The Xanthine Oxidase Inhibitor Febuxostat Suppresses Adipogenesis and Activates Nrf2

Higa, Yoshiki and Hiasa, Masahiro and Tenshin, Hirofumi and Nakaue, Emiko and Tanaka, Mariko and Kim, Sooha and Nakagawa, Motosumi and Shimizu, So and Tanimoto, Kotaro and Teramachi, Jumpei and Harada, Takeshi and Oda, Asuka and Oura, Masahiro and Sogabe, Kimiko and Hara, Tomoyo and Sumitani, Ryohei and Maruhashi, Tomoko and Yamagami, Hiroki and Endo, Itsuro and Matsumoto, Toshio and Tanaka, Eiji and Abe, Masahiro (2023) The Xanthine Oxidase Inhibitor Febuxostat Suppresses Adipogenesis and Activates Nrf2. Antioxidants, 12 (1). p. 133. ISSN 2076-3921

[thumbnail of antioxidants-12-00133-v2.pdf] Text
antioxidants-12-00133-v2.pdf - Published Version

Download (4MB)

Abstract

Xanthine oxidoreductase (XOR) is a rate-limiting enzyme in purine catabolism that acts as a novel regulator of adipogenesis. In pathological states, xanthine oxidoreductase activity increases to produce excess reactive oxygen species (ROS). The nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical inducer of antioxidants, which is bound and repressed by a kelch-like ECH-associated protein 1 (Keap1) in the cytoplasm. The Keap1-Nrf2 axis appears to be a major mechanism for robust inducible antioxidant defenses. Here, we demonstrate that febuxostat, a xanthine oxidase inhibitor, alleviates the increase in adipose tissue mass in obese mouse models with a high-fat diet or ovariectomy. Febuxostat disrupts in vitro adipocytic differentiation in adipogenic media. Adipocytes appeared at day 7 in absence or presence of febuxostat were 160.8 ± 21.2 vs. 52.5 ± 12.7 (p < 0.01) in 3T3–L1 cells, and 126.0 ± 18.7 vs. 55.3 ± 13.4 (p < 0.01) in 10T1/2 cells, respectively. Adipocyte differentiation was further enhanced by the addition of hydrogen peroxide, which was also suppressed by febuxostat. Interestingly, febuxostat, but not allopurinol (another xanthine oxidase inhibitor), rapidly induced the nuclear translocation of Nrf2 and facilitated the degradation of Keap1, similar to the electrophilic Nrf2 activator omaveloxolone. These results suggest that febuxostat alleviates adipogenesis under oxidative conditions, at least in part by suppressing ROS production and Nrf2 activation. Regulation of adipocytic differentiation by febuxostat is expected to inhibit obesity due to menopause or overeating.

Item Type: Article
Subjects: European Scholar > Agricultural and Food Science
Depositing User: Managing Editor
Date Deposited: 15 Dec 2023 13:12
Last Modified: 15 Dec 2023 13:12
URI: http://article.publish4promo.com/id/eprint/3152

Actions (login required)

View Item
View Item