattern transitioned to the arcuate, gyrate, and polycyclic patterns when the productions of anti-inflammatory and pro-inflammatory mediators were lower and higher, respectively than in the healthy condition. Further depletion of anti-inflammatory mediators caused a circular pattern, whereas further overproduction of pro-inflammatory mediators caused an annular pattern. Mechanistically, the bistability due to stabilization of the diseased state exhibits circular and annular patterns, whereas the excitability exhibits the gyrate, polycyclic, arcuate, and fading patterns as the threshold of pro-inflammatory mediator concentration relative to the healthy state increases. These dynamic regulations of diffusive mediator feedback provide effective treatment strategies for mediator production wherein skins recover from each expanding pattern toward a fading pattern. Thus, these strategies can estimate disease severity and risk based on erythema patterns, paving the way for developing noninvasive and personalized treatments for inflammatory skin diseases.

Item Type: Article
Subjects: European Scholar > Biological Science
Depositing User: Managing Editor
Date Deposited: 23 Mar 2024 09:58
Last Modified: 23 Mar 2024 09:58
URI: http://article.publish4promo.com/id/eprint/3311

Actions (login required)

View Item
View Item