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In this paper, we study the following nonlocal problem
−ða − b

Ð
Ω
j∇uj2dxÞΔu = λu + f ðxÞjujp−2u, x ∈Ω,

u = 0, x ∈ ∂Ω,

(
where a, b > 0 are

constants, 1 < p < 2, λ > 0, f ∈ L∞ðΩÞ is a positive function, and Ω is a smooth bounded domain in ℝN with N ≥ 3. By variational
methods, we obtain a pair of nontrivial solutions for the considered problem provided j f j∞ is small enough.

1. Introduction and Main Results

This paper is concerned with the existence andmultiplicity of
nontrivial solutions for the following nonlocal problem with
Dirichlet boundary value conditions:

− a − b
ð
Ω

∇uj j2dx
� �

Δu = λu + f xð Þ uj jp−2u, x ∈Ω,

u = 0, x ∈ ∂Ω,

8><
>:

ð1Þ

where a, b > 0, 1 < p < 2, λ > 0, f ∈ L∞ðΩÞ is a positive
function, and Ω is a smooth bounded domain in ℝN with
N ≥ 3.

In the past two decades, the following Kirchhoff type
problems with Dirichlet boundary value conditions

− a + b
ð
Ω

∇uj j2dx
� �

Δu = f x, uð Þ, x ∈Ω,

u = 0, x ∈ ∂Ω,

8><
>: ð2Þ

have attracted great attention of many researchers. Such
problems are often viewed as nonlocal because of the appear-

ance of the term a + b
Ð
Ω
j∇uj2dx, which implies that (2) is no

longer a pointwise identity. It is worthwhile pointing out that
the equation in (2) arises in various models of physical and
biological systems. Indeed, problem (2) is related to the sta-
tionary analogue of the following equation:

ρ
∂2u
∂t2

−
P0
h

+ E
2L

ðL
0

∂u
∂x

����
����dx

� �
∂2u
∂x2

= 0, ð3Þ

which was first presented by Kirchhoff [1] as an extension of
the classical d’Alembert wave equation for free vibrations of
elastic strings, where u = uðx, tÞ denotes the lateral displace-
ment, ρ the mass density, P0 the initial tension, h the cross-
section area, E the Young modulus of the material, and L the
length of the string. Under different assumptions on f ðx, uÞ,
many interesting results on the existence of solutions to (2)
were obtained. We refer the interested readers to [2–14]
and the references therein.

However, we now face a new nonlocal term a − b
Ð
Ω

j∇uj2dx, which is different from the well-known Kirchhoff
type nonlocal term a + b

Ð
Ω
j∇uj2dx. Now, there has been

some results on the existence and multiplicity of nontrivial
solutions to this new nonlocal problem (see [15–22]).
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In particular, Yin and Liu [15] firstly studied this kind of
problem:

− a − b
ð
Ω

∇uj j2dx
� �

Δu = uj jp−2u, x ∈Ω,

u = 0, x ∈ ∂Ω,

8><
>: ð4Þ

where 2 < p < 2∗, and obtained the existence and multiplicity
of solutions for the problem.

In [16], Lei et al. considered

− a − b
ð
Ω

∇uj j2dx
� �

Δu = f λ xð Þ uj jp−2u, x ∈Ω,

u = 0, x ∈ ∂Ω,

8><
>:

ð5Þ

where 1 < p < 2, and proved under certain condition on f λðxÞ
, that there are at least two positive solutions. After this, the
authors also studied the problem with singularity [17].

Wang et al. [20] investigated the nonlocal problem with
critical exponent

− a − b
ð
ℝ4

∇uj j2dx
� �

Δu = uj j2u + μg xð Þ, x ∈ℝ4,

u ∈D1,2 ℝ4� �
:

8><
>:

ð6Þ

When μ is a nonnegative parameter and gðxÞ ∈ L4/3ðℝ4Þ,
they showed the existence of multiple positive solutions.

Recently, Zhang and Zhang [22] studied the nonlocal
problem

− a − b
ð
Ω

∇uj j2dx
� �

Δu = λu + g x, uð Þ, x ∈Ω,

u = 0, x ∈ ∂Ω,

8><
>:

ð7Þ

where the parameter 0 < λ < aλ1, λ1 is the first eigenvalue of
operator −Δ, and g is a superlinear function with subcritical
growth. By using the Mountain Pass Theorem, the authors
obtained the existence of a nontrivial solution.

As far as we know, there is no work on the existence of
solution to (1), which is just our purpose here. Moreover,
we extend λ ≥ aλ1 and without assuming nonlinearity is
superlinear.

Our main result can be stated as follows.

Theorem 1. Assume that a, b > 0, 1 < p < 2, λ > 0, f ∈ L∞ðΩÞ
is a positive function, then problem (1) has at least a pair of
nontrivial solutions if j f j∞ is small enough.

The paper is organized as follows. In Section 2, we give
some notations and preliminaries. In Section 3, we prove
Theorem 1 for the case of 0 < λ < aλ1. Section 4 is devoted
to the proof of Theorem 1 for the case of λ ≥ aλ1.

2. Notations and Preliminaries

Throughout this paper, we make use of the following
notations. H1

0ðΩÞ and LqðΩÞ are standard Sobolev spaces
with the usual norm ∥u∥2 = Ð

Ω
j∇uj2dx, jujqq =

Ð
Ω
jujqdx.

BrðxÞ (∂BrðxÞ) denotes an open ball (the sphere) centered
at x with radius r > 0. ⟶ and ⇀ denote strong and
weak convergence, respectively. For each 1 ≤ r ≤ 2∗, we
denote by Sq the best Sobolev constant for the embedding
of H1

0ðΩÞ into LqðΩÞ. Let 0 < λ1 < λ2 ≤⋯≤λk<⋯ be the
sequence of eigenvalues of −Δ on H1

0ðΩÞ satisfying
limk⟶∞λk = +∞, and let e1, e2,⋯, be the corresponding
orthonormal eigenfunctions in L2ðΩÞ.

By the Sobolev Theorem and f ∈ L∞ðΩÞ, the functional

I uð Þ = a2∥u∥2 − b4∥u∥4 − λ2
ð
Ω

uj j2dx − 1p
ð
Ω

f xð Þ uj jpdx

ð8Þ

is well defined on H1
0ðΩÞ. Furthermore, it belongs to C1ðH1

0
ðΩÞ,ℝÞ, and its critical points are precisely the weak solu-
tions of (1). Here, we say u ∈H1

0ðΩÞ is a weak solution to
(1), if for any v ∈H1

0ðΩÞ, it holds

a − b
ð
Ω

∇uj j2dx
� �ð

Ω

∇u∇vdx − λ
ð
Ω

uvdx −
ð
Ω

f xð Þ
� uj jp−2uvdx = 0:

ð9Þ

Following [15], we first prove that the functional I sat-
isfies the ðPSÞc condition for any c < a2/4b.

Lemma 2. Under the assumptions of Theorem 1, I satisfies the
ðPSÞc condition with c < a2/4b.

Proof. Let fung ⊂H1
0ðΩÞ be a ðPSÞc sequence for I with c <

a2/4b; that is,

I unð Þ⟶ c, I ′ unð Þ⟶ 0, as n⟶∞: ð10Þ

By the Sobolev Theorem and (10),

c + 1 + o 1ð Þ∥un∥ ≥ I unð Þ − 1
2 I ′ unð Þ, un
D E

= b
4 ∥un∥

4 −
1
p
−
1
2

� �ð
Ω

f xð Þ unj jpdx

≥
b
4 ∥un∥

4 −
1
p
−
1
2

� �
fj j∞S−p/2p ∥un∥

p:

ð11Þ

Since p < 2, we conclude that fung is bounded in H1
0ðΩÞ.

Up to a subsequence (still denoted by fung), we may
assume that
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un ⇀ u, inH1
0 Ωð Þ,

un ⟶ u, in Lr Ωð Þ, 1 ≤ r < 2∗,
un ⟶ u, a:e:inΩ:

0
BB@ ð12Þ

By using Hölder’s inequality, it follows from (12) that

ð
Ω

f xð Þ unj jp−2un un − uð Þdx
����

���� ≤ fj j∞ unj jp−1p un − uj jp ⟶ 0,

ð13Þ

as n⟶∞. Similarly, we also have

ð
Ω

un un − uð Þdx
����

���� ≤ unj j2 un − uj j2 ⟶ 0: ð14Þ

From the two above convergences, we get

o 1ð Þ = I ′ unð Þ un − uð Þ = a − b∥un∥
2� �ð

Ω

∇un∇ un − uð Þ + o 1ð Þ,

ð15Þ

as n⟶∞. We claim that a − b∥un∥
2 ⟶ 0 is false. If, to

the contrary, namely, ∥un∥
2 ⟶ ab, define a functional by

ϕ uð Þ = λ2
ð
Ω

u2dx + 1p
ð
Ω

f xð Þ uj jpdx, u ∈H1
0 Ωð Þ: ð16Þ

Then,

ϕ′ uð Þ, v
D E

= λ
ð
Ω

uvdx +
ð
Ω

f xð Þ uj jp−2uvdx, u, v ∈H1
0 Ωð Þ:

ð17Þ

By using Hölder’s inequality again, we obtain

∣
ð
Ω

f xð Þ unj jp−2un − uj jp−2u� �
vdx∣

≤ fj j∞
ð
Ω

unj jp−2un − uj jp−2u�� ��∣v∣dx
≤ ∣f ∞j j unj jp−2un − ∣u p�2u

�� ��
p/p−1S

−p/2
p ∥v∥p,

∣
ð
Ω

unv − uvdx∣ ≤
ð
Ω

un − uj j vj jdx ≤ un − uj j2λ−11 ∥v∥2:

ð18Þ

Hence, by using (12), we obtain

∥ϕ′ unð Þ − ϕ′ uð Þ∥ ≤ un − uj j2λ−11 + ∣f ∞j j unj jp−2un
− ∣u p�2u

�� ��
p/p−1S

−p/2
p ⟶ 0,

ð19Þ

as n⟶∞. This shows ϕ′ðunÞ⟶ ϕ′ðuÞ.

On the other hand, from

o 1ð Þ = I ′ unð Þ, v
D E

= a − b∥un∥
2� �ð

Ω

∇u∇vdx − ϕ′ unð Þ, v
D E

ð20Þ

and ∥un∥
2 ⟶ a/b, we have ϕ′ðunÞ⟶ 0.

Thus, we can deduce that

ϕ′ uð Þ, v
D E

= λ
ð
Ω

uvdx +
ð
Ω

f xð Þ uj jp−2uvdx = 0, ∀v ∈H1
0 Ωð Þ:

ð21Þ

By the variational method fundamental lemma [23], we
further obtain

λu xð Þ + f xð Þ u xð Þj jp−2u xð Þ = 0, a:e:x ∈Ω: ð22Þ

Since f ðxÞ > 0, it then follows that u = 0.
By (12) and f ∈ L∞ðΩÞ, we can use the Vitali Conver-

gence Theorem to obtain

lim
n⟶∞

ð
Ω

f xð Þ un ∣ pdx =
ð
Ω

f xð Þ
����

����u
����pdx, ð23Þ

and consequently,

ϕ unð Þ = λ

2

ð
Ω

u2ndx +
1
p

ð
Ω

f xð Þ unj jpdx

⟶
λ

2

ð
Ω

uj j2dx + 1
p

ð
Ω

f xð Þ uj jpdx = 0:
ð24Þ

This and ∥un∥
2 ⟶ a/b provide

I unð Þ = a
2 ∥un∥

2 −
b
4 ∥un∥

4 −
λ

2

ð
Ω

unj j2dx

−
1
p

ð
Ω

f xð Þ unj jpdx⟶ a2

4b ,
ð25Þ

which contradicts IðunÞ⟶ c < a2/4b. Thus, the claim fol-
lows. In turn, we have from (15) that

Ð
Ω
∇un∇ðun − uÞdx

⟶ 0, and hence, ∥un∥⟶∥u∥. Combining this with the
weak convergence of fung in H1

0ðΩÞ, we deduce that un
⟶ u in H1

0ðΩÞ. ☐

3. Proof of Theorem 1 for 0 < λ < aλ1

In this section, we will use the Mountain Pass Theorem to
prove the existence of a pair of nontrivial solutions of the
considered problem for 0 < λ < aλ1.

Lemma 3. Assume that 0 < λ < aλ1. If j f j∞ is sufficiently
small, then there is a sequence fung ⊂H1

0ðΩÞ such that un ≥
0, IðunÞ⟶ c∗ and I ′ðunÞ⟶ 0, where 0 < c∗ < a2/4b.
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Proof. By the Sobolev Theorem, we have that

I uð Þ = a
2 ∥u∥

2 −
b
4 ∥u∥

4 −
λ

2

ð
Ω

uj j2dx − 1
p

ð
Ω

f xð Þ uj jpdx

≥
1
2 a −

λ

λ1

� �
∥u∥2 −

b
4 ∥u∥

4 −
1
p

fj j∞S−p/2p ∥u∥p

= ∥u∥p
1
2 a −

λ

λ1

� �
∥u∥2−p −

b
4 ∥u∥

4−p −
1
p

fj j∞S−p/2p

� �
:

ð26Þ

For A = 1/2ða − λ/λ1Þ and B = b/4, the function g : ð0,
+∞Þ⟶ℝ defined by

g tð Þ≔ At2−p − Bt4−p ð27Þ

attains its maximum value at

ρ = 2 − pð ÞA
4 − pð ÞB

	 
1/2
: ð28Þ

Take D0 = gðρÞ and note that, for any u ∈H1
0ðΩÞ, ∥u∥

= ρ, there holds

I uð Þ ≥ ρp D0 −
1
p

fj j∞S−p/2p

� �
≥
ρp

2
D0
2 ≕ θ > 0, ð29Þ

whenever

fj j∞ ≤
D0p
2 Sp/2p : ð30Þ

On the other hand, let u ∈H1
0ðΩÞ \ f0g, then we have

that

lim
t⟶+∞

I tuð Þ = lim
t⟶+∞

a
2 t

2∥u∥2 −
b
4 t

4∥u∥4 −
λ

2 t
2
ð
Ω

uj j2dx
	

−
1
p
tp
ð
Ω

f xð Þ uj jpdx


= −∞:

ð31Þ

Thus, there exists v1 ∈H1
0ðΩÞ such that ∥v1∥>ρ and I

ðv1Þ < 0.
By IðuÞ = Ið∣u ∣ Þ, we may assume that un ≥ 0. By applying

the Mountain Pass Theorem without ðPSÞ condition [24], we
construct a sequence fung ⊂H1

0ðΩÞ satisfying IðunÞ⟶ c∗
and I ′ðunÞ⟶ 0 for

c∗ ≔ inf
γ∈Γ

max
t∈ 0,1½ �

I γ tð Þð Þ ≥ θ > 0, ð32Þ

where

Γ≔ γ ∈ C 0, 1½ �,H1
0 Ωð Þ� �

: γ 0ð Þ = 0, γ 1ð Þ = v1
� �

: ð33Þ

From easy calculations, we get

max
t≥0

I tv1ð Þ =max
t≥0

a
2 t

2∥v1∥
2 −

b
4 t

4∥v1∥
4 −

λ

2 t
2
ð
Ω

v1j j2dx
�

−
1
p
tp
ð
Ω

f xð Þ v1j jpdx
�

<max
t≥0

a
2 t

2∥v1∥
2 −

b
4 t

4∥v1∥
4

� �
≤
a2

4b :

ð34Þ

This and the definition of c∗ yield that 0 < c∗ < a2/4b.
Thus, we complete the proof of Lemma 3. ☐

Proposition 4. Assume a, b > 0, 0 < λ < aλ1 and f ðxÞ ∈ L∞
ðΩÞ is a positive function. Then, problem (1) admits a pair
of nontrivial solutions if j f j∞ is small enough.

Proof. By Lemma 3, we obtain a sequence fung ⊂H1
0ðΩÞ such

that un ≥ 0, IðunÞ⟶ c∗ and I ′ðunÞ⟶ 0, provided j f j∞ is
small enough. It then follows from Lemma 2 that there exists
u ∈H1

0ðΩÞ such that un ⟶ u in H1
0ðΩÞ with IðuÞ = c∗ and

I ′ðuÞ = 0, which implies that u is a nontrivial nonnegative
solution of (1). By the symmetry of functional I, we further
deduce that −u is a nontrivial nonpositive solution of (1).
This completes the proof. ☐

4. Proof of Theorem 1 for λ ≥ aλ1

Since λ ≥ aλ1, the method used in the previous section does
not work here. Indeed, we shall apply the following Linking
Theorem [25] to establish the existence of a pair of nontrivial
solutions for problem (1) when λ ≥ aλ1.

Theorem 5. Let X be a real Banach space with X = Y ⊕ Z and
dimY < +∞. Suppose that I ∈ C1ðX,ℝÞ satisfies the following:

(I1) There are ~ρ, eθ > 0 such that Ij∂B~ρð0Þ∩Z ≥
eθ

(I2) There are e ∈ ∂B~ρð0Þ ∩ Z and R > ~ρ such that Ij∂M ≤ 0
with M = ðBRð0Þ ∩ YÞ ⊕ fte : 0 < t < Rg

Then, there exists a sequence fung ⊂ X satisfying IðunÞ
⟶ c and I ′ðunÞ⟶ 0 for

~c∗ ≔ inf
~γ∈eΓ max

u∈M
I ~γ uð Þð Þ, ð35Þ

where

eΓ≔ ~γ ∈ C M, Xð Þ: ~γj∂M = id
� �

: ð36Þ

As the sequence of eigenvalues λk goes to infinity, there is
n ∈ℕ such that aλ1 ≤ λ < aλn+1. Set

Y = span e1,⋯,enf g, Z = Y⊥: ð37Þ

Clearly, X = Y ⊕ Z.
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Lemma 6. There exists z ∈ Z \ f0g such that

max
u∈Y⊕ℝz

I uð Þ < a2

4b
: ð38Þ

Proof. Since, for any u ∈H1
0ðΩÞ \ f0g,

max
t≥0

I tuð Þ =max
t≥0

a
2 t

2∥u∥2 −
b
4 t

4∥u∥4 −
λ

2 t
2
ð
Ω

uj j2dx
�

−
1
p
tp
ð
Ω

f xð Þ uj jpdx
�

<max
t≥0

a
2 t

2∥u∥2 −
b
4 t

4∥u∥4
� �

≤
a2

4b ,

ð39Þ

then there exists u∗ ∈H1
0ðΩÞ such that

z∗ ∈ Z \ 0f g, max
u∈Y⊕ℝz∗

I uð Þ < a2

4b , ð40Þ

where

z∗ = u∗ − 〠
n

k=1

ð
Ω

u∗ekdx
� �

ek: ð41Þ

This completes the proof of Lemma 6. ☐

Proposition 7. Assume a, b > 0, λ ≥ aλ1 and f ðxÞ ∈ L∞ðΩÞ is
a positive function. Then, problem (1) admits a pair of non-
trivial solutions if j f j∞ is small enough.

Proof. Firstly, we have for any u ∈ Z,

I uð Þ = a
2 ∥u∥

2 −
b
4 ∥u∥

4 −
λ

2

ð
Ω

uj j2dx − 1
p

ð
Ω

f xð Þ uj jpdx

≥
1
2 a −

λ

λn+1

� �
∥u∥2 −

b
4 ∥u∥

4 − fj j∞
1
p
S−p/2p ∥u∥p,

ð42Þ

and therefore, as in the proof of Lemma 3, we can prove that I
satisfies the condition ðI1Þ of Theorem 5 when j f j∞ is small.

Secondly, since λ ≥ aλn, we also have for any u ∈ Y ,

I uð Þ = a
2 ∥u∥

2 −
b
4 ∥u∥

4 −
λ

2

ð
Ω

uj j2dx − 1
p

ð
Ω

f xð Þ uj jpdx

≤
1
2 aλn − λð Þ uj j22 ≤ 0:

ð43Þ

Moreover, if z ∈ Z \ f0g is given by Lemma 6, we can
apply the equivalence of norms in the finite dimensional
space, to obtain for u ∈ Y ⊕ℝz,

I uð Þ⟶ −∞, as∥u∥⟶ +∞: ð44Þ

Thus, the condition ðI2Þ is satisfied for R large enough.

Finally, by Theorem 5, Lemma 6, and Ið∣u ∣ Þ = IðuÞ, we
conclude that there is a sequence fung ⊂H1

0ðΩÞ satisfying
un ≥ 0, IðunÞ⟶~c∗ and I ′ðunÞ⟶ 0, provided j f j∞ is small
enough. Then, we can argue as in the proof of Proposition 4
to obtain a pair of nontrivial solutions of (1). Thus, the proof
of Proposition 7 is complete. ☐

5. Conclusions

In this paper, we consider a new nonlocal problem different
from the well-known Kirchhoff type problem. Compared
with the existing literature, we extend λ ≥ aλ1 and without
assuming nonlinearity is superlinear, which causes the
methods employed in the previous papers cannot be directly
applied here. To overcome this difficulty, we distinguish two
cases: (1) 0 < λ < aλ1 and (2) λ ≥ aλ1. In the former case, the
existence of a nontrivial nonnegative solution is established
via the Mountain Pass Theorem, while the Linking Theorem
for the latter case. Furthermore, the symmetry of the corre-
sponding functional brings us another nontrivial nonpositive
solution.
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