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Here, we reported a simple method for recognizing CA125 overexpressed serum samples using array-based fluorescent gold
nanoclusters (AuNCs). /e sensing array was fabricated by the combination of various CA125 aptamer functionalized AuNCs.
/e fluorescence of different aptamer-capped AuNCs was quenched to a different extent in the presence of CA125. By com-
prehensive analysis of these fluorescence changes, unique patterns were formed when CA125 was overexpressed in serum samples.
/is strategy is successfully used for discriminating CA125 overexpressed human serum samples, which have great importance for
the diagnosis of ovarian cancer in the early stage.

1. Introduction

Ovarian cancer has shown a serious threat to women’s
health, accounting for ca. 5% of all cancer deaths in females
[1]. Early diagnosis of ovarian cancer has great importance
for saving lives. For instance, the detection of tumor markers
can predict ovarian cancer in the early stages [2]. Among the
tumor markers, CA125 has been used by the Food and Drug
Administration (FDA) as a clinical tumor marker to predict
ovarian cancer./e normal blood level of CA125 in a healthy
subject is usually less than 35U/mL, but CA125 is overex-
pressed in the blood of most ovarian cancer patients.
Various methods have been used for the detection of CA125,
such as ELISA (enzyme-linked immunosorbent assay),
chemiluminescent sensors, piezoelectric sensors, and elec-
trochemical sensors [3–5]. Most of these detection methods
require complicated procedures to prepare the sensors [6].
Biosensors have attracted great attention for the detection of
CA125 because they have the potential to be developed as

point-of-care devices [7]. For instance, Nunna et al. attached
gold nanoparticles on interdigitated electrodes as a bio-
sensor for electrochemical detection CA125 within the
concentrations of 3500–84000U/mL[8]. Hamd-Ghadareh
et al. developed blue fluorescent carbon dots (CDs) func-
tionalized with CA125 aptamer, and green fluorescent
PAMAM-dendrimers/AuNPs were used at the same time.
/ese two fluorescence sources with different colors were
fabricated for generating fluorescence resonance energy
transfer (FRET) phenomena between CDs and AuNPs. Such
FRET sensor achieved a much more sensitive measurement
(0.5 fg/mL) of CA 125 with the range 1.0 pg/mL to 1.0 ng/mL
[9]. However, the repeatability of a relatively complicated
method may be a concern. /e exploration of more re-
peatable and reliable techniques to detect the abnormal
expression of CA125 in the blood is still in requirement.

AuNCs have been used as green fluorescent sensors
showing advantages such as low toxicity and easy prepa-
ration [10, 11]. Despite their potential for analysis
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applications such as metal ions, organic drugs, and envi-
ronmental pollutants [12–15], they have been rarely used for
the detection of tumor markers. /is is possible because
researchers mainly focus on the development of specific
sensors. Normally, a specific sensor relies on a specific
bioreceptor to specifically analyze one analyte at one time. In
addition, the specific detection of a tumor maker by AuNCs
requires complicated functionalization processes [16]. On
the other hand, array-based sensors, which are also called
“chemical nose” methods [17], have been used for the de-
tection of cancers [18]. A sensor array consists of combined
sensing elements, whose interactions with various analytes
can generate unique patterns, which can discriminate
analytes by linear discriminant analysis (LDA), i.e., a method
used in statistics to find a linear combination of features that
separates different classes of objects. AuNCs have been used
for constructing array-based sensors utilizing charge
transfer-induced fluorescence changes. However, AuNC-
based arrays have never been used for differentiation of
tumor markers either possibly because the charge transfer
system cannot show significant responses in such cases [19].

Aptamers can specifically interact with the tumor
markers and induce remarkable responses. However,
aptamers attached closely to fluorophores are hardly applied
for discrimination of certain types of samples because the
fluorescence is difficult to be changed [20]. Herein, various
aptamers were mixed with AuNCs, and the array-based
sensors were constructed directly for differentiating samples
with different CA125 levels. Aptamers initially interacted
with AuNCs loosely and induced their morphology change
due to the soft aggregations. Various AuNC-based systems
provide different fluorescent responses such as response 1,
response 2, and response 3 (Figure 1). Initially, the aptamer-
modified AuNCs could be placed on a sensing pad and show
the fluorescence signal changes depending on the interaction
force between the aptamer and AuNCs. In the presence of
CA125, AuNCs were competed to CA125 to interact with
these aptamers. Once CA125 has a stronger interaction force
with the aptamers, the fluorescence changes again. /ese
different changes enable the formation of different factors
such as factor 1, factor 2, and factor 3 with different patterns.
/at is to say, AuNCs can finally have different fluorescence
intensities after the interaction with the same concentration
of CA 125 because the intermediate aptamer is different.
Next, LDA can differentiate the CA125 factors in a liquid
such as the overexpressed serum samples. To the best of our
knowledge, this is the first report for constructing AuNCs as
array-based sensors for the detection of tumor markers.

2. Experiments

Transmission electron microscopy (TEM) was performed by
using a JEOL JEM-2100microscope operating at 200 kV./e
fluorescence was obtained using a microreader (Varioskan
LUX). Serum samples of CA125 with different levels were
obtained from the first afflicted hospital of Jinzhou Medical
University. CA125 was clinically detected by the

chemiluminescent system (ARCHITECT i4000). /e
aptamers used were designed with the modification
according to references [21, 22] which are listed in Table 1
and were obtained from Sangon Biotech (Shanghai) Co., Ltd.
All other reagents were obtained from Aladdin company,
which were of analytical grades. Deionized water was used
through the experiments.

For the synthesis of AuNCs, 100 μL of 150mM gluta-
thione (GSH) and HAuCl4 (20mM, 0.50mL) were mixed
with 4.35mL of deionized water at room temperature. /e
mixture was transferred to a water bath and heated at 70°C
for 24 h. /e array-based sensors were obtained by adding
10 μL of (2mM) AuNCs into the PBS solutions (10mM, pH
7.4). Various CA125 aptamers (10 μL, 100 nM), as shown in
Table 1, were added into different AuNCs solutions, re-
spectively. /e mixtures were carried for 1 hour. /en,
serum samples of CA125 with different levels were com-
bined with the above solutions, respectively, and the reaction
was allowed to process at room temperatures for 1 hour./e
fluorescence intensity was measured, and LDA was used to
differentiate these samples.

3. Results and Discussion

TEM was used to confirm the formation of AuNCs (Fig-
ure 2). It can be seen that the clusters were homogeneously
distributed (Figure 2(a)), and the average size (Figure 2(b))
was around 1.4 nm./is indicates that the ultrasmall AuNCs
were successfully fabricated.

TEM (Figure 3) was further used to check AuNCs in the
absence and presence of the aptamers and CA125. Com-
pared with Figure 2 that revealed the monodispersity of
AuNCs in the absence of the aptamers, the aptamer func-
tionalized AuNCs, namely, AuNCs-QS1 (NC1), AuNCs-Q1
(NC2), AuNCs-QN1 (NC3), AuNCs-PS1 (NC4), AuNCs–P1
(NC5), and AuNCs-PN1 (NC6) suffered different aggre-
gations, but most of these changes were insignificant. /ese
aggregations are different from the fused aggregations that
result in the formation of large particles. Furthermore, in the
presence of CA125, the aptamer functionalized AuNCs all
show certain degrees of aggregations or disaggregations,
resulting in the quenching or enhancement of the fluores-
cence to different degrees. By analyzing these comprehensive
changes, the system is reliable to reflect the presence of
CA125.

For the differentiability analysis, 3 types of artificial
bovine serum samples (CA125> 35 u/mL, Ca125 closed to
35 u/mL, and CA125< 35 u/mL) were chosen as sensing
targets. As illustrated in Figure 4(a), the bovine serum
samples with different levels of CA125 resulted in unique
fluorescence response patterns due to different interactions
with the aptamers, which induce the corresponding mor-
phology change of AuNCs. /e fluorescence intensity pat-
terns were subjected to LDA (Figure 4(b)), and different
CA125 level samples were well separated. /is indicates that
the current system can differentiate CA125 overexpressed
samples (>35U/mL) from healthy subjects.
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We tested blinded samples with the AuNC-based sensor
arrays. Six unknown human serum samples were randomly
selected from the three groups (high, medium, and low levels
of CA125) and analyzed by the sensor array (Figure 5) and

clinically chemiluminescent methods. As shown in
Figure 5(a), different fluorescent responses occurred when
the human serum samples of three groups were combined
with the sensor array. LDA revealed that serums of CA125
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Figure 1: Quenching of the aptamer functionalized AuNCs to different extents and the array-based sensing system for the detection of
CA125.

Table 1: Aptamers for constructing the array-based sensing system.

Aptamer Sequence
QS1 5′-TAATACGA CTCACTATAGGGAGACAAGAATAAACGCTCAA-3′
Q1 5′-SH-(CH2)6TAATACGA CTCACTATAGGGAGACAAGAATAAACGCTCAA-3′
QN1 5′-NH2-(CH2)6TAATACGA CTCACTATAGGGAGACAAGAATAAACG-3′
PS1 5′-ACT TCA GTGAGT TGT CCC ACG GTC GGC GAG TCG GTG GTAG-3′
P1 5′-SH-(CH2)6-ACT TCA GTGAGT TGT CCC ACG GTC GGC GAG TCG GTG GTAG-3′
PN1 5′-NH2-(CH2)6-ACT TCA GTGAGT TGT CCC ACG GTC GGC GAG TCG GTG GTAG-3′
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Figure 2: TEM of the original GSH-protected AuNCs.
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overexpressed samples could be discriminated from those
samples with normal CA125 levels (Figure 5(b)). According
to the clinically standard results (Table 2), all six serum
samples were correctly identified, corresponding to an
identification accuracy of 100%. Overall, it could be con-
cluded that the developed sensor array is promising for
recognizing CA125 overexpressed serum samples. By
comparing with traditional chemiluminometric methods,
which were verified by the clinical diagnosis, the results also
showed high accuracy and repeatability.

/is array sensor can also be used as a specific sensor like
the traditional method by selecting one of the aptamer-
modified AuNCs. Figure 6 shows the fluorescence spectra
(Figure 6(a)) of aptamer 1 (QS1) modified AuNCs, and the
corresponding fluorescence change (Figure 6(b)) could be
used as the calibration graph for linear detection of CA125
antigen. Similarly, the other aptamer-modified AuNCs all
have their calibration graphs. Herein, we combined with
aptamer-modified AuNCs for the group-sensing of the
analytes. Multiple sensor elements were used for the

Figure 3: TEM of AuNCs in the presence of the aptamers and CA125.
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Figure 4: Array-based sensing of artificial bovine serum samples with different CA125 levels. (a) Fluorescence emission intensity (610 nm)
patterns of the 3 types of samples (low, medium, and high level of CA125) on the AuNCs array as an average of 4 parallel measurements.
(b) LDA shows the excellent separation of the samples with different levels of CA125.
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Figure 5: Array-based sensing of human serum samples with different CA125 levels. (a) Fluorescence emission intensity (610 nm) patterns
of the 3 types of samples (low, medium, and high level of CA125) on the AuNCs array as an average of six patient samples. (b) LDA shows
the excellent separation of the samples with different levels of CA125.

Table 2: Determination of CA125 by the traditional chemiluminescence method.

Test High Medium Low
1 >1000 29.7 <20
2 151.4 28.9 <20
3 294.9 30.8 <20
4 355.4 29.7 <20
5 >1000 24.9 <20
6 882.6 29.1 <20
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Figure 6: Fluorescence spectra (a) and normalized fluorescence intensity at 610 nm (b) with the increases in concentrations of CA125 from 0
to 9 u/mL; the excitation wavelength was 365 nm
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detection of CA125 at the same time, which could provide
more accurate data. Because of the repeated verification of
multiple factors, this sensor array will have unique repro-
ducibility. Such a design will also provide a robust strategy
for various other biomarkers.

4. Conclusions

In this study, we developed a sensor array using six kinds of
fluorescent AuNCs with the corresponding aptamers as
sensing receptors for CA125 discrimination. Different levels
of CA125 expressed samples can be distinguished from each
other in human serum samples. /is work opens a path for
constructing sensor arrays for the diagnosis of tumor
markers in clinical practice.
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