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Abstract: Air-conditioning systems contribute the most to energy consumption among building
equipment. Hence, energy saving for air-conditioning systems would be the essence of reducing
building energy consumption. The conventional energy-saving diagnosis method through observa-
tion, test, and identification (OTI) has several drawbacks such as time consumption and narrow focus.
To overcome these problems, this study proposed a systematic method for energy-saving diagnosis
in air-conditioning systems based on data mining. The method mainly includes seven steps: (1) data
collection, (2) data preprocessing, (3) recognition of variable-speed equipment, (4) recognition of
system operation mode, (5) regression analysis of energy consumption data, (6) constraints analy-
sis of system running, and (7) energy-saving potential analysis. A case study with a complicated
air-conditioning system coupled with an ice storage system demonstrated the effectiveness of the
proposed method. Compared with the traditional OTI method, the data-mining-based method can
provide a more comprehensive analysis of energy-saving potential with less time cost, although it
strongly relies on data quality in all steps and lacks flexibility for diagnosing specific equipment for
energy-saving potential analysis. The results can deepen the understanding of the operating data
characteristics of air-conditioning systems.

Keywords: energy saving potential; data mining; recognition; optimization; operational data

1. Introduction

Air-conditioning systems account for 50% to 60% of the total energy consumption
of buildings [1,2]. Therefore, energy-saving for air-conditioning systems would be the
essence of reducing building energy consumption. Energy saving for air conditioning
systems can be implemented in the system design process or during system operation,
called energy-saving diagnosis. Generally, an eligible energy-saving diagnosis for air-
conditioning systems can save energy, reduce system maintenance costs, extend equipment
service life, and improve system control and occupant comfort.

Typically, a conventional energy-saving diagnosis includes three phases: (1) by re-
ferring to as-built drawings and the energy consumption records of the air-conditioning
system, researchers obtain the basic information and status of energy consumption of
the system as well as by communicating about the existing problems or troubles of the
system from the operators. (2) More detailed tests, analysis, and calculation regarding
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existing problems should be conducted, including the typical condition and various oper-
ating conditions of different seasons according to operation records. (3) Corresponding
solutions and energy-saving potential analysis are presented in summary reports. This
diagnosis process was summarized as the OTI method [3], namely, observation/question,
test/calculation, and identification/resolution. Building envelopes, fresh air supplies,
cooling and heating sources, transmission and distribution systems, and so on are con-
sidered in this method. The method can provide the overall energy-saving potential of
the air-conditioning systems and detailed diagnosis reports on each focused component
of the systems. Therefore, the OTI method has been widely applied in engineering for
air-conditioning system diagnosis. However, several problems exist in this method, which
may adversely influence the method’s condition and effect. First, the difficulties in field
measurements would lead to a cost-intensive diagnosis. For instance, in the diagnosis of
chillers in air-conditioning systems, the measurement and calculation of various opera-
tion parameters and indicators under typical operating modes are necessary to evaluate
the energy efficiency of the chillers. For a complex system, this step would take several
weeks or even months. Second, the quality of the final diagnosis results depends on the
proficiency of the involved technicians and investigators to a large extent. If researchers
lack experience in the diagnosis of air-conditioning systems, the decisions and adjustments
will be less reliable. Therefore, it is of demand and interest to develop a more cost-efficient
and dependable diagnosis method for air-conditioning systems.

Data mining is the application of specific algorithms for extracting patterns from data
and has been applied to several fields with large datasets [4]. Nowadays, an increasing
number of air-conditioning systems have acquired energy consumption data in the system
operation process. The robust accumulation of system running data enables data mining to
reveal the quality of system operation. Recent studies have applied data mining to deal
with diagnosis problems in air conditioning systems and building energy consumption
research, as the results were difficult to obtain by conventional methods [5]. For instance,
energy modeling has been conventionally conducted in the building design process due to
time-consuming data entry. However, Kim et al. [6] demonstrated that data-mining-based
energy modeling could improve the energy efficiency of building design during the design
phase. Ahmed et al. [7] investigated the impact of connecting building characteristics and
designs with their performance using data mining techniques. The results show the high
accuracy and reliability of these techniques in predicting low-energy, comfortable rooms.
Data mining with association analysis was conducted for neural network modeling for
an air-conditioning system via a new modeling method based on artificial intelligence
algorithms proposed by Wang et al. [8]. Some studies [9–11] developed new strategies
based on data mining to detect and diagnose the faults of heating, ventilation, and air-
conditioning (HVAC) systems. Meanwhile, the detection and classification of abnormal
energy consumption in buildings were investigated using the data mining approach in
several studies [12,13]. Although abnormal utility consumption could be identified by the
proposed method in conjunction with building management systems, outlier detection was
only the first step for diagnosing energy efficiency and energy conservation of the system.
The proposed method cannot illustrate the causes of generated outliers and optimization
solutions for system operation. An improved method based on data mining proposed by
Seem et al. [14] applied outlier detection to determine whether the energy consumption for a
particular day is significantly different from the previous energy consumption. This method
could help save diagnosis time by avoiding manual detection and reducing operation
costs by detecting problems that previously would have gone unnoticed. Nevertheless,
this approach reported the results by comparing the actual energy consumption and
normal energy consumption (baseline). Thus, it cannot determine the potential capacity
of energy conservation of the system or ensure that the system operates in the most
optimized condition. Recent developments in data mining applied to building energy
systems have covered load prediction [15–19], pattern identification [20–22], and fault
detection and diagnosis [23–26]. However, these studies mainly focused on specific data



Energies 2021, 14, 81 3 of 15

mining technologies and algorithms rather than a systematic approach in diagnosing
the energy saving potential in an air-conditioning system. Some researchers proposed
a more general energy saving advisory approach based on data mining for building
energy systems [27–29]. Although they did not focus on air-conditioning systems, their
frameworks inspired us to have a systematic data-mining-based method for energy saving
diagnosis for air-conditioning systems.

This paper presents the first of two publications proposing a systematic methodology
to calculate the energy-saving potential of an air-conditioning system based on data mining.
In this paper, we provide a comprehensive overview of the framework of the proposed
systematic method, details of each step, and comparison with traditional OTI method
from a systematic perspective. Readers are expected to gain the general logic flow, the
advantages and disadvantages of the proposed method, and guidelines to apply the method
based on data completeness. The companion paper [30] presents a detailed application
case with specific models and algorithms applied in each step, where readers are expected
to understand technical details and available data-mining technologies for applying the
method in a complex air-conditioning system.

2. Introduction to the Systematic Method
2.1. Framework of the Method

The flow chart in Figure 1 illustrates the operating process of the method for energy-
saving potential analysis. The method included seven steps, as shown. (1) Data collection:
energy consumption data and system operation data; for example, the energy consump-
tion of chillers and pumps, temperature of supply water, and flowrate of chilled water,
should be collected comprehensively. (2) Data preprocessing: the acquired data should be
preprocessed before analysis to ensure data quality and consequent reasonable analysis
results. The preprocessing may include several steps, such as cleaning duplicate data and
obtaining necessary evaluation parameters calculated from existing data. (3) Recognition
of variable-speed equipment: for air-conditioning systems consisting of both variable- and
constant-speed equipment, the identification of each equipment type should be conducted
as the energy-saving analysis of the two types of equipment differs. The recognition of
variable-speed equipment could be implemented based on the analysis of energy consump-
tion data distribution of each piece of equipment. (4) Recognition of system operation
mode: for systems with various operation modes, for example, air-conditioning systems
coupled with ice storage systems, to recognize the operation mode corresponding to de-
tailed energy consumption data is vital in analyzing the energy-saving potential of the
systems. The recognition can be conducted via decision tree modeling on operation data.
(5) Regression analysis of energy consumption data: the relationship between energy
consumption data and corresponding operation parameters should be analyzed for each
component to obtain basic inputs for energy-saving potential analysis. For example, re-
gression analysis between energy consumption and water flow rate should be conducted
for water pumps in air-conditioning systems. (6) Constraints analysis of system running:
in the actual running of an air conditioning system, various constraints would restrict
the system. These constraints should be defined before optimizing the system running to
ensure that the optimized results can be realized in actual operation. (7) Energy-saving
potential analysis: by setting the target as minimizing energy consumption or running cost
of the air-conditioning system, the optimization of system running, corresponding energy,
and cost-efficiency can be achieved via several specific optimization algorithms, such as
the particle swarm optimization method. The main advantages of the proposed method
include a more comprehensive analysis of energy-saving diagnosis, less involvement of
professional researchers, and less time. A detailed explanation of each step is presented in
Sections 2.2–2.8. It is worth mentioning that following the common practice of introducing
a framework of new systematic methods [27–29], the descriptions of each step are given
overall in a general way so that future research can flexibly apply the method to various
cases based on data completeness of cases (Section 4.2), instead of being constrained to



Energies 2021, 14, 81 4 of 15

specific models or algorithms. An example for a case study is presented in Section 3 and
more details can be found in the companion paper [30].
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2.2. Data Collection

Consider a typical all-air air-conditioning system in Figure 2 as an example. Table 1
summarizes the data required for the data-mining-based energy-saving potential analysis
method. The required data can be classified into two types: outdoor weather data and the
running data of the air conditioning system. The outdoor weather data include atmospheric
temperature and relative humidity, easily obtained through a weather station near the
building. Alternatively, for a system equipped with outdoor air sensors, outdoor data
can be acquired directly via the system. The running data of the system can be further
categorized into two aspects, namely, energy consumption data and running status data.
The energy consumption data can be obtained from the energy consumption information
platform of the target building. The running status data mainly include the water flow rate
and temperature of the chilled and condensing water, respectively. In addition, the opening
status of valves in the system is necessary to determine the system’s operation mode.
Ideally, for the sake of comprehensive analysis and optimization, the energy consumption
and running status data of each device in the air-conditioning system needs to be recorded
and collected. However, it is recognized that in many buildings, such a refined and
abundant data package is not available. The influence of the data incompleteness on the
data-mining-based method will be discussed hereinafter (Section 4.2).



Energies 2021, 14, 81 5 of 15
Energies 2021, 14, x FOR PEER REVIEW 5 of 15 
 

 

Chiller Cooling tower

Air handling unit

Chilled water pump

Condensing water pump

 
Figure 2. Schematic of a typical all-air air-conditioning system. 

Table 1. Data requirements for the data-mining based energy-saving potential analysis method. 

Objects Parameters 

Outdoor air 
Temperature 
Humidity (or relative humidity) 

Chiller 

Temperature of (supply/return) chilled water 
Temperature of (supply/return) condensing water 
Electrical energy consumption 
Chilled water flow 
Condensing water flow 

Chilled water pump Water flow  
Electrical energy consumption 

Condensing water pump Water flow  
Electrical energy consumption 

Plant 

Temperature of (supply/return) chilled water in main pipe 
Temperature of (supply/return) condensing water in main 
pipe 
Total plant electrical energy consumption 
Opening of major valve (For change of operating modes) 

Cooling tower 
Temperature of (supply/return) working fluid 
Water flow 
Electrical energy consumption 

Air handling unit 
Temperature of (supply/return) air 
Air flow 
Electrical energy consumption 

2.3. Data Preprocessing 
As the collected data are usually large and possibly influenced by noise and missing 

and inconsistent information, data preprocessing is vital to ensure data quality and the 
robustness of the analysis results. Based on the operating data features of air-conditioning 
systems, we can preprocess the data using the following three approaches. 
• Missing data preprocessing. Accidents occurring during data monitoring, transfer, and 

storage can cause missing data, leading to deficient information on the system run-
ning status, thereby impacting the accuracy of the analysis results. There are several 
ways to deal with missing data, depending on their importance and quantity. At 
some time-points, the data of some key parameters, such as energy consumption 
and/or output temperature of the chiller, are missing during the collection, especially 
for a long period. Subsequently, we need to perform the list-wise deletion to prepro-
cess the dataset, which means that all the data at the time points have to be removed 
from the following analysis. Alternatively, to ensure data continuity and isometry, 
we can set the weight of variables at the time points to zero. For analysis that does 

Figure 2. Schematic of a typical all-air air-conditioning system.

Table 1. Data requirements for the data-mining based energy-saving potential analysis method.

Objects Parameters

Outdoor air
Temperature
Humidity (or relative humidity)

Chiller

Temperature of (supply/return) chilled water
Temperature of (supply/return) condensing water
Electrical energy consumption
Chilled water flow
Condensing water flow

Chilled water pump Water flow
Electrical energy consumption

Condensing water pump Water flow
Electrical energy consumption

Plant

Temperature of (supply/return) chilled water in main pipe
Temperature of (supply/return) condensing water in main pipe
Total plant electrical energy consumption
Opening of major valve (For change of operating modes)

Cooling tower
Temperature of (supply/return) working fluid
Water flow
Electrical energy consumption

Air handling unit
Temperature of (supply/return) air
Air flow
Electrical energy consumption

2.3. Data Preprocessing

As the collected data are usually large and possibly influenced by noise and missing
and inconsistent information, data preprocessing is vital to ensure data quality and the
robustness of the analysis results. Based on the operating data features of air-conditioning
systems, we can preprocess the data using the following three approaches.

• Missing data preprocessing. Accidents occurring during data monitoring, transfer, and
storage can cause missing data, leading to deficient information on the system running
status, thereby impacting the accuracy of the analysis results. There are several ways
to deal with missing data, depending on their importance and quantity. At some
time-points, the data of some key parameters, such as energy consumption and/or
output temperature of the chiller, are missing during the collection, especially for a
long period. Subsequently, we need to perform the list-wise deletion to preprocess the
dataset, which means that all the data at the time points have to be removed from the
following analysis. Alternatively, to ensure data continuity and isometry, we can set
the weight of variables at the time points to zero. For analysis that does not require
time-series conceptualization, for example, regression analysis of energy consumption
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and flow rate for pumps, only the data that pair with the missing one need to be
excluded, which can be named pairwise deletion.

• Data cleaning. In terms of the data from an air-conditioning system, the data cleaning
step mainly covers three aspects: (1) Duplicate data cleaning. Duplicate data may exist
when data are gathered from different platforms. Duplicated data should be removed
from the dataset to reduce computing costs and avoid data confusion. (2) Halt data
cleaning. When an air-conditioning system halts, the collected energy consumption
should be zero. Nevertheless, other parameters, such as chilled water temperature,
are recorded in the dataset, which can cause confusion when we look into the trends
of these parameters. In addition, for the statistics of the energy consumption data
(see Section 2.4), zero data strongly influences the data distribution, and thus can-
not represent the running conditions of the system. Therefore, halt data should be
excluded. (3) Conflict of data cleaning. Sometimes, owing to the influences of noise
and sensor failure, several related parameters could exhibit conflicts with each other.
For instance, a conflict occurs when the water temperature supply is higher than the
return water for a running chiller. Additional underlying conflicts against the normal
principles of a running air-conditioning system may also exist. For example, there is a
large disparity between the measured cooling load and the theoretical one (calculated
based on the chilled water flow rate and the temperature difference between the return
and supply water). In such cases, all the data at the corresponding time points with
conflicts should be deleted for the following analysis.

• Data extension. When preprocessing the raw data, we need to add several columns to
the dataset based on the calculation and summary of raw data variables. For instance,
by calculating the difference between the chilled water supply and return, we can add
a new variable to the dataset. Apart from adding variables by calculation, labeling
of the data can also be appended. For example, after the recognition of the system
operation mode (see Section 2.5), the labeling of the operation mode can be added to
the dataset.

2.4. Recognition of Variable-Speed Equipment

Variable-speed equipment is now widely used in air-conditioning systems. However,
some systems, particularly renovated ones, would have both variable- and constant-speed
equipment. The two types of equipment differ in their energy consumption features.
Considering centrifugal pumps commonly equipped in air-conditioning systems as an
example, the energy consumption of constant-speed pumps exhibits an approximately
linear relationship with the water flow rate. For variable-speed pumps, the two parameters
show a cubic function. In some scenarios, the speed characteristics of the equipment can be
obtained directly from the information platform. Otherwise, we need to distinguish the
speed type of all equipment based on the energy consumption data distribution. Owing
to the positive relationship between running speed and energy consumption, the energy
consumption of variable-speed equipment was evenly distributed within its range. By
contrast, constant-speed equipment has a more concentrated energy distribution, near the
maximum value. Based on the different features of energy consumption distribution, we
can recognize the two types of equipment via the statistics of their energy consumption
data. Our previous study [31] demonstrated that the coefficient of the median (defined as
(max-median)/range) could successfully distinguish the speed type of the equipment in an
air-conditioning system.

2.5. Recognition of System Operation Mode

Systems equipped with more than one heat/cooling source can have several oper-
ation modes. For example, to take the advantage of the peak-valley electricity price, an
air-conditioning system can be coupled with an ice storage system. In such a complex
integrated system, there are six distinct operation modes: (a) shutdown, (b) ice build,
(c) cooling by ice only, (d) cooling by chillers only, and (e) cooling by ice with chillers.
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Recognizing the operation mode is important for analyzing energy-saving potential across
the various operation modes. The groups of equipment work differently according to the
incompatible system operation mode. Therefore, we can distinguish the system opera-
tion modes by analyzing the working status of equipment groups. Generally, recognition
includes two steps, namely, qualitative and quantitative analysis.

The qualitative analysis aims to determine the number of operation modes in the
system. As mentioned above, equipment works in groups in each operation mode. Thus,
the energy consumption characteristics of the equipment group in operation mode are con-
centrated and differ from those in other modes. Based on this feature, we can qualitatively
distinguish the operation modes by clustering analysis of energy consumption data of rep-
resentative equipment, such as the chillers and pumps of different groups. The number of
clusters can determine the number of operation modes in the running system. The energy
consumption data characteristics of each cluster can demonstrate the operation mode the
cluster. In some scenarios, researchers may have prior knowledge about the quantity and
specification of the system operation modes. Therefore, the clustering analysis can be used
to verify the precedent knowledge and provide an overview of energy consumption in
each operation mode.

After obtaining the specification of the system operation modes, we need to determine
when the system switches from one operation mode to another through quantitative
analysis. The classification method would be an appropriate tool for recognition. By
summarizing and refining the regulations within the dataset using various classified
models, the classification method can identify the criteria to switch the system operation
mode. The summarized criteria can be used to detect abnormal launches of equipment.
Meanwhile, it provides the basis for calculating the energy-saving potential concerning the
switching of operation mode.

2.6. Regression Analysis of Energy-Consumption Data

The regression analysis aims to quantify the relationship between energy consumption
and running parameters (water flow rate and temperature) for each equipment, including
chillers and pumps. The fitting models can be selected from the recommendations of
EnergyPlus (9.3.0, National Renewable Energy Laboratory, Golden, CO, USA) and TRNSYS
(v. 17, Thermal Energy System Specialists, LLC, Madison, WI, USA). The obtained model
can then be used to determine predictive energy consumption in the subsequent energy
saving potential calculation.

2.7. Constraints Analysis of System Operation

In reality, an air-conditioning system is restricted by different types of constraints dur-
ing operation. These constraints also set margins to the following optimization calculation
of the system operation.

The fundamental constraint of the system operation is that the cooling supply should
meet the requirement of the cooling load and not exceed the maximum cooling capacity
of the system. Another basic constraint is that the operation parameters, including water
flow rate and temperature, should not exceed the indicated threshold of any equipment.
Preferably, in order to ensure the accuracy of the optimization results, the values of the
operation parameters should not exceed the range used in the precedent regression analysis
(Section 2.6). For complicated systems coupled with an additional cooling source, similar
constraints should be applied for each subsystem. The basic principle of the constraints
analysis is the energy balance and rational range of running parameters.

2.8. Energy-Saving Potential Analysis

The energy-saving potential is defined as the difference between the actual energy cost
and the benchmark cost (Equation (1)). Alternatively, we can add the factor of electricity
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price to have the cost-saving potential (Equation (2)), which may be more attractive to
building owners.

∆W = Wactual − Wbenchmark (1)

∆J = ∑e∆W (2)

where ∆W represents the energy-saving potential, Wactual is the actual energy cost, Wbenchmark
is the benchmark energy cost, ∆J represents the cost-saving potential, and e is the electricity
price.

The benchmark energy cost is the optimization result of the system operation. To cal-
culate the benchmark value, we need to apply optimization algorithms. The basic principle
is to set the total energy/cost as the objective function, which is the sum of all the equip-
ment that has gone through the regression analysis. Afterward, by adjusting the operation
parameters in the regression models obtained, we can determine the system’s optimized
running status and the corresponding lowest energy/cost. Naturally, the optimization
process should run with the constraints summarized in Section 2.7. After obtaining the
optimized (benchmark) energy/cost of the system, we can obtain the energy/cost-saving
potential of the target air-conditioning system by comparing it with the actual cost.

3. Case Study

To validate the effectiveness of the proposed method, we performed an energy-saving
potential analysis in an air-conditioning system equipped in a five-floor commercial build-
ing. The building was located in Shenzhen, China, with 30,000 m2 air conditioning area. The
system was coupled with an ice storage system (circulation medium: glycol-water solution)
to take advantage of the lower electricity price at night, as shown in Figure 3. The system
contained two chillers, nine pumps (three chilled-water pumps, three condensing-water
pumps and three glycol-water pumps), two plate heat exchanges, and five air-handling
units. Following the steps shown in Figure 1, the energy/cost-saving potential analysis
was implemented and described in brief as follows, whereas details were presented in the
companion paper [30].
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3.1. Data Collection and Preprocessing

The air-conditioning system was equipped with a comprehensive data-monitoring
platform, where the electricity consumption of each component and the operating data of
chillers and pumps (water temperature and flowrate) were recorded. We collected such
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data from 22 July 2011 to 20 August 2013 at 1 h interval for energy-potential analysis during
the selected period, with a total number of 1,345,975 data points.

Following data preprocessing procedure described in Section 2.3, missing data were
deleted in list-wise and pair-wise ways to ensure the completeness of data pairs for analysis.
Duplicated data and system operating data during shutdown status were removed. In
addition to data removal, data of temperature differences between supply and return
chilled-water, between the water supply and return chilled-water of the chiller, and between
the water supply and return condensing-water of the chiller were calculated and added
into the dataset. Finally, the units of the included parameters were transformed to the
SI (Système International) scheme. After date preprocessing, we obtained 1416 pairs of
continuous time-series data for following analysis.

3.2. Recognition of Variable-Speed Chillers and Pumps

With the coefficient of median (Cm) proposed in our previous study [31], the variable-
speed chillers and pumps can be recognized by their energy consumption data only. It is
found that four pumps had Cm higher than 0.30, while the Cm values of the rest five pumps
and two chillers were all below 0.15 [31]. Based on such observations, we successfully
distinguished that two chilled-water pumps and two glycol-water pumps operated at
variable-speed mode, while the rest three condensing-water pumps, one chilled-water
pump, one glycol-water pump and two chillers were constant-speed equipment.

3.3. Recognition of System-Operation Mode

As previously mentioned in Section 2.5, such a complex system was expected to have
five distinct modes, namely “shutdown” (operation-mode code: M0), “ice build” (M1),
“cooling by chiller(s) only” (M2), “cooling by ice only” (M3), and “cooling by both chiller(s)
and ice” (M4). We applied the classification and regression trees (CART) algorithm [32]
with good interactivity to identify the operation modes based on energy consumption and
operation data. By evaluating the heterogeneity with the Gini Index [33], CART selected
the splitting variables that maximized the Gini Index reduction, which were considered
as the splitting criterion. Table 2 lists the results of the classification of system-operation
modes and the recognizing rules. Details can be found in the companion paper [30].

Table 2. Recognizing rules of system operating mode.

Operating Modes Codes Recognizing Rules 1

Shutdown M0 Rule 2 & Rule 4 & Rule 6 & Rule 8
Ice build M1 Rule 1
Cooling by chiller(s) only M2 Rule 2 & Rule 3
Cooling by ice only M3 Rule 2 & Rule 4 & Rule 6 & Rule 7
Cooling by ice with chiller(s) M4 Rule 2 & Rule 4 & Rule 5
1 Rule 1: time period 23:00–8:00; Rule 2: time period 8:00–23:00; Rule 3: opening of valve #1 >97%;
Rule 4: opening of valve #1 ≤97%; Rule 5: energy-consumption of chillers >0; Rule 6: energy-
consumption of chillers = 0; Rule 7: energy-consumption of chilled water pumps >0; Rule 8: energy-
consumption of chilled water pumps = 0.

3.4. Regression and Constraint Analysis

Based on the recognition results in Section 3.2, different types of pumps had varying
regression models. The regression model for constant-speed centrifugal pumps followed
linear correlation between energy consumption and flowrate, whereas for variable-speed
pumps the cubed relationship was selected. As for the chillers, common regression models
were adopted from previous studies [34,35].

The system operation should be subjected to the following constraints that are neces-
sary to consider during optimization:

(1) The cooling capacity supplied by the chiller plant room must be sufficient to meet the
cooling load of the case system;
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(2) The cooling capacity supplied by chillers should not exceed the maximum cooling
capacity of chillers;

(3) The sum of the accumulation of the cooling capacity in the ice storage tanks and the
current remaining cooling capacity should not exceed their maximum accumulation
of cooling capacity;

(4) The accumulation of cooling capacity in the ice storage tanks should be equal to the
cooling capacity supplied by the chillers during ice build, and cannot exceed the
maximum cooling storage speed;

(5) The cooling release of the ice storage tanks should not exceed the remaining cooling
capacity as well as the maximum cooling release speed.

3.5. Energy/Cost Saving Potential Analysis with Optimization Algorithms

Combing the results obtained from steps above, we applied several optimization
algorithms to calculate the energy/cost saving potential of the case system during the
period investigated. Equation (2) was selected as the aim function. Three algorithms were
examined for optimal results, namely particle swarm optimization (PSO), genetic algorithm
(GA), and ant colony optimization (ACO). The optimization results are shown in Table 3,
which indicate that PSO exhibited the optimized costs of the system operation relative
to GA and ACO, and the cost-saving potential reached as high as 24.03% (307,213.5 vs.
400,467.6 CNY). Daily optimization results and details of the PSO algorithm can be found
in the companion paper [30].

Table 3. Comparison of optimal costs of the case system calculated by three algorithms (particle
swarm optimization (PSO), genetic algorithm (GA) and ant colony optimization (ACO)) for 59 d
from 22 June to 19 August 2013.

Day Actual Costs (CNY)
Optimal Costs (CNY)

PSO GA ACO

1–10 72,839.5 59,024.7 63,326.8 60,748.6
11–20 65,922.0 53,591.7 63,711.4 57,737.5
21–30 66,967.1 50,673.4 61,151.6 53,671.9
31–40 58,514.0 46,051.8 49,331.2 47,603.5
41–50 74,628.9 53,489.5 58,802.9 56,950.5
51–59 70,631.7 50,734.6 59,945.4 54,075.9
Total 400,467.6 307,213.5 350,321.7 324,513.9

4. Discussion
4.1. Comparison with the Conventional Method

As summarized in the Introduction, precedent data-mining-based studies in air-
conditioning systems mainly focused on respective data-mining technologies that pertain
to a specific step or optimization algorithm included in our systematic method. To the
best of our knowledge, the method proposed in this paper is the first systematic one
targeting energy-saving potential analysis of air-conditioning systems. Therefore, it is not
feasible to compare the method and results with those from previous studies. Instead, the
advantages and disadvantages of the proposed method are illustrated by comparison with
the conventional OTI method from the following four aspects.

4.1.1. Consumed Resources

The traditional OTI method initially needs to understand the basic information of the
system. Then, the researchers need to communicate about the current issues existing in
the system with the system management. Based on the collected information, they have
to decipher a diagnostic program to output the energy-saving potential in the end. For
complicated systems, such as those involved in this study, the whole process can take
up to several weeks or even months. However, the proposed method can only spend
several days on a thorough analysis of the system. Similarly, the human resources involved
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would be much less for the proposed method than the conventional method. In addition,
the requirement of the air-conditioning knowledge level for the researchers is less for the
proposed method. However, as computers do almost all the methodological work, and due
to the large amount of data, the demand for computational resources is generally higher
for the proposed method.

4.1.2. Data in Use

The proposed method relies more on the data-monitoring platform, whereas the OTI
method mainly uses data from the field test. Therefore, without a complete data monitoring
system, the proposed method cannot work properly for air-conditioning systems. Hence,
the proposed method has higher demands of data monitoring and completeness relative
to the OTI method. An advantage of the proposed method using monitoring data is the
synchronization of the data. Typically, in a data platform, we can obtain a package of
energy consumption and running status parameter data at each time point, ensuring data
synchronization for analysis. In contrast, the conventional OTI method normally needs
to perform field tests on the main equipment one by one. Thus, the data obtained from
different equipment may have time lags and will probably influence the analysis results if
the system runs in an unsteady state. However, as the method is based on data mining, the
range and amount of data are generally larger than the conventional method. If such a vast
amount of data is not processed decently, the proposed method will be easier to face “data
disaster” and output non-realistic results.

4.1.3. Technical Details

The conventional OTI method mainly focuses on the running status and energy
consumption of specific equipment and, thus, it cannot provide a comprehensive energy
saving potential analysis as the proposed new method. The proposed method can provide
a broader picture of the system running constraints. Therefore, it can provide more
reasonable solutions compared to the OTI method in terms of system constraints.

4.1.4. Main Characteristics

Concerning the flexibility of the method, it is acknowledged that the proposed method
is less flexible than the conventional OTI method, as the latter can pay attention to specific
components of the systems. Nevertheless, in terms of universality and scalability, the
proposed method performs better than the traditional method, providing a comprehensive
picture of the energy-saving potential analysis, and is achieved through remote control and
online diagnosis.

4.1.5. Summary

In summary (Table 4), the conventional OTI method is problem-oriented, while the
proposed systematic method is data-oriented. Hence, the methodologies applied in each
step of the proposed method are evolving from those existing in data science, whereas
the conventional OTI method mostly relies on field examinations. The main advantages
of the proposed method include a more comprehensive analysis of energy saving diag-
nosis, less involvement of professional researchers, and less time. However, it strongly
relies on the data quality of the monitoring platform and lacks flexibility for diagnosing
specific equipment.

It should be noted that the proposed systematic method is not in competition with the
conventional OTI method. They possess complementary aims and pathways and should
thus be considered as supplementary to each other. Therefore, in engineering practice,
it is recommended to combine the data-mining based method and the conventional OTI
method to deal with various problems faced in air-conditioning systems.
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Table 4. Comparison between the proposed systematic method and conventional observation, test, and identification (OTI)
method.

Item Proposed Systematic Method Conventional OTI Method

Orientation Data-oriented Problem-oriented

Basic principle Energy saving potential optimization calculation
based on daily operation data

Energy saving diagnosis by field investigation
and test

Main pathway Optimizing operation strategies based on existing
equipment and systems

Troubleshooting existing equipment or
retrofitting equipment

Consumed resources Low consuming of time and human resources, but
high demand of computational resources

Time- and researcher-consuming but low level of
computational demands

Data in use
Strong dependence on data monitoring platform;

high-level demand of data scope and quantity; better
data synchronization.

Strong dependence on field measurement;
potential issues in data synchronization

Technical details Reasonable solutions owing to a broader picture of
system running constraints Potential issues in realizing proposed solutions

Main characteristics Less flexibility, especially with respect to individual
component; remote control and online diagnosis

Wider applicability in both equipment and
systems; inevitable field presence

It is also worth mentioning that this paper aims at introducing the framework and
logics of the newly proposed systematic method. Hence, we did not put emphasis on
the comparisons of specific data-mining methods and optimization algorithms. Future
research can follow the steps of the proposed systematic method, when various data-
mining technologies can be flexibly applied according to data completeness and specific
cases. For example, Section 3.4 in the companion paper [30] provided detailed comparisons
for the selection of models.

4.2. Influence of Data Completeness

As mentioned above, the proposed method based on data mining strongly depends
on data completeness. In many scenarios, due to the lack or deficiency of the system
monitoring platform, we cannot collect all the data listed in Table 1 and thus cannot
implement energy-saving diagnosis using the new method. However, according to different
data completeness levels, we can still analyze the energy consumption of the system and
acquire energy-saving information to some extent, as summarized in Figure 4.

With only the annual total energy consumption of the air-conditioning system, we can
perform longitudinal and cross-sectional comparisons to determine whether the energy
consumption for the year is normal. Specifically, the longitudinal comparison means com-
paring the annual total energy cost with that of previous years to check if the value exceeds
the precedent range. The cross-sectional comparison compares the energy consumption
with other systems in similar buildings to rate the target’s performance. When we can
add the dimension of time to have time-series total energy consumption data, more data
mining methods can be applied to analyze the system’s energy consumption, for exam-
ple, energy consumption prediction. Furthermore, if the data of the subsystems, such as
pumps, are available, we can determine which subsystems have energy-saving potentials.
When the time-series energy consumption data can be further refined for each piece of
equipment, we can have a clear picture of which equipment has operational issues and
how to improve the energy performance by analyzing running time, sequence, and other
mining methods. Preferably, if the complete energy consumption and system operational
data are accessible, a more comprehensive optimization analysis can be implemented, as in
the method proposed in this study.
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4.3. Limitations and Future Outlook

This study has the following limitations:

• As presented in Section 4.1, It has been a common practice to illustrate the advantages
and disadvantages of a newly proposed framework in a qualitative way, especially
for new systematic methods [27–29]. Nevertheless, in order to make a more straight-
forward comparison, there are three future directions to work on: (1) to apply the
systematic method to a large number of case studies to have an overall range of the
performance evaluation and then to compare them with the performance range of
the conventional OTI method; (2) to apply both methods in one case study simulta-
neously and to directly compare the performance of two methods; and (3) given the
complementary features of the two methods, to apply both methods together in one
case study and to obtain more comprehensive diagnosis results. We encourage more
research to target the aforementioned three directions in order to demonstrate in a
straightforward way the advantages and disadvantages of the proposed method, and
to investigate optimal approaches to coordinate it to traditional methods.

• The main objective of this study has been to calculate the energy saving potential by
optimizing the system operating parameters, when the primary cooling load demand
can be met. Therefore, indoor environmental quality (IEQ, including but not limited
to air change rate and thermal comfort) is not considered yet. We believe that other
than focusing on energy consumption, further research can also attempt to apply the
proposed method to consider the optimization of IEQ.

5. Conclusions

This study proposes a systematic method for energy-saving diagnosis in air-conditioning
systems using data mining. The method mainly includes seven steps: (1) data collection,
(2) data preprocessing, (3) recognition of variable-speed equipment, (4) recognition of
system operation mode, (5) regression analysis of energy consumption data, (6) constraints
analysis of system running, and (7) energy-saving potential analysis. A case study with
a complicated air-conditioning system coupled with an ice storage system demonstrated
the effectiveness of the proposed method, and the details were reported in the companion
paper. Compared with the traditional OTI method, the data-mining-based method can
provide a more comprehensive analysis of energy-saving potential in less time, although
it strongly relies on data quality and lacks flexibility for diagnosing specific equipment.
The newly proposed method can also deepen the understanding of the operational data
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characteristics of air-conditioning systems. Further research is warranted to examine the
applicability of various data-mining technologies to realize a systematic diagnosis method.
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