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In this paper, the notion of sequential ςp-metric spaces has been introduced as a generalization of usual S-metric spaces, Sb-metric
spaces, SJS metric spaces, and specially of Sp-metric spaces. In view of this notion, we prove some fixed point theorems for some
classes of ςp-rational Geraghty JS-contractions over such spaces. A supporting example and an application have been given in
order to examine the validity of the obtained results.

1. Introduction and Preliminaries

There is a huge number of extensions of Banach contrac-
tion principle. Some of them focus on using different forms
of contractive conditions and some of them focus on the
various generalized metric spaces. There are many interest-
ing generalization of metric type spaces such as b-metric
space [1], extended b-metric space [2], p-metric space [3],
JS-metric spaces [4], C∗-algebra valued metric space [5],
S-metric space, Sb-metric space [6, 7], Sp-metric space [8],
and G-metric spaces [9]. Also, for considering and analyzing
more generalization of the concept of metric spaces, one can
consider the following works dealing with controlled metric
spaces and generalized b-metric spaces [10, 11]. In the con-
text of various metric type spaces which are the combination
of the above mentioned spaces, several authors have proved
different types of fixed point theorems [12]. Now, we present
some definitions of some generalized metric spaces which are
pertinent to our research.

Let Ω be the class of all strictly increasing continuous
functions ω : ½0,∞Þ→ ½0,∞Þ with ω−1ðtÞ ≤ t ≤ ωðtÞ and ω−1

ð0Þ = 0 = ωð0Þ.

Definition 1 (see [3]). Let O be a nonempty set. A function
p : O × O→ ½0,∞Þ is a p-metric if for some ω ∈Ω and for
all κ, κ′, κ″ ∈ O,

(1) pðκ, κ′Þ = 0 if and only if κ = κ′

(2) pðκ, κ′Þ = pðκ′, κÞ
(3) pðκ, κ″Þ ≤ ωðpðκ, κ′Þ + pðκ′, κ″ÞÞ for all κ, κ′, κ″ ∈ O
In this case, the pair ðO, pÞ is called a p-metric space, or

an extended b-metric space.
A b-metric [1] is a p-metric with ωðtÞ = st, for some fixed

s ≥ 1. A p-metric space reduces to an ordinary metric space
provided that ωðtÞ = t.

Let Λ be a nonempty set and JS : Λ ×Λ→ ½0,∞Þ be a
mapping. For any κ ∈Λ, let us define the set

C JS ,Λ, κð Þ = κnf g ⊂Λ : lim
n→∞

JS κn, κð Þ = 0
n o

: ð1Þ

Definition 2 (JS-metric space) (see [4]). Let JS : Λ ×Λ→
½0,∞� be a mapping so that
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(1) JSðκ, κ′Þ = 0 implies κ = κ′

(2) for every κ, κ′ ∈Λ, we have JSðκ, κ′Þ = JSðκ′, κÞ
(3) if ðκ, κ′Þ ∈Λ ×Λ and fκng ∈ CðJS ,Λ, κÞ then

JSðκ, κ′Þ ≤ plimsup
n→∞

JSðκn, κ′Þ, for some p > 0

The pair ðΛ, JSÞ is called a generalized metric space,
usually known as JS-metric space.

In [13], Roy et al. introduced a new type of extended b
-metric spaces. First, let Cðσp,Λ, κÞ, be defined as above,
where JS is substituted by σp.

Definition 3 (see [13]). Let Λ be a nonempty set. A mapping
σp : Λ ×Λ→ ½0,∞Þ is said to be a sequential p-metric if for
all a, b ∈Λ:

(a) σpða, bÞ = 0 implies a = b

(b) σpða, bÞ = σpðb, aÞ
(c) σpða, bÞ ≤ ωðlimsup

n→∞
σpðan, bÞÞ, where fang ∈ Cðσp,Λ

, aÞ and ω ∈Ω so that ω−1ðsÞ = s = ωðsÞ for s ∈ f0,∞g
The triplet ðΛ, σp, ωÞ is called a sequential p-metric space.

We represent a sequential p-metric space simply as ðΛ, σpÞ.

Example 4 (see [13]). Let Λ =N and the metric σp : Λ
2 → ½0

,∞Þ be defined by

σp 1, 1ð Þ = 0 ;
σp n, nð Þ = e − 1, for n ≥ 2 ;

σp 1, nð Þ = σp n, 1ð Þ = e1/n+1 − 1, for n ≥ 2 ;
σp n,mð Þ = σp m, nð Þ = emn − 1, for all n,m ≥ 2 with n ≠m:

8>>>>><
>>>>>:

ð2Þ

σp is a sequential p-metric on Λ for ω1ðtÞ = t for all t ≥ 0
and ω2ðtÞ = et − 1 for all t ≥ 0.

Proposition 5 (see [13]). If ðΛ, JSÞ is a JS-metric space, then
JS is also a sequential p-metric on Λ.

Proposition 6 (see [13]). Let ðΛ, JSÞ be a JS-metric space
with coefficient p ≥ 1. Let σpða, bÞ≔ ΓðJSða, bÞÞ, where
Γ ∈Ω. Then, σp is a sequential p-metric with ωðtÞ = ΓðptÞ
for all t ≥ 0.

Sedghi et al. [14] have recommended the notion of a S
-metric space as follows.

Definition 7 (see [14]). Let O be a nonempty set. An S-metric
on O is a function S : O × O × O→ ½0,∞Þ such that,

S κ, κ′, κ″
� �

≥ 0, and ð3Þ

(1) Sðκ, κ′, κ″Þ = 0 if and only if κ = κ′ = κ″

(2) Sðκ, κ′, κ″Þ ≤ Sðκ, κ, aÞ + Sðκ′, κ′, aÞ + Sðκ″, κ″, aÞ
for all κ, κ′, κ″, a ∈ O

for each κ, κ′, κ″, a ∈ O.
The pair ðO, SÞ is nominated an S-metric space.
Some examples of such S-metric spaces are

(1) Let O be a normed space. Then, Sðκ, κ′, κ″Þ = kκ′ +
κ″ − 2κk + kκ′ − κ″k is an S-metric on O

(2) Let O be a normed space. Then, Sðκ, κ′, κ″Þ = kκ − κ
″k + kκ′ − κ″k is an S-metric on O

(3) Let O be a nonempty set and d be an ordinary metric
on O. Then, Sðκ, κ′, κ″Þ = dðκ, κ′Þ + dðκ′, κ″Þ is an S
-metric on O

Lemma 8 (see [14]). In an S-metric space, we have Sðκ
, κ, κ′Þ = Sðκ′, κ′, κÞ.

Definition 9 (see [8]). Let O be a nonempty set and ω ∈Ω.
Suppose that a mapping ςp : O × O × O→ ½0,∞Þ satisfies:

(1) ςpðκ, κ′, κ″Þ = 0 iff κ = κ′ = κ″

(2) ςpðκ, κ′, κ″Þ ≤ ωðςpðκ, κ, aÞ + ςpðκ′, κ′, aÞ + ςpðκ″, κ″
, aÞÞ for all κ, κ′, κ″, a ∈ O

Then ςp is called a modified S-metric, and the pair ðO, ςpÞ
is called a modified S-metric space.

An S-metric space is an ςp-metric space where ωðtÞ = t
and every Sb-metric space with parameter s ≥ 1 is an ςp
-metric space where ωðtÞ = st.

Definition 10. A ςp-metric is called symmetric if ςpðκ, κ, κ′Þ
= ςpðκ′, κ′, κÞ, for all κ, κ′ ∈ O:

Example 11 (see [8]). Let ðO, SÞ be an S-metric space. Then

(1) ςpðκ, κ′, κ″Þ = eSðκ,κ′,κ″Þ − 1 is an ςp-metric with ωðtÞ
= et − 1

(2) ςpðκ, κ′, κ″Þ = Sðκ, κ′, κ″ÞeSðκ,κ′,κ″Þ is an ςp-metric
with ωðtÞ = tet
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In general, an ςp-metric with nontrivial function ω need
not to be jointly continuous in all its variables (see [15]).
The following simple lemma is a modification of Lemma
1.11 of [8].

Lemma 12. Let ðO, ςpÞ be an ςp-metric space.

(1) Suppose that fκng and fκn′g are ςp-convergent to κ

and κ′, respectively. Then, we have

ω−2 ςp κ, κ, κ′
� �� �

≤ liminf
n→∞

ςp κn, κn, κn′
� �

≤ limsup
n→∞

ςp κn, κn, κn′
� �

≤ ω2 ςp κ, κ, κ′
� �� �

:
ð4Þ

In particular, if κ = κ′, then, we have lim
n→∞

ςpðκn, κn, κn′Þ = 0

.

(2) Suppose that ςp-metric ðO, ςpÞ is symmetric and fκng
is ςp-convergent to κ and κ″ ∈ O is arbitrary. Then,
we have

ω−1 ςp κ, κ, κ″
� �� �

≤ liminf
n→∞

ςp κn, κn, κ″
� �

≤ limsup
n→∞

ςp κn, κn, κ″
� �

≤ ω ςp κ, κ, κ″
� �� �

:
ð5Þ

Proof. (1) Using the rectangle inequality in the ςp-metric
space, it is easy to see that

ςp κ, κ, κ′
� �

≤ ω 2ςp κ, κ, κnð Þ + ςp κ′, κ′, κn
� �h i

≤ ω 2ςp κ, κ, κnð Þ + ω 2ςp κ′, κ′, κn′
� �

+ ςp κn, κn, κn′
� �h ih i

,

ςp κn, κn, κn′
� �

≤ ω 2ςp κn, κn, κð Þ + ςp κn′ , κn′ , κ
� �h i

≤ ω 2ςp κn, κn, κð Þ + ω 2ςp κn′ , κn′ , κ′
� �

+ ςp κ, κ, κ′
� �h ih i

:

ð6Þ

The desired result is obtained via letting n→∞ in the
above inequalities and taking lower limit and the upper limit
in the first and second inequality, respectively.

(2) Using the rectangle inequality, we see that

ω−1 ςp κ, κ, κ″
� �� �

≤ 2ςp κ, κ, κnð Þ + ςp κn, κn, κ″
� �

,

ςp κn, κn, κ″
� �

≤ ω 2ςp κn, κn, κð Þ + ςp κ″, κ″, κ
� �� �

:

ð7Þ

The desired result is obtained via taking liminf as n→∞
in the first inequality and the limsup as n→∞ in the second
inequality, respectively.

2. Introduction to Sequential ςp-Metric Spaces

In this section, we introduce a new type of extended ςp-metric
spaces. First, let us to define

C ςp, O, a
� �

= anf g ⊂ O : lim
n→∞

ςp a, a, anð Þ = 0
n o

, ð8Þ

where ςp : O × O × O→ ½0,∞� is a given mapping and O

is a nonempty set.

Definition 13. Let O be a nonempty set. A mapping ςp : O ×
O × O→ ½0,∞� is said to be a sequential ςp-metric if for all
a, b, c ∈ O:

(1) ςpða, b, cÞ = 0 implies a = b = c

(2) ςpða, b, cÞ ≤ ωðlimsupn→∞ςpða, a, cnÞ + limsupn→∞ςp
ðb, b, cnÞÞ, where fcng ∈ Cðςp, O, cÞ and ω ∈Ω so that
ω−1ðsÞ = s = ωðsÞ for s ∈ f0,∞g

The triplet ðO, ςp, ωÞ is called a sequential ςp-metric space
(SSPMS). It will be shown simply as ðO, ςpÞ:

The above definition is an extension of Definition 13 of
[13], that is, the definition of SJS-metric spaces.

Example 14. Let the triplet ðΛ, σp, ωÞ be a sequential p-metric

space. If we define ςpðκ, κ′, κ″Þ = σpðκ, κ′Þ + σpðκ′, κ″Þ, then,
ςp will be a sequential ςp-metric with the same control func-
tion ω provided the ω is subadditive.

According to the above example and Example 15, we
construct the following example of ςp-metrics.

Example 15. Let Λ =ℕ and the metric ςp : Λ
3 → ½0,∞Þ be

defined by

ςp 1, 1, 1ð Þ = 0 ;
ςp n, n, nð Þ = 2e − 2, for n ≥ 2 ;

ςp 1, n, nð Þ = ςp 1, 1, nð Þ = ςp n, n, 1ð Þ = ςp n, 1, 1ð Þ = e1/n+1 + e − 2, n ≥ 2 ;

ςp n, 1, nð Þ = ςp 1, n, 1ð Þ = 2e1/n+1 − 2, n ≥ 2 ;
ςp n, n,mð Þ = ςp m, n, nð Þ = ςp n,m,mð Þ = ςp m,m, nð Þ = emn + e − 2, m, n ≥ 2,m ≠ n,
ςp m, n,mð Þ = ςp n,m, nð Þ = 2emn − 2, m, n ≥ 2,m ≠ n,
ςp m, n, oð Þ = emn − 2 + eno − 2, m, n, o ≥ 2, n ≠m:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð9Þ

ςp is a sequential p-metric on Λ for ω1ðtÞ = t.

Proposition 16. Let ðO, ςpÞ be a SJS-metric space with coeffi-

cient k ≥ 1. Let ςp′ða, b, cÞ = Γðςpða, b, cÞÞ, where Γ ∈Ω. Then,

ςp′ is a sequential ςp-metric for ωðtÞ = ΓðktÞ for all a, b, c ∈ O
and t ≥ 0.
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Proof.Here, we show that ðO, ςp′Þ satisfies all the conditions of
Definition 25.

(a) ςp′ða, b, cÞ = 0 gives Γðςpða, b, cÞÞ = 0. Then ςpða, b, cÞ
= Γ−1ð0Þ = 0 which implies a = b = c

(b) For all a, b, c ∈ O, we have ςp′ða, b, cÞ = Γðςpða, b, cÞÞ ≤
Γðklimsupn→∞ςpða, a, cnÞ + klimsupn→∞ςpðb, b, cnÞÞ
= ωðlimsupn→∞ςpða, a, cnÞ + limsupn→∞ςpðb, b, cnÞÞ
where fcng ∈ Cðςp, O, cÞ = Cðςp′ , O, cÞ.

Proposition 17. Let ðO, ςpÞ be a SSPMS with control function

ω. Let ςp′ða, b, cÞ = Γðςpða, b, cÞÞ, where Γ ∈Ω. Then, ςp′ is a
sequential ςp-metric with ω′ðtÞ = ΓðωðtÞÞ for all t ≥ 0.

Proof.Here, we show that ðO, ςp′Þ satisfies all the conditions of
Definition 25.

(a) ςp′ða, b, cÞ = 0 gives Γðςpða, b, cÞÞ = 0. Then ςpða, b, cÞ
= Γ−1ð0Þ = 0 which implies a = b = c

(b) For all a, b, c ∈ O, we have ςp′ða, b, cÞ = Γðςpða, b, cÞÞ
≤ Γðωðlimsupn→∞ςpða, a, cnÞÞ + ωðlimsupn→∞ςpðb,
b, cnÞÞÞ where fcng ∈ Cðςp, O, cÞ = Cðςp′ , O, cÞ.

Definition 18. Let ðO, ςpÞ be a SSPMS. Also, let fang be a
sequence in O and a ∈ O.

(i) fang is said to be convergent and converges to a if
fang ∈ Cðςp, O, aÞ,

(ii) fang is said to be Cauchy if limn,m→∞ςpðan, an, amÞ
= 0

(iii) O is said to be complete if any Cauchy sequence in O

is convergent

Definition 19 (see [15]). Let ðO, ςpÞ and ðO′, ς∗p Þ be two

sequential ςp-metric spaces. A mappingH : O→O′ is called
continuous at a point a ∈ O if for any ε > 0 there exists δε > 0
such that for any l ∈ O, ς∗p ðH l,H l,HaÞ < ε whenever ςpðl, l
, aÞ < δε. H is said to be continuous on O ifH is continuous
at each Point of O.

Proposition 20. In a SSPMS ðO, ςpÞ if a sequence fang is con-
vergent, then, it converges to unique element in O.

Proposition 21. Let ðO, ςpÞ be a SSPMS and fang ⊂ O con-
verges to some a ∈ O. Then, ςpða, a, aÞ = 0:

Proof. Since fang converges to a ∈ O, so limn→∞ςpðan, an, aÞ
= 0. Therefore, we have ςpða, a, aÞ ≤ ωð2limsupn→∞ςpða, a,
anÞÞ = ωð0Þ = 0 which implies ςpða, a, aÞ = 0:

Proposition 21. Let fang be a Cauchy sequence in a SSPMS
ðO, ςp, ωÞ such that ω−1 is continuous. If fang has a conver-
gent subsequence fankg which converges to an a ∈ O, then,
fang also converges to a ∈ O.

Proof. From condition (3) of Definition 25, we have

ςp a, a, anð Þ ≤ ω limsup
k→∞

ςp ank , an, an
� �� �

, ð10Þ

which implies that

ω−1 ςp a, a, anð Þ� �
≤ limsup

k→∞
ςp ank , an, an
� �

, ð11Þ

for all n ∈N. Due to the Cauchyness of fang, it follows that
limn,k→∞ςpðank , an, anÞ = 0 and thus ω−1ðςpða, a, anÞÞ→ 0 as
n→∞ which implies that ςpða, a, anÞ→ 0 as n→∞, since
ω−1 is continuous. Hence, fang converges to a ∈ O.

Proposition 22. In a SSPMS ðO, ςpÞ if a self mapping H is
continuous at a ∈ O, then fHang ∈ Cðςp, O,HaÞ for any
sequence fang ∈ Cðςp, O, aÞ:

Proof. Let ε > 0 be given. SinceH is continuous at a, then for
any ε > 0 there exists δε > 0 such that ςðc, c, aÞ < δε implies ς
ðHc,Hc,HaÞ < ε: As fang converges to a, so for δε > 0,
there exists N ∈N such that ςða, a, anÞ < δε for all n ≥N .
Therefore, for any n ≥N , ςðHa,Ha,HanÞ < ε and thus H
an →Ha as n→∞.

Definition 23. Let ðO, ςpÞ be a SSPMS with supporting func-
tion ω. Define

Bp a, εð Þ≔ b ∈ O : ςp a, a, bð Þ < ςp a, a, að Þ + ε
� 	

,

Bp a, ε½ �≔ b ∈ O : ςp a, a, bð Þ ⩽ ςp a, a, að Þ + ε
� 	

,
ð12Þ

for all a ∈ O and ε > 0.

Remark 24. One can easily check that the collection

τςp ≔ ∅f g ∪U ≠∅Þð Þ ⊂ O :  for any a ∈U there exists ε > 0 : Bp a, εð Þ ⊂U ,

ð13Þ

forms a topology on O:
Another approach to define a sequential ςp-metric is as

follows:
Define

C ςp, O, a
� �

= anf g ⊂ O : lim
n→∞

ςp an, an, að Þ = 0
n o

, ð14Þ

where ςp : O × O × O→ ½0,∞� is a given mapping, and O is a
nonempty set.

4 Advances in Mathematical Physics



Definition 25. Let O be a nonempty set. A mapping ςp : O ×
O × O→ ½0,∞� is said to be a sequential ςp-metric if for all
a, b, c ∈ O:

(1) ςpða, b, cÞ = 0 implies a = b = c

(2) ςpða, b, cÞ ≤ ωðlimsupn→∞ςpðcn, cn, aÞ + limsupn→∞
ςpðcn, cn, bÞÞ, where fcng ∈ Cðςp, O, cÞ and ω ∈Ω and
ω−1ðsÞ = s = ωðsÞ for s ∈ f0,∞g

The triplet ðO, ςp, ωÞ is called a sequential ςp-metric
space. It will be shown simply as ðO, ςpÞ:

In this paper, we investigate the existence of unique fixed
point for some rational contractions of Jleli-Samet and
Geraghty type in ordered sequential ςp-spaces. Our motiva-
tion is an interesting generalization of Banach contraction
principle which is presented by Jleli et al. in [16].

3. Main Results

Note that ðO, ⪯Þ possesses the s.l.c.p. whenever fκng is a non-
decreasing sequence in O such that κn →U ∈ O, one has κn
⪯U for all n ∈ℕ. From now on, by SSPMS, we mean a
sequential ςp-metric space and by SPRGJSC a ςp-rational
Geraghty JS-contraction.

Let G denotes the class of all functions G : ½0,∞Þ→ ½0,
ω−1ð1ÞÞ satisfying the following condition:

limsup
n→∞

G tnð Þ = ω−1 1ð Þ implies that tn → 0, asn→∞:

ð15Þ

The following are two examples of Geraghty functionsG.

(1) GðtÞ = e−t
pet

q

for all t > 0 andGðtÞ = 0 for t = 0,where
p, q > 0

(2) GðtÞ = 1/ð1 + tpÞ for all t > 0 and GðtÞ = 0 for t = 0,
where p > 0

In the above examples, we assumed that ωðtÞ = t: In the
case that, for instance, ωðtÞ = sinh t, then ω−1ð1Þ ≃ 0:88,
and one can multiple this amount to the above functions ω.

Definition 26. Let ðO, ςpÞ be an ordered SSPMS. A mapping
Q : O→ O is called a SPRGJSC of type I if

θ ςp Qκ,Qκ′,Qκ″
� �� �

≤ θ M κ, κ′, κ″
� �� �G M κ,κ′ ,κ″ð Þð Þ,

ð16Þ

for some G ∈ G and for all comparable elements κ,
κ′, κ″ ∈ O, where

Theorem 27. Let ðO,⪯,ςp, ωÞ be an ordered ςp-complete
SSPMS. Let Q : O→ O be a ⪯-increasing mapping such that
κ0⪯Qðκ0Þ for some element κ0 ∈ O. Suppose that Q be a
SPRGJSC of type I. If

(I) Q is continuous, or

(II) ðO, ⪯Þ possesses the s.l.c.p
then Q has a fixed point. Moreover, the set of fixed points

of Q is well ordered if and only if FðQÞ is a singleton.

Proof. Put κn =Qnðκ0Þ: Since κ0⪯Qðκ0Þ andQ is ⪯-increasing,
we obtain by induction that

κ0⪯Q κ0ð Þ⪯Q2 κ0ð Þ⪯⋯⪯Qn κ0ð Þ⪯Qn+1 κ0ð Þ⪯: ð18Þ

We will do the proof in the following steps.

Step I. We will show that lim
n→∞

ςpðκn, κn+1, κn+1Þ = 0. Without

any loss of generality, we may assume that κn ≠ κn+1, for all

n ∈ℕ: Since κn⪯κn+1 for each n ∈ℕ, then by (16), we have

θ ςp κn, κn+1, κn+1ð Þ� �
= θ ςp Qκn−1,Qκn,Qκnð Þ� �

≤ θ M κn−1, κn, κnð Þð ÞG M κn−1,κn ,κnð Þð Þ,
ð19Þ

because

M κn−1, κn, κnð Þ

=max ςp κn−1, κn, κnð Þ, ςp κn−1,Qκn−1,Qκn−1ð Þςp κn,Qκn,Qκnð Þ
1 + ςp κn−1, κn, κnð Þ ,

(

� ςp κn−1,Qκn−1,Qκn−1ð Þςp κn,Qκn,Qκnð Þ
1 + ςp Qκn−1,Qκn,Qκnð Þ

)

=max ςp κn−1, κn, κnð Þ, ςp κn−1, κn, κnð Þςp κn, κn+1, κn+1ð Þ
1 + ςp κn−1, κn, κnð Þ ,

(

� ςp κn−1, κn, κnð Þςp κn, κn+1, κn+1ð Þ
1 + ςp κn, κn+1, κn+1ð Þ g ≤max ςp κn−1, κn, κnð Þ, ςp κn, κn+1, κn+1ð Þ

)
,

(

ð20Þ

and if max fςpðκn−1, κn, κnÞ, ςpðκn, κn+1, κn+1Þg = ςpðκn, κn+1,

M κ, κ′, κ″
� �

=max ςp κ, κ′, κ″
� �

,
ςp κ,Qκ,Qκð Þςp κ′,Qκ′,Qκ″

� �
1 + ςp κ, κ′, κ″

� � ,
ςp κ,Qκ,Qκð Þςp κ′,Qκ′,Qκ″

� �
1 + ςp Qκ,Qκ′,Qκ″

� �
8<
:

9=
;: ð17Þ
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κn+1Þ, then from (19), we have

θ ςp κn, κn+1, κn+1ð Þ� �
≤ θ ςp κn, κn+1, κn+1ð Þ� �G M κn−1,κn ,κnð Þð Þ

< θ ςp κn, κn+1, κn+1ð Þ� �ω−1 1ð Þ < θ ςp κn, κn+1, κn+1ð Þ� �
,
ð21Þ

which is a contradiction.
Hence, max fςpðκn−1, κn, κnÞ, ςpðκn, κn+1, κn+1Þg = ςpð

κn−1, κn, κnÞ: So, from (19),

θ ςp κn, κn+1, κn+1ð Þ� �
≤ θ ςp κn−1, κn, κnð Þ� �G M κn−1,κn ,κnð Þð Þ

< θ ςp κn−1, κn, κnð Þ� �
:

ð22Þ

That is, fςpðκn, κn+1, κn+1Þg is a decreasing sequence, so,
there exists r ≥ 0 such that lim

n→∞
ςpðκn, κn+1, κn+1Þ = r. We will

prove that r = 0. Suppose on contrary that r > 0. Then, letting
n→∞, from (22), we have

θ rð Þ ≤ θ rð Þ limn→∞
G M κn−1,κn ,κnð Þð Þ

, ð23Þ

which implies that ω−1ð1Þ ≤ 1 ≤ lim
n→∞

GðMðκn−1, κn, κnÞÞ.
Now, as G ∈ G we conclude that Mðκn−1, κn, κnÞ→ 0 which
yields that r = 0, a contradiction. Hence,

lim
n→∞

ςp κn, κn+1, κn+1ð Þ = 0: ð24Þ

Step II. Now, we show that the sequence fκng is a ςp-Cauchy
sequence. Suppose that fκng is not ςp-Cauchy. Then for some
ε > 0 we can find two subsequences fκmi

g and fκnig of fκng
such that mi and ni are the smallest index such that

ni >mi > iandςp κmi
, κni , κni

� �
≥ ε: ð25Þ

This means that

ςp κmi−1, κni−1, κni−1
� �

< ε: ð26Þ

From the definition of Mðκ, κ′, κ″Þ and the above limits,

Now, from (16) and the above inequalities, we have

θ εð Þ ≤ θ limsup
i→∞

ςp κmi
, κni , κni

� �� �

≤ limsup
i→∞

θ M κmi−1, κni−1, κni−1
� �� �G M κmi−1,κni−1,κni−1ð Þð Þ

≤ θ εð Þω−1 1ð Þ < θ εð Þ,
ð28Þ

a contradiction. Therefore, fκng is a ςp-Cauchy sequence.
ςp-Completeness of O yields that fκngςp-converges to a point
U ∈ O.

Step III. U is a fixed point of Q.
First, let Q is continuous, so, we have

U = lim
n→∞

κn+1 = lim
n→∞

Qκn = fU: ð29Þ

Now, let (II) holds. Using the assumption on O, we have
κn⪯U. Now, we show that U = fU. From definition of a

sequential ςp-metric,

ςp U,U, fUð Þ ≤ ω limsup
n→∞

ςp κn+1, κn+1, fUð Þ
� �

≤ 2ω θ−1 limsup
n→∞

θ M κn, κn,Uð Þð Þ
limsup
n→∞

G M κn ,κn ,Uð Þð Þ
 ! !

,

ð30Þ

where

lim
n→∞

M κn, κn,Uð Þ

= lim
n→∞

max ςp κn, κn,Uð Þ, ςp κn,Qκn,Qκnð Þςp κn,Qκn, fUð Þ
1 + ςp κn, κn,Uð Þ ,

(

·
ςp κn,Qκn,Qκnð Þςp κn,Qκn, fUð Þ

1 + ςp Qκn,Qκn, fUð Þ

)
= 0:

ð31Þ

Therefore, we deduce that ςpðU,U, fUÞ ≤ ωð0Þ = 0, so,
U ≠V.

limsup
i→∞

M κmi−1, κni−1, κni−1
� �

= limsup
i→∞

max ςp κmi−1, κni−1, κni−1
� �

,
ςp κmi−1,Qκmi−1,Qκmi−1
� �

ςp κni−1,Qκni−1,Qκni−1
� �

1 + ςp κmi−1, κni−1, κni−1
� � ,

ςp κmi−1,Qκmi−1,Qκmi−1
� �

ςp κni−1,Qκni−1,Qκni−1
� �

1 + ςp Qκmi−1,Qκni−1,Qκni−1
� �

( )

= limsup
i→∞

max ςp κmi−1, κni−1, κni−1
� �

,
ςp κmi−1, κmi

, κmi

� �
ςp κni−1, κni , κni
� �

1 + ςp κmi−1, κni−1, κni−1
� � ,

ςp κmi−1, κmi
, κmi

� �
ςp κni−1, κni , κni
� �

1 + ςp κmi
, κni , κni

� �
( )

≤ ε:

ð27Þ
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Finally, suppose that the set of fixed points of Q be well
ordered. Assume thatU andV are two fixed points of Q such
that U ≠V. Then by (16), we have

θ ςp U,V,Vð Þ� �
= θ ςp fU, fV, fVð Þ� �

≤ θ M U,V,Vð Þð ÞG M U,V,Vð Þð Þ

= θ ςp U,V,Vð Þ� �G ςp U,V,Vð Þð Þ < θ ςp U,V,Vð Þ� �ω−1 1ð Þ:

ð32Þ

Because

M U,V,Vð Þ =max ςp U,V,Vð Þ, ςp U,U,Uð Þςp V,V,Vð Þ
1 + ςp U,V,Vð Þ

( )
= ςp U,V,Vð Þ:

ð33Þ

So, we get ln θðςpðU,V,VÞÞ < ω−1ð1Þ ln θðςpðU,V,VÞÞ,
a contradiction. Hence U =V, and Q has a unique fixed
point. Conversely, if Q has a unique fixed point, then the
set of fixed points of Q is a singleton which is well ordered.

Corollary 28. Let ðO, ςp,⪯Þ be an ordered ςp-complete SSPMS.
Let Q : O→ O be an ⪯-increasing mapping such that κ0⪯

Qðκ0Þ for some element κ0 ∈ O. Suppose that

θ ςp Qκ,Qκ′,Qκ″
� �� �

≤ θ α1ςp κ, κ′, κ″
� �

+ α2
ςp κ,Qκ,Qκð Þςp κ′,Qκ′,Qκ″

� �
1 + ςp κ, κ′, κ″

� �
0
@

+ α3
ςp κ,Qκ,Qκð Þςp κ′,Qκ′,Qκ″

� �
1 + ςp Qκ,Qκ′,Qκ″

� �
1
A

λ

,

ð34Þ

where αi ∈ ½0, 1Þ, λ ∈ ð0, 1Þ, and ∑3
i=1αi < 1: If

(I) Q is continuous, or

(II) ðO, ⪯Þ possesses the s.l.c.p
then Q has a fixed point. Moreover, the set of fixed points

of Q is well ordered if and only if Q has one and only one fixed
point.

Definition 29. Let ðO, ςp,⪯Þ is an ordered SSPMS. A mapping
Q : O→ O is called a SPRGJSC of type II if there existsG ∈ G
such that,

θ ςp Qκ,Qκ′,Qκ″
� �� �

≤M κ, κ′, κ″
� �G M κ,κ′ ,κ″ð Þð Þ, ð35Þ

for all comparable elements κ, κ′, κ″ ∈ O, where

Theorem 30. Let ðO, ςp,⪯Þ be an ordered ςp-complete
SSPMS. Let Q : O→ O be a ⪯-increasing mapping such that
κ0⪯Qðκ0Þ for an element κ0 ∈ O. Suppose that Q be a
SPRGJSC of type II . If

(I) Q is continuous, or

(II) ðO, ⪯Þ possesses the s.l.c.p
then Q possesses a fixed point. Moreover, the set of fixed

points of Q is well ordered if and only if Q has one and only
one fixed point.

Proof. Let κn =Qnðκ0Þ:

Step I. We will show that lim
n→∞

ςpðκn, κn+1, κn+1Þ = 0. Since κn
⪯κn+1 for each n ∈ℕ, then by (35), we have

θ ςp κn, κn+1, κn+1ð Þ� �
≤ θ ςp κn, κn+1, κn+1ð Þ� �

= θ ςp Qκn−1,Qκn,Qκn+1ð Þ� �
≤M κn−1, κn, κn+1ð Þ

≤G ςp κn−1, κn, κn+1ð Þ� �
ςp κn−1, κn, κn+1ð ÞG M κn−1,κn ,κn+1ð Þð Þ

< ςp κn−1, κn, κn+1ð Þω−1 1ð Þ ≤ ςp κn−1, κn, κn+1ð Þ,

ð37Þ

because

M κn−1, κn, κnð Þ =max ςp κn−1, κn, κnð Þ,�
ςp κn−1Qκn−1,Qκn−1ð Þςp κn,Qκn,Qκnð Þ

1 + ςp κn−1, κn, κnð Þ + ςp κn−1, κn−1, Qκnð Þ + ςp κn, κn,Qκn−1ð Þ ,

ςp κn,Qκn,Qκnð Þςp κn,Qκn,Qκnð Þ
1 + ςp κn, Qκn,Qκnð Þ + ςp κn, κn, Qκnð Þ + ςp κn, κn,Qκnð Þ ,

ςp κn,Qκn,Qκnð Þςp κn,Qκn,Qκnð Þ
1 + ςp κn, κn,Qκnð Þ + ςp κn,Qκn, Qκnð Þ + ςp κn,Qκn,Qκnð Þg

=max ςp κn−1, κn, κnð Þ�
,

ςp κn−1, κn, κnð Þςp κn, κn+1, κn+1ð Þ
1 + ςp κn−1, κn, κnð Þ + ςp κn−1, κn−1, κn+1ð Þ + ςp κn, κn, κnð Þ ,

ςp κn, κn+1, κn+1ð Þςp κn, κn+1, κn+1ð Þ
1 + ςp κn, κn+1, κn+1ð Þ + ςp κn, κn, κn+1ð Þ + ςp κn, κn, κn+1ð Þ ,

ςp κn, κn+1, κn+1ð Þςp κn, κn+1, κn+1ð Þ
1 + ςp κn, κn, κn+1ð Þ + ςp κn, κn+1, κn+1ð Þ + ςp κn, κn+1, κn+1ð Þ
≤max ςp κn−1, κn, κnð Þ, ςp κn, κn+1, κn+1ð Þ� 	

:

ð38Þ

Therefore, fςpðκn, κn+1, κn+1Þg is decreasing. Similar to
what have been done in Theorem 27, we have

M κ, κ′, κ″
� �

=max ςp κ, κ′, κ″
� �

,
ςp κ,Qκ,Qκð Þςp κ′,Qκ′,Qκ′

� �
1 + ςp κ, κ′, κ′

� �
+ ςp κ, κ,Qκ′

� �
+ ςp κ′, κ′,Qκ

� � , ςp κ′,Qκ′,Qκ′
� �

ςp κ″,Qκ″,Qκ″
� �

1 + ςp κ′,Qκ″,Qκ″
� �

+ ςp κ′, κ′,Qκ″
� �

+ ςp κ″, κ″,Qκ′
� � , ςp κ′,Qκ″,Qκ″

� �
ςp κ″,Qκ′,Qκ′
� �

1 + ςp κ″, κ″,Qκ′
� �

+ ςp κ′,Qκ′,Qκ′
� �

+ ςp κ″,Qκ″,Qκ″
� �

8<
:

9=
;: ð36Þ
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lim
n→∞

ςp κn−1, κn, κnð Þ = 0: ð39Þ

Step II. Now, we prove that the sequence fκng is a ςp-Cauchy
sequence. In other case, i.e., that fκng is not a ςp-Cauchy
sequence, for an ε > 0, we can find two subsequences fκmi

g
and fκnig of fκng such that mi and ni are the smallest index
for which

ni >mi > i and ςp κmi
, κni , κni

� �
≥ ε: ð40Þ

This means that

ςp κmi−1, κni−1, κni−1
� �

< ε: ð41Þ

From the definition of Mðκ, κ′, κ″Þ and the above limits,

limsup
i→∞

M κmi−1, κni−1, κni−1
� �

= limsup
i→∞

max ςp κmi−1, κni−1, κni−1
� �

,
�

·
ςp κmi−1,Qκmi−1,Qκmi−1
� �

ςp κni−1,Qκni−1,Qκni−1
� �

1 + ςp κmi−1, κni−1, κni−1
� �

+ ςp κmi−1, κmi−1,Qκni−1
� �

+ ςp κni−1, κni−1,Qκmi−1
� � ,

·
ςp κni−1,Qκni−1,Qκni−1
� �

ςp κni−1, κni−1,Qκni−1
� �

1 + ςp κni−1,Qκni−1,Qκni−1
� �

+ ςp κni−1, κni−1,Qκni−1
� �

+ ςp κni−1, κni−1,Qκni−1
� � ,

·
ςp κni−1,Qκni−1,Qκni−1
� �

ςp κni−1,Qκni−1,Qκni−1
� �

1 + ςp κni−1, κni−1,Qκni−1
� �

+ ςp κni−1,Qκni−1,Qκni−1
� �

+ ςp κni−1,Qκni−1,Qκni−1
� �

)

≤ ε

ð42Þ

Now, from (35) and the above inequalities, we have

θ εð Þ ≤ θ limsup
i→∞

ςp κmi
, κni , κni

� �� �

≤ limsup
i→∞

θ M κmi−1, κni−1, κni
� �� �G M κmi−1,κni−1,κni−1ð Þð Þ� �

≤ θ εð Þω−1 1ð Þ,
ð43Þ

which implies that ω−1ð1Þ ≤ limsup
i→∞

GðMðκmi
, κni−1, κni−1

ÞÞ. Now, as G ∈ G , we conclude that fκng is a ςp-Cauchy
sequence. ςp-Completeness of O yields that fκngςp-con-
verges to a point U ∈ O.

Step III. U is a fixed point of Q.
When Q is continuous, the proof is straightforward.
Now, let (II) holds. We leave the proof as it is similar to

the proof of step III of Theorem 27.

Corollary 31. Let ðO, ςp,⪯Þ be an ordered ςp-complete SSPMS.
Let Q : O→ O be a ⪯-increasing mapping so that κ0⪯Qðκ0Þ
for an element κ0 ∈ O. Suppose that

θ ςp Qκ,Qκ′,Qκ″
� �� �

≤ θ α1ςp κ, κ′, κ″
� �

+ α2
ςp κ,Qκ,Qκð Þςp κ′,Qκ′,Qκ′

� �
1 + ςp κ, κ′, κ′

� �
+ ςp κ, κ,Qκ′

� �
+ ςp κ′, κ′,Qκ

� �
0
@

+ α3
ςp κ′,Qκ′,Qκ′
� �

ςp κ″,Qκ″,Qκ″
� �

1 + ςp κ′,Qκ″,Qκ″
� �

+ ςp κ′, κ′,Qκ″
� �

+ ςp κ″, κ″,Qκ′
� �

+ α4
ςp κ′,Qκ″,Qκ″
� �

ςp κ″,Qκ′,Qκ′
� �

1 + ςp κ″, κ″,Qκ′
� �

+ ςp κ′,Qκ′,Qκ′
� �

+ ςp κ″,Qκ″,Qκ″
� �

1
A

λ

ð44Þ

where αi ∈ ½0, 1Þ, λ ∈ ð0, 1Þ, and ∑4
i=1αi < 1: If

(I) Q is continuous, or

(II) ðO, ⪯Þ possesses the s.l.c.p
then Q admits a fixed point. In addition, the set of fixed

points of Q is well ordered if and only if FixðQÞ is a singleton.

The Banach contraction principle is immediately
obtained from the mentioned corollaries 28, 34, and 31.

Definition 32. Let ðO, ςp,⪯Þ is an ordered SSPMS. A mapping
Q : O→ O is called a SPGJSC if there exists G ∈ G , such that

θ ςp Qκ,Qκ′,Qκ″
� �� �

≤ θ M κ, κ′, κ″
� �� �G M κ,κ′ ,κ″ð Þð Þ,

ð45Þ

for all comparable elements κ, κ′, κ″ ∈ O, where

M κ, κ′, κ″
� �

=max

� ςp κ, κ′, κ″
� �

, ςp κ′,Qκ″,Qκ″
� �

, ςp κ″,Qκ′,Qκ′
� �n o

:

ð46Þ

Theorem 33. Let ðO, ςp,⪯Þ be an ordered ςp-complete SSPMS.
Let Q : O→ O be an ⪯-increasing mapping such that κ0⪯Qð
κ0Þ for some element κ0 ∈ O. Suppose that Q be a SPGJSC. If

(III) Q is continuous, or

(IV) ðO, ⪯Þ possesses the s.l.c.p
then Q has a fixed point. Moreover, the set of fixed points

of Q is well ordered if and only if Q has one and only one fixed
point.

Proof. Assume that κn =Qnðκ0Þ: Since κ0⪯Qðκ0Þ and Q is an
⪯-increasing function, we obtain by induction that

κ0⪯Q κ0ð Þ⪯Q2 κ0ð Þ⪯⋯⪯Qn κ0ð Þ⪯Qn+1 κ0ð Þ⪯: ð47Þ

We shall do the proof as follows.
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Step I. We will show that lim
n→∞

ςpðκn, κn+1, κn+1Þ = 0. Since κn
⪯κn+1 for each n ∈ℕ, then by (45), we have

θ ςp κn, κn+1, κn+1ð Þ� �
= θ ςp Qκn−1,Qκn,Qκnð Þ� �
≤ θ M κn−1, κn, κnð Þð ÞG M κn−1,κn ,κnð Þð Þ

≤ θ ςp κn−1, κn, κnð Þ� �G M κn−1,κn ,κnð Þð Þ

< θ ςp κn−1, κn, κnð Þ� �ω−1 1ð Þ

≤ θ ςp κn−1, κn, κnð Þ� �
,

ð48Þ

because

M κn−1, κn, κnð Þ =max ςp κn−1, κn, κnð Þ, ςp κn,Qκn,Qκnð Þ, ςp κn, Qκn,Qκnð Þ� 	
=max ςp κn−1, κn, κnð Þ, ςp κn, κn+1, κn+1ð Þ, ςp κn, κn+1, κn+1ð Þ� 	
≤max ςp κn−1, κn, κnð Þ, ςp κn, κn+1, κn+1ð Þ� 	

,

ð49Þ

and it is easy to see that max fςpðκn−1, κn, κnÞ, ςpðκn,
κn+1, κn+1Þg = ςpðκn−1, κn, κnÞ, so from (48), we conclude that
fςpðκn, κn+1, κn+1Þg is decreasing. Then, there exists r ≥ 0
such that lim

n→∞
ςpðκn, κn+1, κn+1Þ = r.

We will prove that r = 0. This can be done as in the pre-
vious theorem. So,

lim
n→∞

ςp κn−1, κn, κnð Þ = 0, ð50Þ

holds true.

Step II. Now, we prove that the sequence fκng is a ςp-Cauchy
sequence. Suppose that fκng is not a ςp-Cauchy sequence.
Then for some ε > 0, we can find two subsequences fκmi

g
and fκnig of fκng such that mi and ni are the smallest index
for which

ni >mi > i and ςp κmi
, κni , κni

� �
≥ ε, ð51Þ

i.e.,

ςp κmi−1, κni−1, κni−1
� �

< ε: ð52Þ

From the definition of Mðκ, κ′, κ″Þ and the above limits,

limsup
i→∞

M κmi−1, κni−1, κni−1
� �

= limsup
i→∞

max

· ςp κmi−1, κni−1, κni−1
� �

, ςp κni−1,Qκni−1,Qκni−1
� �

, ςp
�
· κni−1,Qκni−1,Qκni−1
� �	

≤ ε:

ð53Þ

Now, from (45) and the above inequalities, we have

θ εð Þ ≤ θ limsup
i→∞

ςp κmi
, κni , κni

� �� �

≤ limsup
i→∞

θ M κmi−1, κni−1, κni−1
� �� �limsup

i→∞
G M κmi−1,κni−1,κni−1ð Þð Þ

≤ θ εð Þ
limsup
i→∞

G M κmi−1,κni−1,κni−1ð Þð Þ
,

ð54Þ

which implies that 1 < limsup
i→∞

GðMðκmi
, κni−1, κni−1ÞÞ ≤

ω−1ð1Þ. Now, as G ∈ G , we conclude that fκng is a ςp-Cau-
chy sequence. ςp-Completeness of O yields that fκngςp-con-
verges to a point U ∈ O.

Step III. U is a fixed point of Q. This step is proved as the
proof of step III of Theorem 27.

Corollary 34. Let ðO, ςp,⪯Þ be an ordered ςp-complete SSPMS.
Let Q : O→ O be an ⪯-increasing mapping such that κ0⪯Qð
κ0Þ for an element κ0 ∈ O. Suppose that

θ ςp Qκ,Qκ′,Qκ″
� �� �

≤ θ α1ςp κ, κ′, κ″
� �

+ α2ςp κ′,Qκ″,Qκ″
� �

+ α3ςp κ″,Qκ′,Qκ′
� �� �λ

,

ð55Þ

where αi ∈ ½0, 1Þ, λ ∈ ð0, 1Þ and ∑3
i=1αi < 1: If

(I) Q is continuous, or

(II) ðO, ⪯Þ possesses the s.l.c.p
then Q has a fixed point. Moreover, the set of fixed points

of Q is well ordered if and only if FixðQÞ is a singleton.

The Banach contraction principle is immediately
obtained from the above corollary.

Example 35. Let O = ½0,∞Þ and ςp on O be defined as ςpðκ, κ
′, κ″Þ = ½jκ − κ′j + jκ′ − κ″j�2, for all κ, κ′, κ″ ∈ O. Let the
ordering “⪯” on O be as follows:

κ⪯κ′ ⇔ κ′ ≤ κ, ∀κ, κ′ ∈ O: ð56Þ

Define self-map Q on O by

Qκ = 1
4 ln

ffiffiffiffiffiffiffiffiffiffiffiffi
κ2 + 1

p
+ κ

� �
= 1
4 sinh−1κ: ð57Þ

Define G : ½0, 1Þ→ ½0, 1/2Þ as GðtÞ = 1/16t and θ : ½0,∞Þ
→ ½1,∞Þ as θðtÞ = cosh t.
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Using the mean value theorem for the function sinh−1, we
have

cosh ςp Qκ,Qκ′,Qκ″
� �� �

= cosh Qκ −Qκ′
�� ��2 + Qκ′ −Qκ″

�� ��2� �

= cosh 1
4 sinh−1κ − 1

4 sinh−1κ′
����

����
2
+ 1

4 sinh−1κ′ − 1
4 sinh−1κ″

����
����
2

 !

≤ cosh 1
16 κ − κ′

�� ��2 + κ′ − κ″
�� ��2h i� �

≤ cosh ςp κ, κ′, κ″
� �� �G M κ,κ′ ,κ″ð Þð Þ

≤ cosh M κ, κ′, κ″
� �� �G M κ,κ′ ,κ″ð Þð Þ

:

ð58Þ

Note that for all x ≥ 0 one can see that cosh ðð1/16ÞxÞ ≤
cosh ðxÞð1/16Þx. Thus, (16) is satisfied for all κ, κ′, κ″ ∈ O:
Therefore, all the conditions of Theorem 27 hold true. More-
over, 0 is a fixed point of Q.

4. Existence of a Solution for an
Integral Equation

We consider the following integral equation:

κ tð Þ =
ðb
a
Γ t, s, κ sð Þð Þds + γ tð Þ, ð59Þ

where b > a ≥ 0. Our aim in this part is to present the exis-
tence of a solution for (59) which is an element of O = C½a,
b� as an application of Theorem 30.

The above equation can be changed as follows.
Let Q : O→ O be defined by

Qκ tð Þ =
ðb
a
Γ t, s, κ sð Þð Þds + γ tð Þ, ð60Þ

for all κ ∈ O and for all t ∈ ½a, b�: Clearly, existence of a solu-
tion for (59) is equivalent to the existence of a fixed point
of Q.

Let

d U,Vð Þ =max
t∈a,b�

U tð Þ −V tð Þj jp = U −Vj jj jp∞: ð61Þ

Let O be equipped with the sequential ςp-metric given by

ςp U,V ,Wð Þ = ϝ d U,Vð Þ + d V ,Wð Þð Þ, ð62Þ

for all U,V ,W ∈ O where ϝ : ½0,∞Þ→ ½0,∞Þ is a strictly
increasing continuous function with t ≤ ϝðtÞ for t ≥ 0 and
ϝð0Þ = 0 which is a ςp-complete SSPMS with control func-

tion ωðtÞ = ϝð2p−1tÞ. Let the partial ordered ⪯ given by κ
⪯κ′ ⇔ κðtÞ ≤ κ′ðtÞ, for all t ∈ ½a, b�, be defined on O. ðO,
⪯Þ has the sequential limit comparison property [17].

Now, we state the following consequence.

Theorem 36. Suppose that

(i) Γ : ½a, b� × ½a, b� × R→ R and γ : ½a, b�→ R are
continuous

(ii) ∣Γðt, r, κðrÞÞ − Γðt, r, κ′ðrÞÞ ∣ ≤ ∣ κðrÞ − κ′ðrÞ ∣
for all t, r ∈ a, b� and for all κ, κ′ ∈ O with κ⪯κ′;

(iii) for all positive values λ, μ, ν we have

θ ϝ λμ + λνð Þð Þ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ ϝ μ + νð Þð Þ

p
, ð63Þ

(iv) for some function α : ½a, b�→ℝ one has

α tð Þ ≤
ðb
a
Γ t, s, α sð Þð Þds + γ tð Þ: ð64Þ

Then, the integral equations (59) has a solution κ ∈ O.

Proof. Let κ, κ′ ∈ O be such that κ ⪰ κ′. From condition (ii),
for all t ∈ ½a, b�, we have

θ ϝ Qκ tð Þ −Qκ′ tð Þ�� ��p + Qκ′ tð Þ −Qκ″ tð Þ�� ��p� �� �

≤ θ ϝ
ðb
a
∣ Γ t, s, κ sð Þð Þ − Γ t, s, κ′ sð Þ

� �
∣ ds

� �p
  

+
ðb
a
Γ t, s, κ′ sð Þ
� �

− Γ t, s, κ″ sð Þ
� ���� ���ds� �p

!!

≤ θ ϝ a − bð Þpq
ðb
a
Γ t, s, κ sð Þð Þ − Γ t, s, κ′ sð Þ

� ���� ���pds��

+ a − bð Þpq
ðb
a
Γ t, s, κ′ sð Þ
� �

− Γ t, s, κ″ sð Þ
� ���� ���pdsss��

≤ θ ϝ a − bð Þpq
ðb
a
κ sð Þ − κ′ sð Þ�� ��pds��

+ a − bð Þpq
ðb
a
κ′ sð Þ − κ″ sð Þ�� ��p

∞ds
��

≤ θ ϝ a − bð Þ2pq κ − κ′
�� ��p

∞ + a − bð Þ2pq κ′ − κ″
�� ��p� �� �

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ ϝ κ − κ′

�� ��p
∞ + κ′ − κ″

�� ��p� �� �r
:

ð65Þ

Therefore, taking the sup on ½a, b�, we have

θ ςp Qκ,Qκ′,Qκ″
� �� �

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ M κ, κ′, κ″

� �� �r
, ð66Þ
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where

M κ, κ′, κ″
� �

=max ςp κ, κ′, κ″
� �

,
ςp κ, κ,Qκð Þςp κ′, κ′,Qκ′

� �
1+ϝ ςp κ, κ′, κ′

� �
+ ςp κ, κ,Qκ′

� �h i ,
8<
:

�
ςp κ′, κ′,Qκ′
� �

ςp κ″, κ″,Qκ″
� �

1+ϝ ςp κ′, κ″, κ″
� �

+ ςp κ′, κ′,Qκ″
� �h i ,

�
ςp κ′, κ″, κ″
� �

ςp κ′, κ′, κ″
� �

1 + ςp κ′,Qκ′,Qκ′
� �

+ ςp κ″,Qκ″,Qκ″
� �

9=
;,

ð67Þ

So, from Theorem 30, there exists κ ∈ O, a fixed point ofQ
which is a solution of (59).

5. Conclusions

In this paper, we worked on a space which fails the commu-
tativity property, usual rectangular property, and continuous
property. So, we are very restricted in such spaces.
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