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Abstract
In this paper three efficient exponential ratio type estimators of finite population mean in the
Adaptive Cluster Sampling design have been proposed using one known auxiliary variable. The
expressions of bias and mean squared error of the proposed estimators are derived up to the first
order of approximation. A simulation study has been conducted on two different populations
to examine the performance of the proposed estimator over similar existing estimators in the
Adaptive Cluster Sampling design. The simulation study showed that the proposed estimators
perform better than other related estimators discussed in this article.

Keywords: Adaptive cluster sampling; simulation; exponential estimator; within-network variance;
ratio estimator.
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1 Introduction
When the population under study is rare or clumped or hidden clustered, the biggest issue is
how to collect the data in that situation. Using conventional sampling design for example Simple
Random Sampling (SRS) is not advised as it is highly likely that most units drawn in the random
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sample, would not provide meaningful information due to the nature of the population being studied.
Adaptive Cluster Sampling (ACS) design is an adaptive scheme that provides a better estimate of
the populations parameter of interest in such a situation. In ACS, if the observed unit satisfies some
researcher-specified condition, then its neighbourhood (which is pre-defined by the researcher) is
also selected for estimating the parameter, more simply "if you find what you are looking for at
a particular location, you sample in the vicinity of that location with the hope of obtaining even
more information"[1].

ACS was proposed by [2] in 1990. Since then, it has received considerable attention and has been
widely used as it allows esearchers to collect data and get acceptable estimates which otherwise
would not have been possible. It has been used in variety of fields such as Ecological Science [3, 4],
Environmental Science [5, 6] and Epidemiology study and Social Sciences [7, 8].

Due to the wide applicability of this design, many researchers have developed different estimators
to estimate the unknown population parameter of interest. It is common in sample surveys that
information regarding a variable related to the survey variable is known in advance from past surveys
and can be availed by incurring much less cost. If it is highly correlated with the survey variable
then using such a variable would increase the precision of the estimator. Such a variable is called an
auxiliary variable. Researchers in sample surveys have been utilising auxiliary variables for a long
time. [9] using a known auxiliary variable, proposed a modified ratio estimator. Using the known
auxiliary variable and some known population parameters [10] proposed some ratio estimators to
estimate the population mean. Using known coefficient of skewness and kurtosis [11] proposed
some improved ratio type estimators and studied its properties. Using a single auxiliary variable
[12] proposed their transformed ratio type estimator.

The use of exponential type ratio estimator is well established in sampling theory and there are
a number of estimators present in non-adaptive design but there is a lack of such estimators
in Adaptive Cluster Sampling design and in this paper, we address this problem by proposing
some efficient exponential ratio type estimators using just the population mean of the auxiliary
variable[13].

In this article, we propose three ratio-type exponential estimators of finite population mean in the
ACS design. Section 2 provides a brief introduction and methodology of Adaptive Cluster Sampling.
Some similar existing estimators in the Adaptive Cluster Sampling are presented in Section 3 of this
article. The bias and mean squared error (MSE) of the proposed estimators have been derived up
to the first order of approximation and are presented in Section 4. To demonstrate the performance
of the proposed estimator over all the estimators presented in this article, a simulation study is
conducted on two different populations, the results of which are presented in Section 5. The final
conclusion of this article along with future research ideas are presented in Section 6.

2 Adaptive Cluster Sampling Methodology
ACS is an adaptive sampling design in which, the units in the final sample depends on all the
units which have been observed during the survey. Initially, a sample of size n1 is drawn from
the population of size N using any conventional sampling design (usually SRSWOR) and if these
selected units satisfy some researcher-specific condition C, then additional units are drawn from a
pre-defined neighbourhood.
So, before conducting the survey, two things should be clearly defined:

• the neighbourhood of a unit (or observation)
• the researcher-specific condition (C)
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This researcher-specific condition for selecting the observation on survey variable y is usually yi > 0.
In ACS, the used choice of neighbourhood is 4 unit first order in which, if any ith unit selected in
the initial sample is greater than 0, the units adjacent to this ith unit in its East, West, North and
South directions are also selected. This process of selecting the neighbourhood keeps on going until
no further additional unit satisfies the condition C.

The units satisfying condition C form a network, and units not satisfying it are called edge units
and are considered to be a network of size 1. The selection of any unit of a network leads to the
selection of the entire network. These networks and edge units together form a cluster (Fig. 1).

Fig. 1. An example of a hypothetical cluster with pre-defined condition (C) yi > 0.
The units having y-values 1, 2, 4, 5 and 1 form a network of size five. The edge units

are the units with y values 0 and are adjacent to the y values greater than 0.
Together they form a cluster

The clusters are obviously not disjoint due to overlapping edge units but the units of a network are
non-overlapping and thus the entire population can be partitioned as a set of networks and edge
units.

Once there are no more additional units satisfying condition C, ACS terminates and the sample
obtained consists of units selected in the initial sample and adaptively selected units.

Once the population is divided into networks and edge units, we make a transformed population
by assigning the average value of a network to all the units of this network but edge units stay
the same. [9] stated that once a transformed population is obtained, and we consider averages of
networks then ACS can be regarded as either SRSWOR or SRSWR.

3 Some Related Estimators in Adaptive Cluster Sampling
[2] proposed an unbiased estimator of a population mean in ACS. The estimator proposed by
Thompson is as follows

tTh =
1

n

n∑
i=1

wyi , (1)
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where wyi is the network mean of a network ψi which contains the ith unit. So,

wyi =
1

mi

∑
jϵΨi

(yj), (2)

where mi is the number of units in network ψi.

Variance of Thompson’s estimator is given by

V (tTh) = (
1

n
− 1

N
)W̄y

2
C2

wy
(3)

[9] proposed a modified ratio estimator given by

tDC = W̄x

∑n
i=1 wyi∑n
i=1 wxi

, (4)

where
wyi =

1

mi

∑
jϵΨi

(yj),

wxi =
1

mj

∑
kϵΨj

(xk),

and mi and mj are number of units in the network ψi and ψj repectively.

The MSE up to the first order of approximation of the estimator is:

MSE(tDC) =

(
1

n
− 1

N

)
W̄ 2

y (C
2
wy

+ C2
wx

− 2ρwxwyCwxCwy ), (5)

where C2
wx

=
S2
wx

W̄x
2 , S2

wx
= 1

N−1

∑N
i=1 (wxi − W̄x)

2 ,

ρwxwy =
Swxwy

SwxSwy
,

and Swxwy = 1
N−1

∑n
i=1 (wxi − W̄x)(wyi − W̄y).

[10] proposed some modified ratio type estimators as follows

tCH1 = w̄y

(
W̄x + Cwx

w̄x + Cwx

)
, (6)

and
tCH2 = w̄y

(
W̄x + β2(wx)

w̄x + β2(wx)

)
. (7)

The MSE up to first order of approximation of their estimators are

MSE(tCH1) =

(
1

n
− 1

N

)
W̄ 2

y (C
2
wy

+ θ2w1
C2

wx
− 2ρwxwyθw1CwxCwy ), (8)

and
MSE(tCH2) =

(
1

n
− 1

N

)
W̄ 2

y (C
2
wy

+ θ2w2
C2

wx
− 2ρwxwyθw2CwxCwy ), (9)

where θw1 = W̄x
W̄x+Cwx

and θw2 = W̄x
W̄x+β2(wx)

.

[11] proposed some improved ratio estimators given by

tSY1 = w̄y(
W̄xβ1(wx) + β2(wx)

w̄xβ1(wx) + β2(wx)
), (10)
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and

tSY2 = w̄y(
W̄x

2

w̄x
2
). (11)

MSE of their estimators up to first order of approximation are given by

MSE(tSY1) =

(
1

n
− 1

N

)
W̄y

2
(C2

wy
+ θw3C

2
wx

− 2θw3ρwxwyCwyCwx), (12)

and
MSE(tSY2) =

(
1

n
− 1

N

)
W̄y

2
(C2

wy
+ 4C2

wx
− 4ρwxwyCwyCwx), (13)

where θw3 = W̄xβ1(wx)

W̄xβ1(wx)+β2(wx)
.

Using known coefficient of variation and population mean square of the auxiliary variable, [12]
proposed some transformed ratio estimators given by

tSM1 = w̄y

(
W̄xβ1(wx) + Cwx

w̄xβ1(wx) + Cwx

)
, (14)

and
tSM2 = w̄y

(
W̄xβ1(wx) + Swx

w̄xβ1(wx) + Swx

)
. (15)

The bias and MSE of their estimators are given by

Bias(tSM1) =

(
1

n
− 1

N

)
W̄y

(
C2

wx

θ2w4

−
ρwxwyCwxCwy

θw4

)
, (16)

Bias(tSM2) =

(
1

n
− 1

N

)
W̄y

(
C2

wx

θ2w5

−
ρwxwyCwxCwy

θw5

)
, (17)

MSE(tSM1) =

(
1

n
− 1

N

)
W̄y

2
(C2

wy
+
C2

wx

θ2w4

− 2
1

θw4

ρwxwyCwyCwx), (18)

and
MSE(tSM2) =

(
1

n
− 1

N

)
W̄y

2
(C2

wy
+
C2

wx

θ2w5

− 2
1

θw5

ρwxwyCwyCwx), (19)

where θw4 = 1 +
Cwx

β1(wx)W̄x
and θw5 = 1 +

Swx
β1(wx)W̄x

.

In SRSWOR, [14] proposed a generalized exponential ratio estimator as follows

tSGSRS = ȳA
( X̄−x̄
X̄+x̄

) (20)

where A is any constant.

The bias and MSE of their estimator up to first order of approximation is

Bias(tSGSRS ) = fȲ (
C2

x

4
logeA+

C2
x

8
(logeA)

2 +
ρCxCy

2
logeA) (21)

and
MSE(tSGSRS ) = fȲ (C2

y +
C2

x

4
(logeA)

2 − ρCxCylogeA). (22)
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4 Proposed Efficient Exponential Ratio Type Estimators
Aim of this article is to propose highly efficient efficient exponential ratio type estimators of finite
population mean in the Adaptive Cluster Sampling design. Thus in this section we propose three
efficient exponential ratio type estimators as follows

i. First proposed estimator

Motivated by [9] and [10] we propose

t(1)p = rw̄yexp

(
W̄x − w̄x

W̄x + w̄x

)
(23)

where r is optimum scalar which minimises the MSE. In order to obtain the expressions of bias and
MSE, we re-write the above expression as

t(1)p = rW̄y(ewy + 1)exp

(
W̄x − W̄x(ewx + 1)

W̄x + W̄x(ewx + 1)

)
(24)

where
ewy =

w̄y

W̄y
− 1, ewx = w̄x

W̄x
− 1,

E(e2wx
) = 1−f

n
C2

wx
, E(e2wy

) = 1−f
n
C2

wy
,

and E(ewxewy ) =
1−f
n
ρwxwyCwxCwy .

Simplifying (4.2) we get

t(1)p = rW̄y(ewy + 1)exp

(
−ewx

2

(
1 +

ewx

2

)−1
)

(25)

Expanding and simplifying (4.3) we get

t(1)p = rW̄y(ewy + 1)exp

(
1− ewx

2
+

3

8
e2wx

)
. (26)

Further expanding and subtracting W̄y from both the sides we get

t(1)p − W̄y = rW̄y(1 + ewy − ewx

2
+

3

8
e2wx

− 1

2
ewxwwy )− W̄y (27)

Taking expectation on both sides in (4.5) we get

Bias(t(1)p ) = W̄y(r(1 +
3

8
fC2

wx
− 1

2
fρwxwyCwyCwx)− 1). (28)

Squaring and taking expectation on both sides of (4.5) we get

MSE(t(1)p ) = W̄y
2
(1 + r2A− 2rB) (29)

where A = 1+fC2
wy

+fC2
wx

−2fρwxwyCwyCwx , B = 1+ 3
8
fC2

wx
− 1

2
fρwxwyCwyCwx , and f = 1

n
− 1

N
.
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Differentiating the expression of MSE(t
(1)
p ) to obtain the optimum value of r that minimizes the

MSE, we get
ropt = B/A. (30)

Putting ropt in (4.7) we get

MSE(t(1)pmin
) = W̄y

2

(
1− B2

A

)
. (31)

ii. Second proposed estimator

Motivated by [14] we propose

t(2)p = (r1w̄y + r2(W̄x − w̄x))exp

(
W̄x − w̄x

W̄x + w̄x

)
(32)

where r1 and r2 are optimum scalars which minimizes the MSE. Following the same line of expansion
and simplification the expression of bias and MSE can be obtained. So we directly write

Bias(t(2)p ) = r1W̄y(1 +
3

8
fC2

wx
− 1

2
fρwxwyCwyCwx) +

1

2
r2W̄xfC

2
wx

− W̄y, (33)

MSE(t(2)p ) = W̄y
2
+ r21A1 + r22B1 − 2r1r2C1 − 2r1D1 − 2r2E1, (34)

where
A1 = W̄y

2
(1 + fC2

wy
+ fC2

wx
− 2fρwxwyCwyCwx),

B1 = W̄x
2
fC2

wx
,

C1 = W̄yW̄x(fρwxwyCwyCwx − fC2
wx

),

D1 = W̄y
2
(1 + 3

8
fC2

wx
− 1

2
fρwxwyCwyCwx) and

E1 = 1
2
W̄yW̄xfC

2
wx

. The optimum values of r1 and r2 upon partially differentiating (4.12) are

r1opt =
E1C1 +B1D1

A1B1 − C2
1

(35)

and
r2opt =

C1D1 +A1E1

A1B1 − C2
1

. (36)

Upon putting these values in (4.12), we get

MSE(t(2)pmin
) = W̄y

2
+ r21optA1 + r22optB1 − 2r1optr2optC1 − 2r1optD1 − 2r2optE1. (37)

iii. Third proposed estimator

Using the condition r1 + r2 = 1 we propose

t(3)p = (r∗w̄y + (1− r∗)(W̄x − w̄x))exp

(
W̄x − w̄x

W̄x + w̄x

)
(38)

where r∗ is optimum scalar which minimizes the MSE. To obtain the expressions of bias and
MSEmin replace r1 with r∗ and r2 with 1 − r∗ in (4.11) and (4.12) respectively. The expresions
obtained are

Bias(t(3)p ) = r∗W̄y(1 +
3

8
fC2

wx
− 1

2
fρwxwyCwyCwx) +

1

2
(1− r∗)W̄xfC

2
wx

− W̄y, (39)
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and

MSE(t(3)p ) = W̄y
2
+ r∗2A1 + (1− r∗)2B1 − 2r∗(1− r∗)C1 − 2r∗D1 − 2(1− r∗)E1. (40)

Differentiating (4.18) with respect to r∗ we get

r∗opt =
B1 + C1 +D1 − E1

A1 +B1 + 2C1
, (41)

where A1, B1, C1, D1 and E1 have been defined above. The expression of MSEmin is

MSE(t(3)pmin
) = W̄y

2
+ (A1 +B1 + 2C1)r

∗
opt − 2(B1 + C1 +D1 − EE1)r

∗ +B1 − 2E1. (42)

5 Simulation Study
In this section, we have conducted two simulation studies to demonstrate the performance of our
proposed estimators. The performance of the proposed estimators has been compared with similar
existing estimators discussed in this article. The comparison is made on the basis of the Relative
efficiency (RE) of all the estimators.
The first population is generated using the model

yi = 2xi + ei, (43)
where e ∼ N(0, xi) and the auxliliary variable X has been taken from [15]. The population generated
is presented in Fig. 1. The second population is generated from the model

yi = 4xi + ei, (44)
where e ∼ N(0, xi) and the auxliliary variable X has been taken from [15].

In simulation, the MSE is

MSE(ti) =
1

r

r∑
i=1

(ti − W̄y)
2, (45)

and the Relative root Mean Square Error is given by

RRMSE(ti) =
1

W̄y

√√√√1

r

r∑
i=1

(ti − W̄y)2, (46)

and the Relative efficiency is given by

RE =
V ar(tTh)

ti
, (47)

where r is the number of iteration which is 10,000 and ti are the appropriate estimators(tTh, CH1−2,
SY1−2 and SM1−2 respectively).

The following algorithm is used to conduct the simulation study:

1. Using the model in equation (5.1), the population of survey variable Y for population-1 is
generated.

2. Using the model in equation (5.2), the population of survey variable Y for population-2 is
generated.

3. Using sample sizes 150, 160, 170, 180 and 190 the sampling procedure of ACS is repeated
ten thousand times to calculate several values of all the estimators.

4. For each sample size, RRMSEs and REs are obtained for each estimator and are presented
(Tables 1-4).
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Fig. 2. Population-1(X,Y)

Fig. 3. Population-2(X,Y)

Table 1. Relative root Mean Square Errors of all estimators in case of population-1

n 150 160 170 180 190
tTh 0.214331122 0.203252508 0.193011579 0.183527467 0.174458709
tCH1 0.173992864 0.164645648 0.154472326 0.149125634 0.139566967
tCH2 0.194059993 0.18396917 0.172822758 0.166605784 0.156040613
tSY1 0.163904553 0.154996852 0.145544995 0.140436552 0.131482158
tSY2 0.163904553 0.154996852 0.145544995 0.140436552 0.131482158
tSM1 0.128674386 0.121538176 0.113991557 0.10996897 0.102718507
tSM2 0.118152045 0.111435287 0.104481203 0.100723783 0.094056815
t
(1)
p 0.115019327 0.108108108 0.101125875 0.097447332 0.090986531
t
(2)
p 0.042255998 0.038221988 0.034352569 0.032118096 0.028890699
t
(3)
p 0.042638413 0.038433746 0.03438799 0.032168597 0.028913165

Table 2. Relative root Mean Square Errors of all estimators in case of population-2

n 150 160 170 180 190
tTh 0.228246698 0.216329842 0.205872869 0.198002185 0.185571296
tCH1 0.196210273 0.184617196 0.175797429 0.168618971 0.158357147
tCH2 0.214279276 0.201975869 0.192117373 0.184617196 0.173267838
tSY1 0.189805407 0.178785702 0.170182704 0.163298415 0.153256646
tSY2 0.189805407 0.178785702 0.170182704 0.163298415 0.153256646
tSM1 0.15667543 0.146782206 0.140008688 0.13421269 0.12607087
tSM2 0.141264396 0.132224244 0.126838963 0.120337344 0.113541578
t
(1)
p 0.143250636 0.133553164 0.127602433 0.119601329 0.113541578
t
(2)
p 0.100330026 0.092069146 0.088149496 0.08256332 0.078921663
t
(3)
p 0.100417996 0.092069146 0.088349609 0.082776938 0.07893285
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Table 3. Relative efficiencies of all the estimators in case of population-1

n 150 160 170 180 190
tTh 1 1 1 1 1
tCH1 1.517426273 1.523952096 1.56122449 1.51459854 1.5625
tCH2 1.219827586 1.220623501 1.247282609 1.213450292 1.25
tSY1 1.709969789 1.719594595 1.75862069 1.70781893 1.76056338
tSY2 1.709969789 1.719594595 1.75862069 1.70781893 1.76056338
tSM1 2.774509804 2.796703297 2.866958151 2.785234899 2.884615385
tSM2 3.290697674 3.326797386 3.412639405 3.32 3.440366972
t
(1)
p 3.472392638 3.534722222 3.642857143 3.547008547 3.676470588
t
(2)
p 25.72727273 28.27777778 31.56808803 32.65145555 36.46441074
t
(3)
p 25.26785714 27.96703297 31.50308854 32.54901961 36.40776699

Table 4. Relative efficiencies of all the estimators in case of population-2

n 150 160 170 180 190
tTh 1 1 1 1 1
tCH1 1.353211009 1.373056995 1.371428571 1.378881988 1.373239437
tCH2 1.134615385 1.147186147 1.148325359 1.150259067 1.147058824
tSY1 1.446078431 1.464088398 1.463414634 1.470198675 1.466165414
tSY2 1.446078431 1.464088398 1.463414634 1.470198675 1.466165414
tSM1 2.122302158 2.172131148 2.162162162 2.176470588 2.166666667
tSM2 2.610619469 2.676767677 2.634467618 2.707317073 2.671232877
t
(1)
p 2.538726334 2.623762376 2.603036876 2.740740741 2.671232877
t
(2)
p 5.175438596 5.520833333 5.454545455 5.751295337 5.528777998
t
(3)
p 5.166374781 5.520833333 5.429864253 5.721649485 5.527210884

6 Conclusion
Proposed estimators t(1)p − t

(3)
p have been developed using only the known value population mean

of the auxiliary variable which in practice may be easily available. The proposed estimators have
been compared with similar existing estimators in the ACS design. It is evident (from Tables 1-4)
that the proposed estimators t(1)p − t

(3)
p resulted in lower RRMSE as compared to all the estimators

discussed in this article. It is observed that for each sample size, proposed estimator t(2)p resulted
in much higher relative efficiency as compare to proposed estimators t(1)p and t

(3)
p . It is due to the

fact that the proposed estimator t(2)p is developed using the condition r1 + r2 ̸= 1.

In this article, our aim was to develop some efficient exponential ratio type estimators of finite
population mean in the ACS design using a single auxiliary variable. We proposed three such
estimators and derived their expressions of bias and MSE up to the first order of approximation.
Further, their efficiency has been demonstrated by two simulation studies where the proposed
estimators have been compared with similar existing estimators in the ACS designs. From the
results tabulated in (Tables 1-4), it is clear that all the three proposed estimators t(1)p − t

(3)
p can be

used when the ACS design has to be applied to estimate the finite population mean but for higher
efficiency, it is recommended that proposed estimator t(2)p should be used.

Some lucrative future areas of research include extending these estimators in stratified adaptive
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cluster sampling and using multi-auxiliary information.
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