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Abstract: Increased data monitoring enables the energy-efficient operation of air-conditioning sys-
tems via data-mining. The latter is projected to have lesser consumption but more comprehensive
diagnosis than traditional methods. Following the companion paper that proposed a systematic
method for energy-saving potential calculations via data-mining, this article presents a detailed case
study in an ice-storage air-conditioning system by employing the proposed method. Raw data were
preprocessed prior to recognizing the constant- and variable-speed devices in the system. Classifi-
cation and regression tree algorithms were utilized to identify the operating modes of the system.
The regression models between the energy-consumption and operating-state parameters of the nine
pumps and two chillers were fitted. Furthermore, the constraints pertaining to system operation were
summarized. From the results, the particle swarm optimization method was applied to elucidate
the benchmark energy cost and the consequent cost savings potential. The cost savings potential for
the chiller plant room during the investigation duration of 59 d reached as high as 24.03%. The case
study demonstrates the feasibility, effectiveness, and stability of the systematic approach. Further
studies can facilitate the development of corresponding control strategies based on the potential
analysis results, to investigate better optimization algorithm, and visualize the analysis process.

Keywords: energy-saving potential; data-mining; recognition; optimization; operational data

1. Introduction

As reviewed in a companion paper [1], data mining can be a superior approach for
diagnosing the energy-saving potential of air-conditioning systems, particularly in the era
of data explosion. Compared to the traditional observation/question, test/calculation,
and identification/resolution (OTI) method, energy-saving diagnosis based on data mining
exhibits several advantages, including a more comprehensive analysis of energy-saving
diagnosis, reduced intervention of professional researchers, and less time. The companion
paper [1] proposed a systematic energy-saving diagnosis method for air conditioning sys-
tems via data-mining. The proposed method consisted of seven steps: (1) data collection,
(2) data preprocessing, (3) recognition of variable frequency equipment, (4) recognition
of system operation mode, (5) regression analysis of energy-consumption data, (6) con-
straint analysis of the system during operation, and (7) analysis of energy-saving potential.
To validate the proposed method and test its applicability and feasibility for application in
complicated air conditioning systems, this study mainly focuses on the technical details
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of the method and the application of the method in a specific air conditioning system for
energy-saving diagnosis.

Previous studies have investigated the applicability of data-mining technologies in
energy-consumption-related investigations into air-conditioning systems and building
energy systems [2]. For instance, an artificial neural network (ANN) [3] and support vector
machine (SVM) [4] have been employed to diagnose chillers. Moreover, Gaussian process
regression [5] and classification and regression trees (CART) [6] have been utilized to
diagnose air handling units (AHUs). ANN [7] and an algorithm based on the recursive
deterministic perceptron neural network [8] have been utilized to detect pumps; symbolic
aggregate approximation (SAX) have been applied to identify the operation patterns of
chillers [9] and heating, ventilating and air conditioning (HVAC) systems [10]. Few studies
have focused on the application of various data mining technologies, such as response
surface methodology (RSM) and neural network (NN), in the diagnosis and optimization of
specific components of HVAC systems and building energy systems. Li et al. [11] applied
clustering analysis and association mining to identify energy consumption patterns of
a variable refrigerant flow system. Neural network (NN) showed capability in optimiz-
ing specific components, such as fluid in the refrigeration system [12]. Response surface
methodology (RSM) was applied for the optimization of specific building energy systems,
such as solar collector and reactor [13,14]. Global data mining, together with geographic
information, has enabled country-wide optimization of building insulation for energy
saving and mitigation of emissions [15]. However, the aforementioned case studies only
pertain to a specific step or optimization algorithm included in our systematic method.
Newly proposed methods for energy saving analysis of HVAC systems, particularly the
ones focusing on systematic optimization, should be validated using case studies. Previ-
ous studies that proposed new optimization methods for HVAC systems [16], building
energy systems [17], or specific components [18] were normally accompanied by case
studies for validation. Therefore, a comprehensive and detailed case study employing the
new systematic data-mining-based methodology is necessary to illustrate the method’s
feasibility.

This paper presents the second of two publications proposing a systematic method-
ology to elucidate the energy-saving potential of an air conditioning system based on
data-mining. Following the proposed steps in the companion paper [1], a detailed case
study was carried out in an air conditioning system coupled with an ice storage system
with an air conditioning area of 30,000 m2. The details of specific data-mining technologies
in each step were introduced, and the energy-saving potential was calculated and analyzed
using the systematic method.

2. Methodology
2.1. The Studied System

A five-floor commercial building was equipped with an air-conditioning system by
employing the new method. The building was located in Shenzhen, China, with a 30,000 m2

air conditioning area. The system was coupled with an ice-storage system (circulation
medium: glycol-water solution) to exploit the lower electricity price at night (Table A1 in
Appendix A). As shown in Figure 1, the coupled system consisted of two chillers (Ch-1
and Ch-2), three chilled-water pumps (ChWP-1, ChWP-2, and ChWP-3), three condensing-
water pumps (CWP-1, CWP-2, and CWP-3), three glycol water pumps (GWP-1, GWP-2,
and GWP-3), twelve ice-storage tanks, two plate heat exchangers, six cooling towers,
and five air-handling units.
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Figure 1. Scheme of the studied air-conditioning system with the monitoring locations of the operation status.

The system had four operating modes, excluding the shutdown mode. Each mode
was controlled based on the logic detailed in Table 1 for on/off control or the modulation
of the chiller(s) and five valves (V1 to V5).
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Table 1. System operating modes and corresponding control logic.

Operating Modes Codes
Device Status

Chiller(s) V1 V2 V3 V4 V5

Ice build M1 On Off On Off On Off
Cooling by chiller(s) only M2 On On Off On Off Off

Cooling by ice only M3 Off Off On On Off On
Cooling by ice with chiller(s) M4 On Modulate On On Modulate Off

2.2. Data Collection

A comprehensive data-monitoring platform was established for the air-conditioning
system to monitor the electricity consumption of each component and the operating status
parameters of the system. The available monitoring points are indicated in Figure 1, and all
the points are summarized in Table 2, along with detailed information.

Table 2. Parameters monitored in the case system.

No. in Figure 1 Identifiers in Figure 1 Parameter Meaning and Unit Symbol

1 t_OA Outdoor air temperature (◦C) tOA
2 t_cws Temperature of supply condensing water in main pipe (◦C) tcws
3 t_cwr Temperature of return condensing water in main pipe (◦C) tcwr
4 t_chws Temperature of supply chilled water in main pipe (◦C) tchws
5 t_chwr Temperature of return chilled water in main pipe (◦C) tchwr
6 t_chwCh-1 s Temperature of supply chilled water in chiller #1 (◦C) tchwCh-1 s
7 t_chwCh-1r Temperature of return chilled water in chiller #1 (◦C) tchwCh-1r
8 t_cwCh-1 s Temperature of supply condensing water in chiller #1 (◦C) tcwCh-1 s
9 t_cwCh-1r Temperature of return condensing water in chiller #1 (◦C) tcwCh-1r

10 t_chwCh-2 s Temperature of supply chilled water in chiller #2 (◦C) tchwCh-2 s
11 t_chwCh-2r Temperature of return chilled water in chiller #2 (◦C) tchwCh-2r
12 t_cwCh-2 s Temperature of supply condensing water in chiller #2 (◦C) tcwCh-2 s
13 t_cwCh-2r Temperature of return condensing water in chiller #2 (◦C) tcwCh-2r
14 m_isIST Amount of ice in inventory (metric tons) misIST
15 t_gwISTr Temperature of return glycol water to ice storage tanks (◦C) tgwISTr
16 t_gwISTs Temperature of supply glycol water from ice storage tanks (◦C) tgwISTs
17 t_PHEXp-1 s Temperature of supply water to premier side of plate heat exchanger #1 (◦C) tPHEXp-1 s
18 t_PHEXp-1r Temperature of return water from premier side of plate heat exchanger #1 (◦C) tPHEXp-1r

19 t_PHEXs-1 s Temperature of supply water from secondary side of plate heat exchanger #1
(◦C) tPHEXs-1 s

20 t_PHEXs-1r Temperature of return water to secondary side of plate heat exchanger #1 (◦C) tPHEXs-1r
21 t_PHEXp-2 s Temperature of supply water to premier side of plate heat exchanger #2 (◦C) tPHEXp-2 s
22 t_PHEXp-2r Temperature of return water from premier side of plate heat exchanger #2 (◦C) tPHEXp-2r

23 t_PHEXs-2 s Temperature of supply water from secondary side of plate heat exchanger #2
(◦C) tPHEXs-2 s

24 t_PHEXs-2r Temperature of return water to secondary side of plate heat exchanger #2 (◦C) tPHEXs-2r
25 R_V1 Opening of valve #1 (%) RV1
26 q_chw Chilled water flow in main pipe (L/s) qchw
27 Q_CL Cooling load of the system (USRT) QCL
28 W_CWP-1 Energy-consumption of condensing water pump #1 (kWh) WCWP-1
29 W_CWP-2 Energy-consumption of condensing water pump #2 (kWh) WCWP-2
30 W_CWP-3 Energy-consumption of condensing water pump #3 (kWh) WCWP-3
31 W_GWP-1 Energy-consumption of glycol water pump #1 (kWh) WGWP-1
32 W_GWP-2 Energy-consumption of glycol water pump #2 (kWh) WGWP-2
33 W_GWP-3 Energy-consumption of glycol water pump #3 (kWh) WGWP-3
34 W_ChWP-1 Energy-consumption of chilled water pump #1 (kWh) WChWP-1
35 W_ChWP-2 Energy-consumption of chilled water pump #2 (kWh) WChWP-2
36 W_ChWP-3 Energy-consumption of chilled water pump #3 (kWh) WChWP-3
37 W_AHU-1 Energy-consumption of air handling unit #1 (kWh) WAHU-1
38 W_AHU-2 Energy-consumption of air handling unit #2 (kWh) WAHU-2
39 W_AHU-3 Energy-consumption of air handling unit #3 (kWh) WAHU-3
40 W_AHU-4 Energy-consumption of air handling unit #4 (kWh) WAHU-4
41 W_AHU-5 Energy-consumption of air handling unit #5 (kWh) WAHU-5
42 W_Ch-1 Energy-consumption of chiller #1 (kWh) WCh-1
43 W_Ch-2 Energy-consumption of chiller #2 (kWh) WCh-2
44 W_ChPR Energy-consumption of chiller plant room (kWh) WChPR
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This study collected data from 22 July 2011 to 20 August 2013 at intervals of 1 h.
All the data were utilized in this study for preprocessing and subsequent analyses. To better
explain the specific types of data monitored by this study, Table A2 of Appendix A provides
the raw data for a full day (18 August 2013).

2.3. Data Preprocessing

The raw data were preprocessed to meet the needs of the subsequent analysis follow-
ing the steps detailed in the subsequent sections.

2.3.1. Missing Data Preprocessing

• Listwise deletion: We deleted the data obtained before 22 June 2013, owing to abundant
missing values in the data from that period. This was done to ensure the continuity,
isometry, and completeness of the data. Consequently, 1416 pairs of continuous time-
series data for 59 consecutive days from 22 June to 19 August 2013 were retained for
the recognition of system operation mode in Section 2.5 and the energy cost-savings
potential analysis in Section 2.8.

• Pairwise deletion: In the regression analysis (Section 2.6) of energy consumption and
flow rate for pumps, we deleted the energy-consumption data and the paired flow
rate data in cases where either one or both values were missing. The same approach
was applied to the data used in the regression analysis for the chillers.

2.3.2. Data Cleaning

• Duplicate data cleaning: Consider the data obtained at 17:59:00 on 18 August 2013
(see Table A2). Because the data were recorded at 1 h intervals, the data obtained at
17:59:00 was considered to be a duplicate of the approaching hour (18:00:00) and was
deleted.

• Data cleaning during the shutdown state: To faithfully reflect the distribution of energy
consumption in the operating state, before calculating the numerical characteristics of
the energy-consumption data of the devices in Section 2.4, the data obtained during the
shutdown state (i.e., when the energy consumption was zero) were deleted. The same
approach was applied to the data used in Section 2.6 for regression analysis.

2.3.3. Data Extending

• Appending the code of system operation mode to the dataset: Following the recog-
nition of the system operation mode (see Section 2.5), we added a column into the
dataset with the corresponding operation-mode code (i.e., M1 to M4 in Table 1 and
M0 for the shutdown mode) to facilitate the filtering of data by operation mode in the
relevant analysis. For example, the chillers were regressed by cooling (corresponding
to M2 and M4) and ice building (corresponding to M1) modes in Section 2.6.

• Temperature difference data extension: Typically, temperature differences are not
directly captured and recorded during the data collection period but are frequently
used in the analysis. Therefore, it is necessary to add temperature difference data to
facilitate direct recall for the relevant analysis (e.g., regression analysis in Section 2.7).
For instance, we computed the temperature difference between the supply and the
return chilled water (∆tchw = tchwr − tchws) as a new variable (∆tchw) and extended it
to the case dataset. Similarly, for the temperature difference of the water supply and
return chilled water of the chiller (∆tchwCh), the temperature difference between the
water supply and return condensing water of the chiller (∆tcwCh) were calculated and
extended to the dataset.

2.3.4. Data Transformation

• Transformation of the units of measurement: The unit of the cooling load of the
system in the case data was the US refrigeration ton (USRT). This unit pertains to
the cooling load (power nature) rather than the cooling quantity demand (energy
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nature); the former cannot be used directly in the subsequent analysis and calculation.
Hence, the unit of USRT was converted to the système international (SI) unit of
kilowatts (kW). Because the data collection interval was 1 h, each value corresponded
to the cooling quantity demand for that period. Therefore, the unit was further
converted to kilowatt-hour (kWh). In the case of chilled water flow (qchw), where there
were no more variables of the same type, the unit of liters per second (L/s) was
converted to cubic meters per hour (m3/h) to avoid introducing too many conversion
factors in the subsequent analysis and calculation.

• Time interval labeling: For easier identification and more efficient data processing,
the time interval was marked as period i. The one-to-one correspondences between
them are shown in Table A1 of Appendix A.

2.4. Recognition of Variable Speed Equipment

The regression analysis in Section 2.6 requires the matching of different fitting for-
mulas for variable- and constant-speed motor-driven equipment; however, the variable-
or constant-speed nature of equipment was not directly available in the monitoring data.
Therefore, we applied the coefficient of the median, defined as the ratio of the difference
between the maximum and median to the range, proposed in our previous study [19].
The coefficient of the median aids in recognizing the two-speed types of motor-driven
equipment using their energy-consumption data. It was evident from the recognition re-
sults that the four pumps (ChWP-1, ChWP-2, GWP-1, and GWP-2) and all the AHUs were
variable-speed equipment, whereas the remaining five pumps (CWP-1, CWP-2, CWP-3,
ChWP-3, and GWP-3) and the two chillers (Ch-1 and Ch-2) were constant-speed devices.

2.5. Recognition of System-Operation Mode

The operation mode was not recorded for each period in the dataset. Therefore, it is
necessary to recognize or classify the system operation modes before relevant analysis.

As previously stated, in the studied air-conditioning system, there were five distinct
operation-modes: (a) shutdown (operation-mode code: M0), (b) ice build (M1), (c) cooling
by chiller(s) only (M2), (d) cooling by ice only (M3), and (e) cooling by both chiller(s)
and ice (M4). Moreover, the different operation modes of the system follow the clear
control logic shown in Table 1. While the data from the chillers and valve V1 can recognize
modes M1 to M4, they are insufficient to recognize mode M0, which is easily confused
with M3. Therefore, the energy consumption of another energy-consuming equipment
is incorporated to ensure the correct recognition of mode M0. The energy-consumption
types of the involved devices, corresponding to different operation modes, are shown in
Table 3. The use of electricity at night versus peak daytime hours can lead to large savings
in energy bills. This proves that the system primarily produces ice during the nighttime
low-tariff hours (23:00 to 07:00) when the building is closed to the public, and no cooling is
required. The period i is therefore added to the mode recognition, which may be effective
in recognizing mode M1.

Table 3. Energy-consumption types of devices for different operation modes.

Operation-Mode
Codes Chiller (s) Air Handling

Unit (s)
Chilled Water

Pump (s)
Glycol Water

Pump (s)
Condensing

Water Pump (s)

M0 0 1 0 0 0 0
M1 >0 2 0 0 >0 >0
M2 >0 >0 >0 >0 >0
M3 0 >0 >0 >0 0
M4 >0 >0 >0 >0 >0

1 “0” indicates that the corresponding device is in a shutdown state. 2 “>0” indicates that the device is running.
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Classification is a method of building a categorization model by summarizing and
refining the patterns contained in existing data. Moreover, decision tree induction is
a classical classification method with high accuracy and efficiency. To better elucidate
the data and incorporate background knowledge about it when building a decision tree,
the classification and regression trees (CART) algorithm [6] with good interactivity was
chosen to build the decision tree model for the study. CART uses a greedy method in which
the decision tree is constructed using a top-down recursive partitioning approach. For the
classification of numerical input variables, CART measures the heterogeneity of the output
variables by calculating the Gini index (Gini) [20] for each input variable and selects the
splitting variable that maximizes the reduction in heterogeneity (∆Gini). This variable and
its split-point together form the splitting criterion. This procedure is repeated until the
splitting criteria for recognizing all operation modes are acquired, at the end of which the
decision tree construction is complete.

2.6. Regression Analysis of Energy-Consumption Data

The purpose of the regression analysis is to quantify the relationship between the
energy consumption of each energy-consuming device and its operation-state parame-
ters. The obtained fitting model serves to reduce energy consumption by optimizing
the operation-state parameters while meeting the system load demands. The energy-
consumption data of the cooling towers and operation-state parameters for AHUs were
not available in the dataset; therefore, follow-up analysis was performed only for the
energy-consuming equipment in the chiller plant room, which included the nine pumps
and two chillers.

2.6.1. Fitting Models for Regression Analysis

The nine pumps in the case study are categorized into constant- and variable-speed
pumps based on the classification in Section 2.4, corresponding to different fitting models.
Based on fluid dynamics, the fitting model of the energy consumption and flow rate for the
constant-speed centrifugal pumps is as follows:

W = β0 + β1q, (1)

where W represents the energy consumption of pump, kWh; q represents the flow rate of
the pump, m3/h; and β0 and β1 are the two fitting coefficients and are dimensionless.

The fitting model for variable-speed centrifugal pumps can be determined as follows:

W = β1(q + β0)
3. (2)

Several factors influence chiller-operating performance and energy consumption; an
accurate theoretical model can be developed via an in-depth analysis of chilling principles.
However, this study of chiller-operating performance aims to exploit actual operation data
to fit a real or near-real model that can predict energy consumption in the following energy-
saving potential calculations. In some related studies, the mathematical models from
two well-known simulation software programs in the field, EnergyPlus (9.3.0, National
Renewable Energy Laboratory, Golden, CO, USA) and TRNSYS (v. 17, Thermal Energy
System Specialists, LLC, Madison, WI, USA ), were used directly or with appropriate
modifications based on the studies [21]. Herein, an improved model that can be effectively
fitted as proposed in our previous study [22] is applied as follows:

WCh = β0 + β1QCh + β2tcwChr + β3∆tchwCh + β4∆tcwCh + β5(QCh)
2+

β6(tcwChr)
2 + β7(∆tchwCh)

2 + β8(∆tcwCh)
2 + β9QChtcwChr+

β10QCh∆tchwCh + β11QCh∆tcwCh + β12tcwChr∆tchwCh + β13tcwChr∆tcwCh+

β14∆tchwCh∆tcwCh + β15tchwChs + β16(tchwChs)
2 + β17QChtchwChs+

β18tcwChrtchwChs + β19∆tchwChtchwChs + β20∆tcwChtchwChs

(3)
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where WCh represents the energy consumption of the chiller, kWh; QCh represents the
cooling capacity of the chiller, kWh; tcwChr represents the temperature of return condensing
water of chiller, ◦C; ∆tchwCh represents temperature difference of water supply and the
return chilled water of the chiller, ◦C; ∆tcwCh represents the temperature difference of
water supply and the return condensing water of the chiller, ◦C; tchwChs represents the
temperature of water supply chilled water of the chiller, ◦C; β0 to β20 represent the fitting
coefficients and are dimensionless.

2.6.2. Data Preparation for Regression Analysis

Abnormal data have already been eliminated in the data preprocessing step (Section 2.3).
However, the energy consumption data of each of the nine pumps were recorded in the
case dataset. The corresponding flow rate was recorded only for the main pipe of the
chilled water loop (qchw), without a separate flow rate available for each pump. Therefore,
it is crucial for the pump data to be processed in the following ways for regression analysis:

• Filter out the flow rate of the individual pump. Considering the chilled water flow
rate (qchw) as an example, the data are filtered out with only one chilled water pump
in operation from all the data with flow rates (qchw) exceeding zero. The filtered flow
data and the corresponding pump energy consumption in the order of pump numbers
were used for the respective regression analyses. For instance, a period when ChWP-1
runs while ChWP-2 and ChWP-3 are shut down is determined, chilled water flow
rate (qchw) is marked as the flow rate of ChWP-1 (qchw-1), and the process is repeated
to filter out the flow rate data for all ChWP-1. Subsequently, these filtered data are
organized into a subset of ChWP-1 for regression analysis. The relevant data subsets
for ChWP-2 and ChWP-3 can be collated separately following the same procedure.

• Calculate the flow rate of the glycol water (qgw) and the flow rate of the condensing
water (qcw). In this study, ignoring the heat transfer loss of the system, Qchw = Qgw,
the glycol water flow rate (qgw) can be calculated using the chilled water flow rate
(qchw), the temperature difference between supply and return chilled water (∆tchw),
and the temperature difference between supply and return glycol water solution
(∆tgw) in the operating modes of M2, M3, and M4. Similarly, Qcw = QCh + WCh =
Qchw + WCh, the condensing water flow rate (qcw) can be calculated using the chilled
water flow rate (qchw), the temperature difference between supply and return chilled
water (∆tchw), the energy consumption of the chillers, and the temperature difference
between supply and return condensing water (∆tcw) in the operating mode of M2.
Finally, using the first method, the relevant data subsets for each glycol water pump
and condensing water pump can be collated separately.

In addition, for chillers, after the preprocessing discussed in Section 2.3, the data for
the regression analysis no longer require further processing.

2.7. Constraint Analysis of System during Operation

The case system is subjected to the following constraints during operation, which will
also be taken into account in the energy-saving potential analysis.

2.7.1. Constraint on Supply and Demand of Cooling

During the cooling period in the operation modes of M2, M3, and M4, the cooling
capacity supplied by the chiller plant room must be sufficient to meet the cooling load of
the case system, described by the following equation:

QCL(i) = QCh(i) + Qcr
IST(i), (4)

where QCL(i) represents the cooling load of the system during the period i, kWh; QCh(i)
represents the cooling capacity supplied by chillers during period i, kWh; and Qcr

IST(i)
represents the cooling capacity supplied by ice in the ice storage tanks during period i,
kWh.
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2.7.2. Constraint on Cooling Capacity of Chillers

In the operation modes of M1, M2, and M4, the cooling capacity supplied by chillers
should not exceed the maximum cooling capacity of chillers at any time.

0 ≤ QCh(i) ≤ Qmax
Ch (i), (5)

where Qmax
Ch (i) represents the maximum cooling capacity of chiller during period i, kWh.

2.7.3. Constraints on ISTs

The sum of the accumulation of the cooling capacity in the ISTs and the current
remaining cooling capacity should not exceed the maximum accumulation of cooling
capacity of ISTs during any time:

0 ≤ Qac
IST(i) + Qre

IST(i) ≤ Qmax
IST , (6)

where Qac
IST(i) represents the accumulation of cooling capacity in the ISTs during period i,

kWh; Qre
IST(i) represents the current remaining cooling capacity in the ISTs at the beginning

of period i, kWh; Qmax
IST represents the maximum accumulation of cooling or cooling release

of ISTs during one cooling storage and release cycle, kWh.
In the operation mode of M1, the accumulation of cooling capacity in the ISTs should

be equal to the cooling capacity supplied by the chillers during any time, ignoring the heat
transfer loss.

Qac
IST(i) = QCh(i). (7)

Moreover, in the operation mode of M1, ISTs are constrained by their operation
efficiency; the accumulation of cooling capacity cannot exceed the maximum cooling
storage speed in the current period.

0 ≤ Qac
IST(i) ≤ Qac,max

IST (i), (8)

where Qac,max
IST (i) represents the maximum cooling storage speed of ISTs during period

i, kWh.
When cooling by ice (i.e., the operation mode of M3 and M4), the cooling release of

ISTs at any time should not exceed the remaining cooling capacity during that time.

0 ≤ Qcr
IST(i) ≤ Qre

IST(i), (9)

where Qcr
IST(i) represents the cooling release of ISTs during period i, kWh.

Similarly, the cooling release of ISTs cannot exceed the maximum cooling release speed
in the current period.

0 ≤ Qcr
IST(i) ≤ Qcr,max

IST (i), (10)

where Qcr,max
IST (i) represents maximum cooling release speed of ISTs during period i, kWh.

In addition, the remaining cooling capacity of ISTs at any given time can be expressed
as follows:

Qre
IST(i + 1) = Qre

IST(i) + Qac
IST(i)− Qcr

IST(i), (11)

where Qre
IST(i + 1) represents the remaining cooling capacity of ISTs at the beginning of the

period (i + 1), kWh.
Note that these calculations only present expressions for the various constraints to be

called in the follow-up potential analysis step, while the specific data input and calculation
will be done automatically by the computer. The call of the equations is further described
in Section 2.8.2.
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2.8. Energy-Saving Potential Analysis
2.8.1. Problem Definition and Principles of Potential Analysis

Generalized computational equations for energy and cost savings are presented in a
companion paper [1]. For the present case with multiple different tariffs in a day (Table A1
in Appendix A), the energy cost savings for each day can be defined as follows:

∆J = Jactual − Jbenchmark =
23

∑
i=0

ei(Wactual(i)− Wbenchmark(i)), (12)

where ∆J represents the energy cost-saving of the air-conditioning system for one day, CNY;
Jactual represents the actual energy costs of the air-conditioning system for one day, CNY;
Jbenchmark is the benchmark energy cost of the air-conditioning system for one day, CNY;
ei is the electricity price for period i, CNY/kWh; Wactual(i) is the actual energy consumption
of the air-conditioning system for the period i, kWh; and Wbenchmark(i) is the benchmark
energy consumption of the air-conditioning system for the period i, kWh.

As previously mentioned, only energy consumption and performance data of equip-
ment in the chiller plant room are available concurrently in this case, lacking the necessary
data related to cooling towers and AHUs. Therefore, this study focuses on the analysis and
calculation of the saving potential of the chiller plant room, summarized as follows:

The benchmark energy cost is the optimization result of the system operation. Some
principles need to be followed to calculate the benchmark value.

• For each cooling storage and release cycle, the operation of the air conditioning system
shall be optimized and calculated according to the cooling load demand in each period
and the constraints described in Section 2.7;

• For each period of a cooling storage and release cycle, the operation mode shall be
determined according to the cooling load demand and electricity tariff;

• For each period determined as the operation mode of M4, it is necessary to further
determine the respective cooling supply ratios of the ice and chillers;

• For each set of parameters resulting from the above principles, the total energy cost of
the chiller plant room was calculated according to the results of the regression analysis
in Section 2.6;

• Search for the minimum energy costs as the benchmark energy costs by continuously
adjusting the operation mode and other parameters for each period during the cooling
storage and release cycle.

The calculations were carried out under the following assumptions:

• The current remaining cooling capacity in the ISTs at the beginning of period 0 on the
first day (i.e., 22 June 2013) is 0 kWh;

• The maximum cooling storage or release speed of ISTs is determined according to the
performance curve provided by the manufacturer and the remaining cooling capacity
in the ISTs at the beginning of the current period;

• The maximum accumulation of cooling or cooling release of ISTs during one cooling
storage and release cycle is determined according to the performance information
provided by the manufacturer.

2.8.2. Calculation of the Benchmark Energy Costs by Particle Swarm Optimization (PSO)

This study introduces the PSO algorithm to calculate the system’s benchmark en-
ergy costs by considering the above principles and the global search and optimization
capabilities of the algorithm.

As a branch of evolutionary computation, the PSO algorithm is a new swarm intel-
ligence optimization algorithm proposed in 1995 by Kennedy and Eberhart [23]. The al-
gorithm simulates the activity patterns of birds and fish flocks and achieves an optimal
solution to the problem through inter-group individual collaboration. The particles search
cooperatively in the region of feasible solutions. In addition to its own flight inertia,
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each particle simultaneously draws on its own and the optimal global experience of the
entire particle swarm to approach the optimal global solution. The PSO algorithm main-
tains a population of particles. The position of the particle denotes a feasible, if not the
best, solution to the problem. The objective function value is improved by the optimum
progress, which is required to change the particle position. The convergence condition
always requires the input of the move iteration number of the particle. The moving rule for
the particle’s position can be depicted by the following equations [24]:

Vs(t + 1) = wVs(t) + C1r1(Ps − Xs(t)) + C2r2(G − Xs(t)), (13)

Xs(t + 1) = Xs(t) + Vs(t + 1), (14)

where Vs(t) represents the velocity vector of particle s in t time; Xs(t) represents the position
vector of particle s in t time; Ps is the personal best position of particle s; G is the best
position of the particle found at the present time; w represents the inertia weight; C1 and C2
are two acceleration constants, called cognitive and social parameters, respectively; and r1
and r2 are two random functions in the range [0, 1].

Specifically, the solution that satisfies the actual case of this study can be obtained
through the processes shown in Figure 2.

Figure 2. Flow chart of the algorithm for benchmark energy costs.

The algorithmic process in Figure 2 is illustrated in detail as follows:

• STEP 1: To start, read data from the dataset of the case system, and input the cooling
load for each period i of each day and the number of days to be optimized (day_number)
into the algorithm by computer:

• STEP 2: Manually input the number of particles, parameters C1, C2, w, and the number
of iterations (iteration_number);

• STEP 3: Judge whether the current day k is smaller than day_number; If YES, enter the
optimization process of day k, step forward; if NOT, the process ends;
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• STEP 4: Generate a random initial solution for the current day k;
• STEP 5: If the iteration (u) for the current day k is smaller than the iteration_number,

enter the particle swarm iteration cycle; otherwise, k = k + 1 and step forward to STEP 3;
• STEP 6: Evaluate the current solution and update the global and individual optimal

solutions;
• STEP 7: Update the particle swarm velocities and the position vectors based on the

results of the previous STEP 6 and in combination with Equations (13) and (14),
u = u + 1, and step forward to STEP 5.

This study employs the above process for the day-to-day optimization of the calcu-
lations until the calculations for all the days are optimized and completed. Moreover,
some key details are described as follows:

• Each solution for the current day k is represented by a position vector Xs;
• The evolution of the solution begins in the PSO with an initial solution consisting of

initial particles;
• The initial solution is obtained by a random initial position of each particle; a matrix

is employed for recording the operating modes and other status parameters of the
case system;

• For the periods 0–8, one of the modes (M0 or M1) can be randomly selected. If M1 is
selected, an accumulation of cooling capacity is generated. Call and make sure that
Equations (6)–(8) and (11) are valid; otherwise, the mode should be reselected;

• For periods 9–23, one of the modes (M0, M2, M3, or M4) can be randomly selected.
However, M0 should be selected as long as QCL(i) = 0. If M2 is selected, call and
make sure that Equations (4) and (5) are both valid; otherwise, M4 is selected. If M3
is selected, call and make sure that Equations (4) and (9)–(11) are valid; otherwise,
M4 is selected. When M4 is selected, the algorithm randomly generates the respective
cooling supply ratio of the ice and chillers. Call and make sure that Equations (4),
(5) and (9)–(11) are valid; otherwise, regenerate the respective cooling supply ratio.

3. Results and Discussion
3.1. Recognizing System Running Mode

This study employs the operation data of 1416 periods from 22 June to 19 August 2013
to model the decision tree using the CART algorithm to recognize the operating modes.
The established decision tree is shown in Figure 3. In the modeling process, the ∆Gini
values of the variables for each node containing multiple operating modes (also known as
the internal node, i.e., nodes 0, 2, 3, and 5) are shown in Tables A3–A6 of Appendix A.

Figure 3. Decision-tree classification model for recognizing operation modes.
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Among the four internal nodes of 0, 2, 3, and 5, in node 2, RV1 = 97 is determined as the
splitting criterion based on the monitoring data for the opening of V1 (97.28 ≤ RV1 ≤ 97.89
in the “on” state, while the maximum value of 61.20 in the “modulate” state). Meanwhile,
the other three nodes use the theoretical values of the variable in the corresponding
classifications to establish the criterion. This, in turn, enables the checking for anomalies in
the actual operational data (e.g., the over-running in Section 3.4).

3.2. Regression Results of ME

Following the fitting method in Section 2.6, the fitting results and valid internals of
energy consumption and flow rate for the nine pumps in the case system are presented in
Table 4.

Table 4. Fitting results of energy-consumption and flow rate of the nine pumps in the case system.

Items Fitting Model Estimates of Coefficient Range of Value

β0 β1 W (kWh) q (m3/h)

ChWP-1 W = β1 (q + β0)3 7.755 2.738 × 10−7 [7.90, 13.50] [298.94, 358.92]
ChWP-2 W = β1 (q + β0)3 −18.501 3.475 × 10−7 [7.90, 13.80] [301.79, 359.68]
ChWP-3 W = β0 + β1q 16.507 2.901 × 10−2 [25.70, 27.00] [316.94, 361.76]
GWP-1 W = β1 (q + β0)3 136.140 7.399 × 10−8 [2.00, 6.50] [163.98, 308.41]
GWP-2 W = β1 (q + β0)3 196.989 1.785 × 10−7 [9.20, 9.80] [175.14, 183.06]
GWP-3 W = β0 + β1q 31.554 3.558 × 10−2 [39.90, 41.30] [234.58, 273.92]
CWP-1 W = β0 + β1q 12.541 6.148 × 10−2 [18.30, 26.60] [93.67, 228.68]
CWP-2 W = β0 + β1q 10.236 1.416 × 10−2 [12.40, 12.70] [152.76, 173.94]
CWP-3 W = β0 + β1q 27.410 4.928 × 10−2 [31.70, 38.40] [87.04, 222.99]

Considering Ch-1 (Chiller #1) in the cooling mode (i.e., corresponding to operating
modes M2 and M4) as an example, the fitting results of energy consumption based on
Equation (3) in Section 2.6 are listed in Table 5. Similar results for the ice-building mode
(i.e., corresponding to operating mode M1) of Ch-1 and two modes of Ch-2 (Chiller #2) are
not listed because of space limitations.

Table 5. Fitting results of the energy-consumption for chiller 1(Ch-1) in cooling mode.

Coefficient Each Item of the Polynomial Coefficient Estimate Standard Error

β0 1 −6630.420 1814.984
β1 QCh −0.146 1.125
β2 tcwChr 181.475 50.063
β3 ∆tchwCh −84.588 303.087
β4 ∆tcwCh 2,120.110 627.771
β5 (QCh)2 8.897×10−5 0.001
β6 (tcwChr)2 −1.552 0.876
β7 (∆tchwCh)2 15.478 24.417
β8 (∆tcwCh)2 −145.624 84.335
β9 QChtcwChr −0.020 0.030
β10 QCh∆tchwCh 0.083 0.161
β11 QCh∆tcwCh −0.124 0.347
β12 tcwChr∆tchwCh 1.965 7.730
β13 tcwChr∆tcwCh −14.364 10.743
β14 ∆tchwCh∆tcwCh −46.076 60.213
β15 tchwChs −6.715 54.304
β16 (tchwChs)2 0.129 0.827
β17 QChtchwChs 0.053 0.028
β18 tcwChrtchwChs −0.705 1.517
β19 ∆tchwChtchwChs 1.184 6.318
β20 ∆tcwChtchwChs −10.991 14.230
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3.3. Energy-Saving Potential Results

For the PSO algorithm, the values of C1, C2, and w may influence the computational
results [24]. After loading the data for 59 d from the case system into the algorithm
described in Section 2.8, better results can be obtained by multiple trial calculations to
determine the parameters C1 = 2, C2 = 2, and w = 0.6. Table 6 shows the average results for
10 consecutive calculations at various iteration sizes. Moreover, the single minimum energy
cost appears in the calculation process with an iteration scale of No. 6, 307,213.5 CNY.
It saves 97,156.0 CNY or 24.03% compared to the actual energy cost of 404,369.5 CNY.
The comparison between the two scenarios for each day is shown in Figure 4. The specific
data in Figure 4 are listed in Table A7 in Appendix A, and the mean absolute percentage
error (MAPE) of the optimal costs for each day are reported simultaneously in the table.

Table 6. Average results of various iteration sizes.

No. Particle Quantity Steps of Iterations Time Cost (s) Average Result (CNY)

1 50 50 273 326,987.4
2 50 100 541 326,311.8
3 50 200 1 080 324,513.9
4 100 50 544 313,138.6
5 100 80 866 309,388.9
6 100 100 1 083 308,598.6
7 100 150 1 610 311,192.5
8 100 200 2 151 310,063.8

Figure 4. Comparison between the daily actual costs, optimal costs, and savings of the case system
for 59 d from 22 June to 19 August 2013.

When combining these results, the following conclusions can be drawn about the
systematic approach of this study:

First, in Figure 4, the case system has different levels of energy-saving potential for
each day, indicating and validating the effectiveness of the optimization algorithm in this
study. Second, it is evident from the results in Table 6 that the difference between the
maximum and minimum values of the average results of eight types of iteration sizes
is only 5.6%. This is in combination with the MAPE results of the optimization costs in
Table A7 (ranging from 2.2% to 11.1%, with an average of 6.2%), demonstrating the high
stability of the optimization algorithm. Third, owing to the complexity of the case system
model and the numerous constraints, the process of the savings potential calculation is
time-consuming. The algorithm needs to be further improved to address this shortcoming.
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3.4. Discussion about Selection of Models

Considering that the main purpose of this paper was to implement and validate the
systematic approach by applying it to a real-life system, we did not focus on the specific
models and algorithms used for the case study. It is noteworthy that the specific models
applied in this study exhibit considerable necessity and superiority.

In terms of the model used for recognition of system-operation mode, the CART
algorithm was chosen to construct the decision tree model in this paper. Relative to other
clustering models, the CART has better interactivity so that the background knowledge for
the decision tree can be incorporated. [20] Furthermore, the actual and theoretical values
of the relevant variables during system operation were both considered in the splitting
criterion. For example, when V1 is in the “on” state, the actual value of RV1 was between
97.28 and 97.89, instead of the theoretical value of 100. Considering the real-life operation,
this study determined RV1 = 97 as the splitting criterion of node 2. As for the splitting
criterion of equipment energy consumption, this paper took the theoretical values in Table 3.
The model was thus built not only to identify the system-operation mode but also eligible
to check for anomalies in the actual operating data. For instance, according to the model
(Figure 3), the moment in Table A2 in Appendix A at 09:00 on 18 August 2013 was identified
as M3 (the relevant parameters for this moment were: i = 9, RV1 = 1.44, WCh = 0, WChWP =
7.9). Therefore, based on the rules shown in Table 3, the condensing water pumps should
be in a shutdown state, and WCWP should be 0, while the actual value of WCWP was 1.1.
It indicates an abnormal running of the pumps, where the energy-saving potential exists.
After statistics, the energy costs caused by over-running account for 3.8% of the total costs.
The detection of such anomalies would further demonstrate the superiority of the model
used in this study.

With respect to the optimization model, indeed, many optimization algorithms can
be applied to the potential analysis session. In addition to the PSO method, we also
examined the performance of other algorithms, including genetic algorithm (GA) and ant
colony optimization (ACO). As seen in Figure A1, PSO had better optimization results
at the same time-consuming level (~1000 s) relative to GA and ACO—15% and 8% more
energy-saving potential were obtained by PSO than GA and ACO, respectively. We also
acknowledge that comparative studies of the different optimization algorithms in terms
of feasibility and consumption need to be undertaken in the future to obtain the greatest
possible energy–cost-saving potential.

3.5. Advantages of the Systematic Method

The detailed case study verifies and demonstrates the feasibility, effectiveness, and sta-
bility of the systematic approach. In addition, the proposed method exhibits obvious
advantages over the conventional OTI method. Owing to the elimination of a significant
amount of on-site work, including communication with users and system testing in the OTI
method, the proposed method can reduce the time consumed for energy-saving potential
analysis of complex systems from weeks or months to days, or even shorter. Likewise,
the proposed method consumes much fewer human resources than the conventional
method. In addition, the conventional OTI method focuses on more specific problems.
Hence, the follow-up measurements and analyses are mainly focused on achieving the local
optimization of specific equipment in the system. The results may work well for the specific
equipment, but not necessarily for the system. On the contrary, the proposed method is
more comprehensive, considers the extensive constraints in the actual operation of the
system, and utilizes artificial intelligence algorithms to achieve the global optimization of
the entire system. Furthermore, the systematic method allows for the modular and batch
processing of data, as well as remote analysis and online diagnosis, thus providing better
versatility and scalability.
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3.6. Limitations and Future Outlook

The limitations of the proposed systematic method and the case study need to be
alleviated in future work and are listed as follows:

• As previously stated, owing to the lack of sufficient data on cooling towers and
terminal AHUs for analysis, the case study could not optimize the energy costs
simultaneously in the final optimization. However, this issue does not affect the
scientific and systematic nature of the study;

• The final optimization of the method pertained to the whole system rather than the
individual devices. This limits the optimization solutions based on the performance
of individual devices.

• It is crucial to achieve the energy-saving operation of the air-conditioning system
through the improvement of the control strategy, to attain or approach the result of
energy-saving potential calculation. Obtaining a set of analysis and operation methods
combining potential calculation and optimization control is a practical problem that
needs further attention;

• In the research process of diagnostic methods and the employment of these methods to
diagnose real air-conditioning systems, the visualization and professional interaction
of information and data cannot only improve work efficiency but also have a significant
impact on the understanding and application of the relevant results. This is a potential
direction for future research.

4. Conclusions

The paper presents a detailed case study of an ice-storage air-conditioning system
using the method based on data-mining proposed in the companion paper. The raw data
were preprocessed prior to recognizing the constant- and variable-speed devices in the
system. The classification- and regression-tree algorithms were used to identify the oper-
ating modes of the system. The regression models between the energy-consumption and
operating-state parameters of the nine pumps and two chillers were fitted. Subsequently,
the constraints related to the system operation were summarized. From the results, the par-
ticle swarm optimization method was applied to obtain the benchmark energy cost and
the consequent cost-saving potential. The cost-saving potential for the chiller plant room
during the 59 d of investigation reached as high as 24.03%. The case study validates and
demonstrates the feasibility, effectiveness, and stability of the systematic approach.

Compared with conventional methods, which take weeks or even longer for energy-
saving potential analyses, the proposed method takes only a few days or less. This en-
hanced speed indicates that the new systematic approach effectively identifies system
defaults and reduces the time spent on troubleshooting. The proposed method provides
a new approach for studying actual operation data, which is significant in enhancing the
energy efficiency of air-conditioning systems. Future research is warranted to develop
corresponding control strategies based on the potential analysis results, investigate better
optimization algorithms, and visualize the analysis process.
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Abbreviations
ACO Ant colony optimization
AHU Air handling unit
ANN Artificial neural network
CART Classification and regression trees
Ch Chiller
ChWP Chilled-water pump
ChPR Chiller plant room
CWP Condensing-water pump
GA Genetic algorithm
GWP Glycol water pump
HVAC Heating, ventilating and air conditioning
IST Ice storage tank
MAPE Mean absolute percentage error
NN Neural network
OTI Observation/question, test/calculation, and identification/resolution
PHEX Plate heat exchanger
PSO Particle swarm optimization
RSM Response surface methodology
SAX Symbolic aggregate approximation
SI Système international
SVM Support vector machine
USRT US refrigeration ton

Appendix A

Table A1. Electricity tariffs (ei) at different time intervals of the day.

i Time Interval ei (CNY/kWh)

0 23:00–00:00 0.2884
1 00:00–01:00 0.2884
2 01:00–02:00 0.2884
3 02:00–03:00 0.2884
4 03:00–04:00 0.2884
5 04:00–05:00 0.2884
6 05:00–06:00 0.2884
7 06:00–07:00 0.2884
8 07:00–08:00 0.8844
9 08:00–09:00 0.8844
10 09:00–10:00 1.1644
11 10:00–11:00 1.1644
12 11:00–12:00 1.0244
13 12:00–13:00 0.8844
14 13:00–14:00 0.8844
15 14:00–15:00 1.1644
16 15:00–16:00 1.1644
17 16:00–17:00 1.0244
18 17:00–18:00 0.8844
19 18:00–19:00 0.8844
20 19:00–20:00 1.1644
21 20:00–21:00 1.1644
22 21:00–22:00 0.8844
23 22:00–23:00 0.8844
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Table A2. Selected raw data collected on 18 August 2013.

Date Time tOA tcws tcwr tchws tchwr tchwCh-1 s tchwCh-1r tcwCh-1 s tcwCh-1r tgwISTr tgwISTs RV1 qchw QCL misIST WCWP-1 WCWP-2 WCWP-3 WGWP-1 WGWP-2 WGWP-3 WChWP-1 WChWP-2 WChWP-3 WCh-1 WCh-2 WChPR

18 August 2013
00:00:00 28.35 35.37 30.60 19.36 19.22 5.27 5.34 35.18 30.52 2.40 6.21 1.44 0.17 −0.03 635.42 24.8 6.6 6.3 0 26.4 40.8 0 0 0 261.8 257 623.7

18 August 2013
01:00:00 28.35 33.32 30.60 19.36 19.42 −0.16 −0.16 33.25 30.54 −2.74 0.81 1.44 0.16 0.01 623.26 24 12 0 0 26.4 40.8 0 0 0 265.6 260 628.8

18 August 2013
02:00:00 28.25 32.82 30.30 19.46 19.52 −3.33 −3.35 32.79 30.18 −5.74 −2.36 1.44 0.16 0.01 689.52 23.9 11.9 0 0 26.4 40.9 0 0 0 266.3 252.9 622.3

18 August 2013
03:00:00 27.75 32.91 30.20 19.56 19.72 −2.25 −1.91 32.91 30.24 −4.57 −1.02 1.44 0.16 0.03 1626.46 23.9 11.8 0 0 26.5 40.9 0 0 0 266.8 259.8 629.7

18 August 2013
04:00:00 27.95 32.91 30.30 19.56 19.82 −2.54 −2.27 32.96 30.30 −4.77 −1.36 1.44 0.16 0.05 2373.00 23.9 11.9 0 0 26.4 41 0 0 0 266.8 254.4 624.4

18 August 2013
05:00:00 28.05 32.91 30.30 19.66 20.02 −2.79 −2.51 32.96 30.30 −4.98 −1.63 1.44 0.16 0.07 3101.35 24 11.9 0 0 26.4 40.9 0 0 0 267.3 251.3 621.8

18 August 2013
06:00:00 28.05 33.01 30.41 19.66 20.12 −3.03 −2.81 33.02 30.42 −5.27 −1.88 1.44 0.16 0.09 3831.61 23.9 11.9 0 0 26.5 40.9 0 0 0 267.9 253.8 624.9

18 August 2013
07:00:00 28.15 32.71 30.20 19.76 20.32 −3.21 −2.99 32.72 30.12 −5.47 −2.10 1.44 0.16 0.11 4558.58 9.9 4.9 0 0 10.4 16.2 0 0 0 101.4 93.5 236.3

18 August 2013
08:00:00 28.25 30.29 30.30 19.76 20.42 1.07 −2.20 30.36 29.70 −2.07 −1.04 1.44 0.16 0.13 4574.85 0 0 0 0 0 0 0 0 0 0 0 0

18 August 2013
09:00:00 28.75 30.29 30.30 19.86 20.51 2.32 −1.60 30.30 29.16 −1.27 −0.39 1.44 0.16 0.13 4542.40 0 0 1.1 2.4 0 0 0 7.9 0 0 0 11.4

18 August 2013
10:00:00 29.25 30.09 30.30 12.73 16.78 2.86 −0.87 30.06 28.86 15.73 4.46 23.10 86.37 409.84 3457.71 0 0 0 3.2 0 0 0 12.1 0 0 0 15.3

18 August 2013
11:00:00 27.55 30.09 30.30 12.04 16.45 3.82 −0.21 29.82 28.62 15.37 5.38 16.48 92.78 488.93 2515.13 0.7 0 0 3.3 0 1.1 0 12.2 1 1.2 0 19.5

18 August 2013
12:00:00 27.55 32.84 29.24 14.84 17.75 13.73 16.88 33.38 29.21 14.43 6.22 97.57 94.33 329.83 1807.82 25.9 0 0 1.5 0 40.6 9.7 0 6.8 262.2 17.2 363.9

18 August 2013
13:00:00 27.54 33.34 29.25 15.04 18.06 14.27 17.18 33.42 29.21 14.62 6.97 97.57 96.38 347.88 1821.17 25.4 0 0 0 0 40.8 13 0 0 272 0 351.2

18 August 2013
14:00:00 27.85 33.53 29.54 15.24 18.25 14.57 17.42 33.66 29.57 14.72 7.69 97.57 96.49 346.75 1843.90 10.6 0 0 2.7 0 16.2 6.2 7.1 0 103.1 0 145.9

18 August 2013
15:00:00 28.25 30.76 29.64 10.23 15.16 18.99 17.51 30.00 29.39 13.59 7.01 1.52 92.02 546.69 1021.52 0 0 0 9.4 0 0 0 12.5 0 0 0 21.9

18 August 2013
16:00:00 28.55 30.66 29.64 12.15 15.98 19.65 17.15 30.00 28.79 14.61 10.22 1.52 88.76 405.65 702.72 12.1 0 0 5.1 0 19 0 5.7 14.9 96.2 0 153

18 August 2013
17:00:00 28.95 33.83 30.02 15.63 18.69 14.90 17.85 34.14 30.03 15.40 10.33 97.44 94.69 348.18 690.35 25.7 0 0 1.3 0 40.5 0.3 0 26.8 262.5 14.2 371.3

18 August 2013
17:59:00 28.95 34.23 30.33 16.35 19.29 15.57 18.51 34.46 30.33 15.50 10.74 97.44 95.95 338.33 700.05 25.1 0 0 0 0 40 0 0 26 263.3 0 354.4

18 August 2013
18:00:00 28.95 34.23 30.33 16.35 19.29 15.57 18.51 34.46 30.27 15.50 10.74 97.44 97.50 343.80 700.05 25.5 0 0 0 0 40.7 0 0 26.4 267.8 0 360.4

18 August 2013
19:00:00 28.55 33.47 30.13 16.89 19.39 18.04 19.29 30.69 30.09 15.50 11.31 97.44 103.95 311.54 709.61 26.1 0 0 5 0 39.3 1.6 0 25.7 254.2 122.6 474.5

18 August 2013
20:00:00 28.24 37.26 31.31 12.67 17.25 12.62 15.07 37.05 31.39 15.50 12.11 97.44 100.74 552.70 725.60 26.6 0 0 8.5 0 38.4 1.8 0 26.2 264.2 266.4 632.1

18 August 2013
21:00:00 28.14 36.96 31.21 11.67 16.24 11.74 14.05 36.70 31.21 15.59 12.33 97.44 97.30 533.77 736.38 26.5 0 0 8.6 0 38.3 1.8 0 26.3 264.1 266.9 632.5

18 August 2013
22:00:00 28.14 36.76 31.21 10.87 15.34 10.97 13.20 36.64 31.15 15.79 11.83 97.44 96.02 514.53 737.41 19.1 0 0 6 0 27 1.1 0 18.9 182.1 188.4 442.6

18 August 2013
23:00:00 28.04 31.65 31.21 13.63 13.58 14.56 13.16 31.48 30.85 16.09 11.05 1.55 0.16 −0.01 713.68 14 0 0 0 9 22.4 0 0 0 133.2 52.3 230.9
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Table A3. ∆Gini values for variables at node 0.

Variables ∆Gini

i 0.299
WAHU 0.276
WChWP 0.270
WGWP 0.190

RV1 0.188
WCh 0.172

WCWP 0.128

Table A4. ∆Gini values for variables at node 2.

Variables ∆Gini

RV1 0.172
WCh 0.146

WGWP 0.137
WChWP 0.127
WCWP 0.076
WAHU 0.056

i 0.054

Table A5. ∆Gini values for variables at node 3.

Variables ∆Gini

WCh 0.155
WGWP 0.146
WChWP 0.140
WCWP 0.074
WAHU 0.058

RV1 0.054
i 0.046

Table A6. ∆Gini values for variables at node 5.

Variables ∆Gini

WChWP 0.066
WGWP 0.063

i 0.063
WAHU 0.060

RV1 0.029
WCWP 0.009
WCh 0.000

Table A7. Daily actual costs, optimal costs and their mean absolute percentage error, and savings of
the case system for 59 d from 22 June to 19 August 2013.

Day Actual Costs
(CNY)

Optimal Costs
(CNY)

Savings
(CNY)

MAPE 1 of Optimal Costs
(%)

1 9700.0 6989.1 2710.9 2.2%
2 8454.8 6314.7 2140.0 3.2%
3 6285.1 4617.6 1667.5 7.9%
4 6872.3 5972.0 900.3 5.5%
5 5893.8 5225.0 668.8 6.6%
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Table A7. Cont.

Day Actual Costs
(CNY)

Optimal Costs
(CNY)

Savings
(CNY)

MAPE 1 of Optimal Costs
(%)

6 6630.1 6278.8 351.3 3.4%
7 6576.5 5573.7 1002.9 2.6%
8 8170.0 6532.8 1637.1 5.3%
9 7601.2 6034.0 1567.3 5.0%

10 6655.7 5487.0 1168.7 4.7%
11 6151.9 5194.5 957.4 5.8%
12 6955.4 5418.4 1537.0 8.3%
13 6749.7 4858.5 1891.2 9.7%
14 7610.0 5557.6 2052.4 5.1%
15 7752.2 6134.0 1618.2 5.1%
16 6933.4 6312.6 620.8 5.5%
17 5738.6 5097.4 641.1 9.2%
18 5959.4 5061.3 898.1 6.9%
19 5695.0 4202.9 1492.1 11.1%
20 6376.4 5754.5 621.9 6.0%
21 6360.2 5521.1 839.1 6.2%
22 7886.9 6041.3 1845.6 4.7%
23 8089.9 6548.6 1541.3 3.6%
24 7236.2 4712.6 2523.6 4.0%
25 5848.2 3991.8 1856.4 8.7%
26 6171.7 4275.7 1896.0 8.4%
27 6561.4 4211.0 2350.4 7.8%
28 6565.0 5413.0 1152.0 3.0%
29 6257.1 5827.2 429.9 5.0%
30 5990.5 4131.1 1859.4 7.7%
31 5866.5 4926.2 940.3 7.1%
32 5784.7 4989.7 795.0 6.2%
33 5290.7 4946.4 344.3 7.8%
34 4995.0 3929.5 1065.5 6.5%
35 5258.5 3706.8 1551.8 8.8%
36 5983.7 4539.1 1444.6 5.4%
37 6654.7 5147.4 1507.4 5.5%
38 4439.0 3099.5 1339.4 8.8%
39 6745.4 5122.6 1622.8 4.9%
40 7495.8 5644.6 1851.2 6.8%
41 6366.0 5487.9 878.1 5.1%
42 7981.3 5707.8 2273.5 3.9%
43 6833.6 5224.4 1609.3 5.9%
44 6915.0 4934.6 1980.4 5.9%
45 6701.3 4525.8 2175.5 4.6%
46 7467.3 5494.3 1973.0 6.7%
47 7411.0 4997.0 2413.9 7.0%
48 7766.7 4815.9 2950.9 7.9%
49 8151.1 5949.6 2201.4 2.6%
50 9035.6 6352.2 2683.4 3.7%
51 7541.6 5608.4 1933.2 7.1%
52 8242.6 5783.4 2459.2 3.4%
53 7102.0 4780.8 2321.2 7.9%
54 5329.8 3661.2 1668.5 10.1%
55 6528.5 4962.1 1566.4 8.7%
56 6751.7 4605.2 2146.5 4.8%
57 6647.2 4621.1 2026.1 7.4%
58 7406.0 6149.2 1256.8 4.9%
59 6046.7 4211.0 1835.7 10.2%

1 MAPE: mean absolute percentage error.
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Figure A1. Comparison of optimal costs of the case system calculated by three algorithms (particle
swarm optimization (PSO), genetic algorithm (GA) and ant colony optimization (ACO)) for 59 d
from 22 June to 19 August 2013.
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