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Abstract

The spatiotemporal dynamics of inflammation provide vital insights into the understanding

of skin inflammation. Skin inflammation primarily depends on the regulatory feedback

between pro- and anti-inflammatory mediators. Healthy skin exhibits fading erythema. In

contrast, diseased skin exhibits expanding erythema with diverse patterns, which are clini-

cally classified into five types: circular, annular, arcuate, gyrate, and polycyclic. Inflamma-

tory diseases with expanding erythema are speculated to result from the overproduction of

pro-inflammatory mediators. However, the mechanism by which feedback selectively drives

the transition from a healthy fading erythema to each of the five types of diseased expanding

erythema remains unclear. This study theoretically elucidates the imbalanced production

between pro- and anti-inflammatory mediators and prospective treatment strategies for

each expanding pattern. Our literature survey showed that eleven diseases exhibit some of

the five expanding erythema, thereby suggesting a common spatiotemporal regulation

underlying different patterns and diseases. Accordingly, a reaction-diffusion model incorpo-

rating mediator feedback reproduced the five observed types of diseased expanding and

healthy fading patterns. Importantly, the fading pattern transitioned to the arcuate, gyrate,

and polycyclic patterns when the productions of anti-inflammatory and pro-inflammatory

mediators were lower and higher, respectively than in the healthy condition. Further deple-

tion of anti-inflammatory mediators caused a circular pattern, whereas further overproduc-

tion of pro-inflammatory mediators caused an annular pattern. Mechanistically, the

bistability due to stabilization of the diseased state exhibits circular and annular patterns,

whereas the excitability exhibits the gyrate, polycyclic, arcuate, and fading patterns as the

threshold of pro-inflammatory mediator concentration relative to the healthy state increases.

These dynamic regulations of diffusive mediator feedback provide effective treatment strat-

egies for mediator production wherein skins recover from each expanding pattern toward a

fading pattern. Thus, these strategies can estimate disease severity and risk based on ery-

thema patterns, paving the way for developing noninvasive and personalized treatments for

inflammatory skin diseases.
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Author summary

The spatiotemporal dynamics of inflammation provide vital insights into understanding

inflammation. Healthy skin exhibits fading inflammation, while diseased skin exhibits

expanding inflammation with circular, annular, arcuate, gyrate, and polycyclic patterns.

Diseases with expanding inflammation are thought to be linked to an overproduction of

pro-inflammatory mediators, but how does the mediator production selectively transition

from healthy fading inflammation to five diseased expanding inflammation? We used a

mathematical model incorporating production and diffusion of mediators in the skin to

simulate the fading and expanding patterns. The model reproduced the five observed

types of diseased expanding and healthy fading patterns. We found that the fading pattern

transitions in the order of arcuate, polycyclic, gyrate, annular, and circular patterns with

increasing production of pro-inflammatory mediators or decreasing production of anti-

inflammatory mediators. Importantly, dynamic feedback between pro-inflammatory and

anti-inflammatory mediators is responsible for their production balance and controls

health-to-disease transition of skin inflammation pattern. This mechanism guides treat-

ment strategies and helps skin recover from expanding patterns towards a fading pattern.

This research can help estimate disease severity and risk based on inflammation patterns

and has potential applications in noninvasive and personalized treatments for inflamma-

tory skin diseases.

Introduction

Spatiotemporal dynamics provide valuable insights into variability in inflammation. Normal

inflammatory response occurs only in the affected area and subsides within a short period of

time, whereas chronic inflammatory response expands to adjacent healthy tissue and persists

for months or years [1]. Chronic inflammation is primarily attributed to an imbalance between

pro- and anti-inflammatory mediators [2–4]. Hence, the prevention and treatment of chronic

inflammation are required to elucidate the mechanisms of the imbalance involved.

The possibility for direct observation makes the skin an ideal system for studying the spatio-

temporal dynamics of inflammation. Skin inflammation typically manifests as redness on the

skin surface and is medically referred to as erythema [5]. Erythema appears when pro-inflam-

matory mediators (e.g., tumor necrosis factor [TNF]-α and interleukin [IL]-1) induce vasodi-

lation and hyperemia in the dermis (Fig 1A). The production of pro-inflammatory mediators

is influenced by characteristics of the skin, such as the skin barrier and microbiome [6,7]. Pro-

inflammatory mediators induce the production of anti-inflammatory mediators (e.g., IL-4, IL-

10, and IL-13), which reduce the production of the pro-inflammatory mediators as a regula-

tory feedback mechanism [2,8]. In addition to negative feedback, pro- and anti-inflammatory

mediators induce their own production via positive feedback [2,9]. Experimental studies have

revealed that dysregulation of feedback causes the overproduction of pro-inflammatory media-

tors and the transition from normal to chronic inflammation [2–4]. Normal inflammation in

healthy skin appears as fading erythema, where redness decreases and eventually disappears

[10]. Fading erythema includes a linear pattern reflecting the affected areas in contact with, for

instance, harmful animal tentacles or plant branches, and a reticular pattern reflecting the cap-

illary structure (Fig 1B and 1C) [10]. Erythema patterns in diseased skin differ from those in

healthy skin: chronic inflammation in diseased skin appears as expanding erythema with cir-

cular, annular, polycyclic, arcuate, or gyrate patterns (Fig 1D–1H) [11]. Erythema expands for
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Fig 1. Erythema pattern and modeling of erythema development. (A) Process of the inflammatory response for erythema development. Upon stimulation,

keratinocytes and resident immune cells secrete pro-inflammatory mediators that induce the production of pro- and anti-inflammatory mediators. Pro-

inflammatory mediators dilate local blood vessels. The dilation appears as redness on the skin surface, developing erythema. (B–H) Photographs of erythema

with linear [24] (B), reticular [25] (C), circular [26] (D), annular [27] (E), polycyclic [28] (F), arcuate [29](G), or gyrate patterns [30] (H). (I) A model for

regulatory feedback between pro- and anti-inflammatory mediators. (J) A representation of simulation in the skin. The skin surface is partitioned into square
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hours or days, with multiple expanding erythema leading to fusion [5,11]. Erythema patterns

provide the first clue for the diagnosis and treatment of inflammatory skin diseases regulated

by mediator feedback.

Dermatologists have reported numerous clinical findings on inflammatory skin diseases to

identify appropriate treatment strategies. Clinical reports typically show the same erythema

pattern in multiple diseases. For example, the annular pattern is common in erythema

migrans, erythema multiforme, lichen planus, pityriasis rosea, psoriasis, tinea corporis, and

urticaria [12]. Furthermore, a clinical report comparing patients with lyme disease revealed

multiple patterns in the same disease; skin lesions in Missouri cases were more likely to show

central clearing such as an annular pattern, whereas those in New York cases were more likely

to show a circular pattern [13]. Moreover, three months after treatment, some New York

patients remained fatigued or had joint pain, while Missouri patients did not have any of these

prognostic symptoms, thereby suggesting a correlation between erythema patterns and treat-

ment efficacy. As these inflammatory diseases primarily result from the overproduction of

pro-inflammatory mediators, mediator production can affect the development of the expand-

ing pattern observed in different diseases. Thus, elucidating which alterations in mediator pro-

duction result in specific expanding erythema patterns across diseases will enable the

estimation of fundamental treatment strategies.

Mathematical modeling has recently attracted attention for predicting treatment strategies

for inflammatory skin diseases. A mathematical model incorporating regulatory feedback

between pro- and anti-inflammatory mediators predicts the temporal dynamics of normal and

chronic inflammation [14]. The model characterized normal inflammation as a system with

one stable steady state, where mediator concentrations transiently increased upon stimulation

and subsequently returned to their original levels, showing excitability. Alternatively, chronic

inflammation is characterized as a system with additional steady states with persistently high

or oscillating mediator concentrations. Although the model predicted a different number of

steady states underlying the temporal dynamics between normal and chronic inflammation,

the absence of mediator diffusion failed to account for spatial dynamics.

Mathematical models incorporating diffusion, referred to as reaction-diffusion models,

have studied the spatial dynamics of erythema patterns [15–20]. A reaction-diffusion model

for erythema gyratum repens suggested that the gyrate pattern characteristic of the disease is

formed in the presence of excitability, where perturbations induce a transient response that

returns to a stable steady state [16]. Other reaction-diffusion models for psoriasis and urticaria

have shown that positive and negative feedback of pro-inflammatory mediators plays a major

role in generating several expanding patterns including circular, annular, arcuate, and gyrate

patterns [19,20]. These two models suggest that different expanding patterns within a single

disease arise from alterations in mediator production due to slight differences in regulatory

feedback strength. The psoriasis model also showed that the patterns faded after treatment by

increasing the degradation rate of pro-inflammatory mediators. These studies focused on pro-

inflammatory mediators rather than anti-inflammatory mediators. Another reaction-diffusion

model incorporating pro- and anti-inflammatory mediators and chemotactic cells reproduced

an expanding circular pattern [17]. Previous reaction-diffusion models, including chemotactic

cells, have reproduced the resolution of inflammation in the lung [21,22]; however, the resolu-

tion of erythema has not received much attention. Although the overproduction of pro-

inflammatory mediators is thought to cause expanding erythema in many modeling studies of

regions. Erythema is initiated by keratinocytes and immune cells in the skin through secreting pro-inflammatory mediators. The area of microinflammation

with a high concentration of pro-inflammatory mediators is considered as a “seed” region, and its projection to the surface is colored in red.

https://doi.org/10.1371/journal.pcbi.1011693.g001
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these inflammatory skin diseases [15–20,23], the mechanism by which overproduction

through the feedback selectively drives the transition from a healthy state with fading erythema

to a disease state with each of the five types of expanding erythema remains unclear.

Elucidating this mechanism requires the development of a reaction-diffusion model for

fading patterns in healthy skin. Improving the model to reproduce both fading and expand-

ing erythema will provide a better understanding of the healthy-to-disease transition and

suggest noninvasive treatment strategies. Moreover, developing a model that comprehen-

sively reproduces all five types of expanding patterns in a disease-independent manner

enables us to infer how the direction and severity of the mediator imbalance affect the clini-

cal erythema pattern.

This study aimed to theoretically elucidate how the imbalance in the production of pro-

and anti-inflammatory mediators causes each expanding pattern in multiple diseases and how

to restore balance and return to the fading pattern. To this end, we examined whether the

expanding patterns in multiple diseases result from the reaction-diffusion system with regula-

tory feedback (Fig 1A, 1I and 1J). Using the reaction-diffusion model, we explored the condi-

tions of appearance and effective treatment strategies for each expanding pattern.

Methods

Source of information on the erythema patterns

First, clinical reports of erythema in the literature were reviewed to examine the association

between erythema patterns and skin diseases. Expanding patterns were observed in eleven dif-

ferent diseases, including psoriasis, lupus erythematosus, bullous pemphigoid, lyme disease,

erythema multiforme, lymphoma, annular erythema, sjögren’s syndrome, sweet syndrome,

nummular eczema, and erythema gyratum repens [10]. We collected clinical photographs of

erythema observed in patients whose photographs were extracted from clinical studies using

literature searches in PubMed. For example, photographs of psoriasis have been reviewed

using the “(psoriasis AND clinical AND pattern) OR (psoriasis AND clinical AND shapes) OR

(psoriasis AND clinical spectrum)” search phrases. After reviewing the titles and abstracts, 132

relevant papers with clinical photographs were selected.

Development of the reaction-diffusion model

A reaction-diffusion model was developed to investigate whether regulatory feedback and dif-

fusion of pro- and anti-inflammatory mediators can generate erythema patterns. As pro-

inflammatory mediators induce erythema through vasodilation, we used the concentration of

pro-inflammatory mediators as an indicator of erythema. The variables of the model reflect

the concentrations of pro-inflammatory mediators (A) and anti-inflammatory mediators (I).
Pro-inflammatory mediators are present at low levels in the unstimulated skin through basal

secretion [6]. In response to stimulation, keratinocytes and immune cells in the skin secrete

pro-inflammatory mediators, which induce their production through positive feedback [9,31].

Pro-inflammatory mediators also induce the production of anti-inflammatory mediators

through negative feedback [2,8]. The positive and negative feedback between pro- and anti-

inflammatory mediators is shown schematically in Fig 1I. The production rate of pro-inflam-

matory mediators is biologically limited; therefore, the model function of A saturates the Hill

function with the Hill coefficient representing cooperativity in the regulation, n. Pro-inflam-

matory mediators are assumed to degrade naturally at a constant rate [32]. To model these

processes, the production of pro-inflammatory mediators (A) is represented by the
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autoregulation of A and repression by I:

@A
@T
¼ PA þ

QAAnKI

ðAn þ KA
nÞðI þ KIÞ

� RAAþ DADA ð1AÞ

The first term PA represents the basal production rate. The term
QAAn

AnþKA
n captures the positive

feedback, where QA and KA are the maximum production rate and threshold of production of

pro-inflammatory mediators, respectively. The term
KI

IþKI
modulates the inhibitory effects of

anti-inflammatory mediators. The third and fourth terms represent the degradation with RA

and diffusion DA with Δ denoting the Laplacian operator ( @
2

@x2 þ
@2

@y2), respectively.

Anti-inflammatory mediators induce their production through positive feedback [2,33].

Anti-inflammatory mediators are assumed to be present at low levels in the skin through basal

secretion and naturally degrade at a constant rate. To model these processes, the production of

anti-inflammatory mediators (I) was modeled as follows:

@I
@T
¼ PI þ

QIAnIn

ðAn þ KA
nÞðIn þ KI

nÞ
� RII þ DIDI ð1BÞ

The first, third, and fourth terms in Eq 1B represent the basal secretion, degradation, and

diffusion of anti-inflammatory mediators at PI, RI, and DI, respectively. The second term of Eq

1B represents the induction of anti-inflammatory mediators by pro-inflammatory mediators

and via the positive feedback of anti-inflammatory mediators, where QI denotes the maximum

production rate of anti-inflammatory mediators.

The values of these parameters depend on the skin conditions. For example, experiments

have suggested that the maximum production rate (QA) of one type of pro-inflammatory

mediator, IL-1β, increases with the deterioration of the skin microbiome [7] and that the basal

secretion rate (PA) of IL-1β increases with a defect in skin barrier integrity [6]. Due to the lack

of sufficient quantitative information on the kinetic parameter values and diffusion coeffi-

cients, we investigated the model dynamics for a wide range of parameters. For this purpose,

the model was nondimensionalized using the following scaling:

A ¼ KAa; I ¼ KIi; T ¼
t
RI
;

where time is scaled with the degradation rate of anti-inflammatory mediators, which is

expected to be in the order of minutes [34].

The final system of partial differential equations for pro- and anti-inflammatory mediators

is given by:

@a
@t
¼ pa þ

qaan

ðan þ 1Þðiþ 1Þ
� raaþ DaDa ð2AÞ

@i
@t
¼ pi þ

qianin

ðan þ 1Þðin þ 1Þ
� iþ DiDi ð2BÞ

where pa ¼
PA

RIKA
; qa ¼

QA

RIKA
; ra ¼

RA

RI
;Da ¼

DA

RI
; pi ¼

PI

RIKI
; qi ¼

Qi

RIKI
;Di ¼

DI

RI
:

The meanings of these new parameters are summarized in Table 1. We set the Hill coeffi-

cient n to 2 to introduce the simplest form of cooperativity. The reaction terms of this model

are similar to the classical activator-inhibitor model proposed by Turing [35], which includes
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the negative feedback of the activator through the inhibitor and the positive feedback of the

activator. These reaction terms potentially result in Turing instability. However, the present

model setting does not show Turing instability. The reason is that Turing instability requires a

large difference between the diffusion coefficients of the activator and inhibitor [36], whereas

these coefficients in the present model were set to be equal based on molecular findings that

these molecular weights are close in proximity [3]. Hence, a reaction-diffusion equation con-

sisting of pro- and anti-inflammatory mediators was used to simulate the development of ery-

thema patterns.

Numerical simulation of the model

The development of the erythema pattern was simulated by numerically solving the initial

value problem in Eq 2 using the classic Runge-Kutta method. The simulation was performed

for cells aligned in a two-dimensional geometry with a periodic boundary condition (Fig 1J).

As an initial condition of the simulation, pro- and anti-inflammatory mediators were uni-

formly set as 0.01 in the entire space (Fig 2, time = 0). Stimulation was introduced into these

cells to induce erythema. For stimulation, we referred to the physiological condition at the

onset of erythema, where a few small (~ 1 mm) inflamed areas exhibited a high concentration

of pro-inflammatory mediators [5]. Accordingly, for each inflamed area, we set a circular area

with a high concentration of pro-inflammatory mediators, given by a two-dimensional Gauss-

ian distribution after some time steps (Fig 2C and 2D, time = 1). Given the initial conditions

and stimulations, we investigated whether the reaction-diffusion model could reproduce ery-

thema patterns. A simulation code written in C language is available from GitHub: https://

github.com/MakiSudo/Erythema-Patterns/blob/main/AInondim.c

Results

Erythema patterns observed in eleven diseases

Previous disease-specific models have focused on multiple expanding patterns within a single

disease, whereas few models have focused on studies reporting the same type of expanding pat-

tern across different diseases [12]. Thus, we comprehensively examined the correspondence

between diseases and expanding pattern types in terms of how many diseases commonly

exhibit each pattern type and the number of types each disease exhibits. The collected photo-

graphs of erythema were categorized into the following five types based on the definitions of

patterns published by the International League of Dermatological Societies [37]; circular pat-

tern was characterized by a uniformly colored round pattern, annular pattern surrounded by a

single ring, polycyclic pattern surrounded by multiple rings, arcuate pattern with a segmented

ring, and gyrate pattern resembling wood-grain. We first examined the number of diseases

Table 1. System parameters and their interpretations.

Parameter Description

pa Basal production rate for pro-inflammatory mediators

qa Maximum production rate of pro-inflammatory mediators

ra Relative rate of clearance of pro-inflammatory mediators to anti-inflammatory mediators

Da Diffusion coefficient of pro-inflammatory mediators

pi Basal production rate for anti-inflammatory mediators

qi Maximum production rate of anti-inflammatory mediators

Di Diffusion coefficient of anti-inflammatory mediators

n Hill coefficient

https://doi.org/10.1371/journal.pcbi.1011693.t001
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Fig 2. Simulated time courses of the healthy fading patterns. Spatiotemporal evolution of pro-inflammatory mediator levels (a) upon initial

stimulation in linear (A), reticular (B), and circular areas (C and D). The parameter values for these simulations are listed in S2(A)Table.

https://doi.org/10.1371/journal.pcbi.1011693.g002
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that exhibited the same pattern type. Circular, annular, polycyclic, arcuate, and gyrate patterns

were found in 7, 5, 4, 7, and 4 diseases, respectively (Table 2), thereby indicating that each of

the five expanding patterns corresponded to multiple diseases. We examined the number of

pattern types that appeared within a single disease. Consequently, eight diseases exhibited mul-

tiple pattern types across patients. For example, psoriasis exhibited all five pattern types and

lupus erythematosus exhibited four (Table 2). The most frequently observed pair of pattern

types in the same disease were annular and arcuate (four diseases: psoriasis, lupus erythemato-

sus, bullous pemphigoid, and annular erythema), whereas the least frequent were circular and

gyrate (one disease: psoriasis). These results indicated that each disease corresponded to multi-

ple pattern types. Taken together, the correspondence between patterns and diseases is many-

to-many rather than one-to-one, which suggests a unified spatiotemporal regulatory mecha-

nism across diseases to form the five types of expanding patterns.

Reaction-diffusion model reproduced the fading patterns

We then examined whether mediator production via feedback can generate and control the fad-

ing pattern, which remains uninvestigated in the reaction-diffusion models (Fig 1A, 1I and 1J; Eq

2 in Methods). Given the local stimulation reflecting the shape of animal tentacles or capillary

structure [10,24,25], the present model reproduced a fading linear or reticular pattern, respectively

(Fig 2A and 2B). With circular stimulation, the inflamed area decreased in redness without chang-

ing the diameter, and the interior of the inflamed area cleared first and eventually disappeared

(Fig 2C). This result resembles the clinical situation of a fading circular pattern [19]. During the

appearance of fading patterns, mediator levels transiently increased and then decreased to their

original levels (S1A Fig), which is consistent with the excitatory time course of the normal inflam-

mation model without mediator diffusion [14]. We further analyzed the parameters that con-

trolled fading speed. The smaller the anti-inflammatory mediator’s basal secretion rate (pi), the

slower the inflamed area disappeared (Fig 2D). Similar results were obtained when the production

of pro-inflammatory mediators was high. These results demonstrate that regulatory feedback can

generate a fading pattern in synergy with diffusion and control the fading speed.

Reaction-diffusion model also reproduced diverse expanding patterns

We examined whether any alteration in the model parameters (Table 1) could generate five

expanding patterns. The model (Eq 2) showed that the inflamed area induced by transient

Table 2. Erythema patterns observed in eleven diseases. References for each case are listed in S1 Table [48–96].

Disease name Circular Annular Polycyclic Arcuate Gyrate

Psoriasis 2 2 1 1 1

Lupus erythematosus N/A 6 1 3 4

Bullous pemphigoid 2 3 N/A 3 N/A

Lyme disease 2 2 4 N/A N/A

Erythema multiforme 3 N/A 8 1 N/A

Lymphoma 2 N/A N/A 2 N/A

Annular erythema N/A 4 N/A 2 N/A

Sjögren syndrome N/A N/A N/A 2 1

Sweet’s syndrome 2 N/A N/A N/A N/A

Nummular eczema 2 N/A N/A N/A N/A

Erythema gyratum repens N/A N/A N/A N/A 1

Reported number of diseases 7 5 4 7 4

https://doi.org/10.1371/journal.pcbi.1011693.t002
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local stimulation (Fig 3, time = 1) expanded centrifugally over time (Fig 3, time = 2–5). The

inflamed area expanded with circular, annular, polycyclic, arcuate, or gyrate patterns, depend-

ing on the parameter values such as the degradation rate of the pro-inflammatory mediator

Fig 3. Simulated time courses of the five types of expanding patterns. Pro-inflammatory mediator levels (a). The initial stage of the inflamed area (row 1)

consisted of three seed areas. Later forms of the disease (rows 2–5) correspond to circular (A), annular (B), polycyclic (C), arcuate (D), or gyrate patterns (E).

The parameter values for these simulations are listed in S2(B) Table.

https://doi.org/10.1371/journal.pcbi.1011693.g003
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(ra) or the anti-inflammatory mediator’s basal secretion rate (pi). The circular pattern appeared

as round areas with a uniform concentration of pro-inflammatory mediators above a threshold

(Fig 3A), thus, accounting for the uniformly colored round pattern in diseased skin [37]. The

annular pattern showed areas with low pro-inflammatory mediator concentrations sur-

rounded by a single boundary ring with higher concentrations (Fig 3B), which accounts for

the inflamed areas surrounded by a single ring in diseased skin [37]. The polycyclic and arcu-

ate patterns showed double concentric rings (Fig 3C) and segmented rings (Fig 3D), respec-

tively. The gyrate pattern exhibited “C”-shaped double spirals resembling wood grains (Fig

3E). Moreover, the multiple expanding areas fused (Fig 3, time = 2–5), which was consistent

with the clinical situation of expanding erythema [5]. Therefore, these simulated spatial pat-

terns of pro-inflammatory mediators corresponded to each of the five types of expanding pat-

terns in the clinical observations (Fig 1D–1H).

The inflammatory time course was further analyzed for each expanding pattern. When a

circular pattern appeared, pro-inflammatory mediators maintained a persistently high concen-

tration and failed to return to their original level (S1B Fig). When the annular pattern

appeared, the mediator levels transiently increased and then decreased but did not return to

their original levels (S1C Fig). These temporal dynamics are consistent with those of chronic

inflammation [14]. In the case of the polycyclic, arcuate, and gyrate patterns, mediator concen-

trations transiently increased and then returned to their original levels, indicating excitability

(S1D–S1F Fig). This result supports the presence of excitability in the development of gyrate

patterns in erythema gyratum repens [16]. These results indicate that the alteration of the

model parameters from the fading pattern can generate five types of expanding patterns.

Transition to expanding patterns by alteration in the production of pro-

and anti-inflammatory mediators

To identify how the direction and severity of mediator production imbalance affects the pat-

tern in the clinical spectrum of expanding patterns, we investigated the parameters (Table 1)

affecting the transition from the fading pattern to each expanding pattern. First, increasing the

pro-inflammatory mediator’s production rate (qa) from the parameter set of the fading pattern

generated arcuate, gyrate, or polycyclic patterns (Fig 4A). A further increase in the pro-inflam-

matory mediator’s production rate (qa) brought about an annular pattern (Fig 4A). Con-

versely, with a decreasing basal secretion rate of the anti-inflammatory mediator (pi) from the

parameter set of the fading pattern, arcuate, gyrate, polycyclic, and circular patterns appeared

sequentially (Fig 4A). These transitions from the fading pattern to all five types of expanding

patterns depending on qa or pi prompted us to hypothesize that increasing pro-inflammatory

or decreasing anti-inflammatory mediator concentration can cause the transition from the

fading pattern to transient expanding patterns (arcuate, gyrate, and polycyclic) and ultimately

to chronic expanding patterns (annular and circular).

To test this hypothesis, we comprehensively investigated pattern transitions with alterations

in each of the parameters affecting mediator concentration. Decreasing the degradation rate

(ra) of the pro-inflammatory mediator and production rate of anti-inflammatory mediators

(qi) from the fading pattern parameter set consistently led to polycyclic, gyrate, annular, and

finally circular patterns (Fig 4B), thereby supporting this hypothesis. The results from various

combinations of parameters identified the parameter regions for each expanding pattern in

the clinical spectrum ranging from transient to chronic expanding patterns (Figs 4A, 4B, S2,

and S3). The transient expanding pattern, including arcuate, gyrate, and polycyclic patterns,

emerged under lower production of anti-inflammatory mediators and higher production of

pro-inflammatory mediators compared to the fading pattern. Excessive imbalance resulted in
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Fig 4. Pattern selection in the parameter space of pro- and anti-inflammatory mediator productions. Fading (F), arcuate (Ar), polycyclic (P), gyrate (G),

annular (An) and circular (C) patterns emerged as the steady state (Eq 2) at the parameter values of qa and pi (A), ra and qi (B). pa = 0.05, ra = 0.8, qi = 6.0 for

(A) and pa = 0.05, qa = 3.0, pi = 0.12 for (B). In all the simulations, Da = Di = 0.3. (C) Summary for all the analyzed parameter space regarding the mediator

production (see also S2 and S3 Figs), indicating the characteristic imbalance by each expanding pattern.

https://doi.org/10.1371/journal.pcbi.1011693.g004
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a chronic expanding pattern; the annular pattern appeared under the overproduction of pro-

inflammatory mediators, whereas the circular pattern appeared under the depletion of anti-

inflammatory mediators. Generally, alterations in all parameters of feedback in the model

caused an imbalance in mediator production, thereby resulting in transient and eventually

chronic expanding patterns.

These results indicate the transition from each diseased expanding pattern to a healthy fad-

ing pattern. Specifically, the annular and circular patterns shifted to the fading pattern by

reducing the production of pro-inflammatory mediators and increasing the production of

anti-inflammatory mediators, respectively. Overall, these parameter-to-patterning correspon-

dences showed that the two-dimensional space representing pro- and anti-inflammatory

mediator production describes the clinical spectrum from the five types of expanding patterns

in diseased skin to the fading pattern in healthy skin (Fig 4C).

Stability of the healthy and inflamed states determines the expanding or

fading patterns

The number of stable states was analyzed to identify the dynamic properties underlying the

differences between the fading pattern and each of the expanding patterns. These states were

predicted as the temporal properties between normal and chronic inflammation, which are

regulated by excitability and bistability, respectively [14], but remain unexamined regarding

the spatial patterns. In the parameter set for the circular pattern, the regulatory feedback

between pro- and anti-inflammatory mediators resulted in the bistability: two steady states are

stable, given by low and high concentrations corresponding to the healthy (SH in Fig 5A) and

inflamed (SI in Fig 5A) states, respectively, whereas there is an unstable steady state, corre-

sponding to a threshold concentration (ST in Fig 5A). Bistability also existed in the annular

pattern (Fig 5B). For the circular and annular patterns, the concentrations of pro- and anti-

inflammatory mediators eventually reached the inflamed state upon a suprathreshold stimula-

tion (Fig 5A and 5B).

In contrast, in the gyrate, polycyclic, arcuate, and fading patterns, the regulatory feedback

resulted in one stable and two unstable steady states, and the mediator concentrations eventu-

ally reached a healthy state (Fig 5C–5F). A major difference from the bistability exhibiting cir-

cular and annular patterns is the excitability, where the inflamed state is no more stable

thereby only appearing in a transient manner upon stimulation. While the excitability and

bistability underlie the fading and circular/annular patterns, respectively, consistently with the

previous study [14], the present results further show that the excitability underlies some of the

pathologic inflammation resulting in gyrate, polycyclic, and arcuate patterns as well.

The number of stable states determines the pattern regardless of the initial condition in the

spatial distribution of mediator concentration. Similar to the fading pattern (Fig 2), the arcu-

ate, polycyclic, and gyrate patterns with the excitability appeared reproducibly, independently

of the initial conditions due to a single stable state SH (Fig 5C–5F). Even in circular and annu-

lar patterns with bistability where the threshold ST was closer to the inflamed state SI than the

healthy state SH (Fig 5A and 5B), the final spatial pattern was dominated by the SI indepen-

dently of the initial condition. On the contrary, when ST was closer to the SH than the SI, the

inflamed area shrank rather than fading (S4A Fig). These results are general outcomes of the

traveling wave of bistable systems [36], and are consistent with the previous theoretical studies

on inflammation [23,38].

Finally, we examined which differences of the steady states with excitability selectively result

in gyrate, polycyclic, arcuate, or fading patterns. As a result, we found that the distance

between the healthy state (SH) and the threshold state (ST, a closer unstable steady state to SH)
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Fig 5. Dynamical characters underlying the five expanding and fading pattern types. The phase space of pro- and anti-inflammatory mediator

concentrations (a, i) depicts the time course (green curve) upon stimulation and the nullclines (red curve for da/dt = 0 in Eq 2A; blue curve for di/dt = 0

in Eq 2B; Da = Di = 0). The intersections of the nullclines indicate steady states, where filled and hollow circles represent stable and unstable states,

respectively. The time course shows convergence to a stable steady state upon a supra-threshold stimulation at the initial condition (a = 1.0, i =0.01).

Vector fields are also shown to represent mediator dynamics at the respective concentration. The parameter values for each simulation are listed in S2

Table.

https://doi.org/10.1371/journal.pcbi.1011693.g005
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was the smallest in the gyrate pattern and increased in the order of polycyclic, arcuate, slow

fading pattern, and fast fading pattern (Figs 5C–5F and S4B, and S4C). The fast fading pattern

showed a smaller trajectory (green curve in S4B and S4C Fig) of change in the mediator con-

centration than the slow fading pattern. Moreover, the larger distance between the healthy

state and the threshold state represents higher stability of the healthy state against stimulations.

These results indicate that the degree of stability of the healthy state, as well as the stability of

the inflamed state, differs between erythema patterns. Therefore, erythema patterns on the

skin surface reflect the dynamic balance in the stability of the healthy and inflamed states

within the skin.

Discussion

Diffusive mediator feedback spatiotemporally regulates erythema patterns

between healthy and diseased skin

The spatiotemporal regulation of inflammation is an important theme in biomedical research.

Inflammation depends on the feedback of pro- and anti-inflammatory mediators; however, it

remains unclear how the feedback regulates fading erythema in healthy skin and expanding ery-

thema in diseased skin. Here, a reaction-diffusion model with mediator feedback (Fig 1) suc-

cessfully reproduced the fading patterns (Fig 2) and five types of expanding patterns (Fig 3),

thereby suggesting that feedback and diffusion can generate fading patterns in healthy skin and

expanding patterns in eleven diseases (Table 2). The present study showed that parameter alter-

ations in mediator production destabilized a stable steady state representing a healthy condition

while in turn stabilizing the inflamed state (i.e., bifurcation from excitability to bistability [39])

and led to a transition from a fading pattern to five types of expanding patterns (Fig 5).

The parameter-to-patterning correspondence (Figs 4A, 4B, S2 and S3F) allows us to infer

the pathogenesis mechanism in various diseases exhibiting each of diverse expanding patterns

(seen in Table 2). For instance, psoriasis exhibits all five expanding patterns (Table 2) and

increased levels of pro-inflammatory mediator (TNF-α) [19], which is consistent with our the-

oretical results. The elevated pro-inflammatory mediator in psoriatic skin has been suggested

to be caused by genetic mutations affecting regulatory feedback [14]. Considering these previ-

ous studies, our model predicts a psoriasis progression where the fading pattern transits to

arcuate, polycyclic, gyrate, annular, and circular patterns where an increase in the TNF-α level

is possibly due to mutation-induced alteration in the feedback parameters, e.g., increase of the

production of pro-inflammatory mediator qa (Fig 4A). Alternatively, lyme disease exhibits cir-

cular, annular, and polycyclic patterns (Table 2). A clinical report showed that patients in Mis-

souri predominantly exhibit an annular pattern without prognostic symptoms, while those in

New York tend to exhibit a circular pattern with prognostic symptoms following the same

treatment [13]. Considering our theoretical result that the overproduction of pro-inflamma-

tory mediators and the depletion of anti-inflammatory mediators leads to the annular and cir-

cular pattern, respectively (Figs 4, 5A, and 5B), altered levels of pro-inflammatory and anti-

inflammatory mediators may significantly impact the development and prognosis of lyme dis-

ease in Missouri and New York patients, respectively.

These qualitative parameter estimations will be verified in the future through parameter

quantification in each diseased skin exhibiting any expanding patterns. By incorporating this

quantitative correspondence between patterns and parameters measured in each disease into

the present model, we would develop each disease-specific model with a quantitative predict-

ability of how much change of the skin parameters transit from healthy to diseased pattern or

vice versa. Therefore, this study provides the first step to controlling the health-to-disease tran-

sition of skin inflammation via diffusive mediator feedback.
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Prospective treatment from the model prediction

Mediator feedback parameter-dependent transitions from each expanding to fading pattern

(Figs 4, S2 and S3) suggest effective treatment strategies depending on skin barrier conditions.

Experimental findings demonstrated that the maximum production rate (QA in Eq 1A and qa
in Eq 2A) and basal secretion rate (PA in Eq 1B and pa in Eq 2B) of pro-inflammatory media-

tors are significantly lower in healthy skin than in diseased skin with a deterioration of the skin

microbiome [7,40,41] and in diseased skin with defects in the integrity of physical barriers,

respectively [6,42].

Observation of erythema patterns under different skin barrier conditions reveals the influ-

ence of skin barrier conditions on the model parameters and thus, provides potential treat-

ments to reduce the maximum production rate or the basal secretion rate of pro-inflammatory

mediators. For example, probiotics, which improve the composition of the skin microbiome,

significantly reduce the maximum production rate of pro-inflammatory mediators [43,44].

Additionally, probiotics can improve the integrity of physical barriers [43], thus, reducing the

basal secretion rate of pro-inflammatory mediators. Therefore, probiotics can be a prospective

treatment leading to a fading pattern. Further experimental studies on the influence of skin

barrier conditions on erythema patterns will offer deeper insights into the development of

effective treatments for erythema associated with inflammatory skin disease.

Applicability of the present model

This study provides a systematic definition of disease severity using this model. The model

describes the expanding patterns and fading patterns on the same parameter space (Fig 4),

which represents how far each expanding pattern is from the fading pattern. This distance is

similar to the state-space representation of inflammatory responses, where disease severity is

measured as the distance between a patient’s coordinates and that of one of the disease states

[45,46]. Defining disease severity as the distance between the fading pattern and erythema pat-

terns on the patient’s skin will help estimate the appropriate dosage and strength of treatment

for each patient based on their erythema pattern.

Our framework can also predict the disease risk in healthy individuals. The model showed

that the fading patterns disappeared at different speeds depending on the parameters (Fig 2C

and 2D). This means that the parameters in healthy individuals can be estimated by measuring

fading speeds using patch tests. Utilizing the obtained parameters, the disease risk of each indi-

vidual can be evaluated as the distance from the parameter that shows the expanding patterns.

Therefore, we propose that the future integration of models, experimental findings, and clini-

cal data will allow for the development of personalized treatment and prediction of inflamma-

tory skin diseases in a noninvasive manner.

Future implications

Although this study showed the reaction-diffusion model for the fading pattern and five

expanding patterns, there are two major limitations. Firstly, the expanding patterns continued

to expand in the present model simulations (Fig 3), while the actual erythema typically stopped

expanding and maintained its size in the clinical observation [5,20]. This is probably because

the present model focuses on the non-chemotactic cells (e.g., including keratinocytes), whereas

chemotactic cells (e.g., macrophages and neutrophils) also contribute to skin inflammation

[2,3]. Moreover, the present model focuses on the innate immune response, whereas the skin

initiates an acquired immune response in the persistence of the innate immune response.

Therefore, incorporating the chemotactic cells and acquired immune response into the model

will reproduce the end of the expansion.
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Secondly, we focused on well-circumscribed erythema with clear boundaries (Fig 3) that

resulted from inflammation in the upper layers of the skin. Inflammation in the deeper layers

of the skin leads to poorly circumscribed erythema with a gradual transition between the

affected area and healthy skin [47]. Future studies incorporating the three-dimensional struc-

ture of the skin into the present model would take into account poorly circumscribed

erythema.

Conclusions

Here, positive and negative feedback and diffusion of pro- and anti-inflammatory mediators

were demonstrated to commonly account for the fading patterns in healthy skin and five types

of expanding patterns in diseased skin. Mechanistically, alterations in mediator production

destabilize a healthy state while stabilizing an inflamed state, thereby resulting in a transition

to diverse expanding patterns. The mediator feedback dynamics is the fundamental regulator

of the health-to-disease transition, which suggests effective treatment strategies for each

expanding pattern. Therefore, regulating mediator production provides an experimentally

testable framework for the spatiotemporal regulation of erythema, which can facilitate the

development of a noninvasive and personalized treatment for inflammatory skin diseases.

Supporting information

S1 Table. List of references for erythema observed in the eleven diseases.

(XLSX)

S2 Table. Parameter values used in the simulations. Parameter values used to generate the

fading patterns in Fig 2 (A) and the five types of expanding patterns in Fig 3 (B).

(XLSX)

S1 Fig. Temporal evolution of mediator concentrations in the fading or expanding pat-

terns. Blue and red lines represent the concentrations of the pro- and anti-inflammatory medi-

ators, respectively. A high concentration of pro-inflammatory mediator was transiently

applied at time = 10 to 11. Da = Di = 0; and the other parameter values for these simulations

are listed in S2 Table.

(TIF)

S2 Fig. Pattern selection in the parameter space of pro- and anti-inflammatory mediator

productions. Fading (F), arcuate (Ar), polycyclic (P), gyrate (G), annular (An) and circular

(C) patterns emerged as the steady state (Eq 2) at the parameter values of qa and ra (A), qa and

qi (B), pa and pi (C), qa and pa (D). Simulations of the gray areas did not correspond to any of

the five patterns. pa = 0.02, pi = 0.12, qi = 6.0 for (A), pa = 0.02, ra = 0.8, pi = 0.12 for (B), qa =

3.0, ra = 0.8, qi = 6.0 for (C), ra = 0.8, pi = 0.12, qi = 6.0 for (D). In all simulations, Da = Di = 0.3.

(TIF)

S3 Fig. Alterations in the production rates of pro- and anti-inflammatory mediators tran-

sition from fading patterns to various expanding patterns. Representation of the patterns

generated using Eq 2 for different values of the parameters ra and pa (A), ra and pi (B), pa and

qi (C), and pi and qi (D). Simulations of the gray areas did not correspond to any of the five

patterns. qa = 3.0, pi = 0.12, qi = 6.0 for (A), pa = 0.05, qa = 3.0, qi = 6.0 for (B), qa = 3.0, ra =

0.95, pi = 0.12 for (C), and pa = 0.05, qa = 3.0, ra = 0.95 for (D). In all the simulations, Da = Di =

0.3.

(TIF)
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S4 Fig. Simulated time courses of shrinkage pattern and dynamical characters underlying

the fading pattern. (A) Simulated time courses of shrinkage pattern. pa = 0.03, qa = 2.0, ra =

0.99, Da = 0.3, pi = 0.02, qi = 6.0, Di = 0.3. (B) and (C) Dynamical characters underlying the

fast (B) and slow (C) fading pattern. (B) is the same as Fig 5F.

(TIF)
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