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Hepatocellular carcinoma (HCC) ranks the second most lethal tumor globally and is the
fourth leading cause of cancer-related death worldwide. Unfortunately, HCC is commonly
at intermediate tumor stage or advanced tumor stage, in which only some palliative
treatment can be used to offer a limited overall survival. Due to the high heterogeneity of the
genetic, molecular, and histological levels, HCC makes the prediction of preoperative
transarterial chemoembolization (TACE) efficacy and the development of personalized
regimens challenging. In this study, a newmulti-modal point-of-care system is employed to
predict the response of TACE in HCC by a concept of integrating multi-modal large-scale
data of clinical index and computed tomography (CT) images. This multi-modal point-of-
care predicting system opens new possibilities for predicting the response of TACE
treatment and can help clinicians select the optimal patients with HCC who can benefit
from the interventional therapy.
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INTRODUCTION

Liver cancer is the second most lethal tumor after pancreatic cancer and ranks the fourth leading
cause of cancer-related death worldwide (Craig et al., 2020; Villanueva et al., 2019; Tao et al., 2020).
In China, the 5-year survival rates have been reported to be 12% (Zheng et al., 2018). Hepatocellular
carcinoma (HCC), which is the most common form of liver cancer (∼90% of liver cancer), remains a
health challenge in the world (Llovet et al., 2021; Yu et al., 2020). In order to predict the prognosis of
patients with HCC, the Barcelona Clinic Liver Cancer (BCLC) staging classification, which is
approved by European Association for the Study of the Liver (EASL) and American Association for
the Study of Liver Diseases (AASLD), has emerged as the standard classification in recent years
(Llovet et al., 2008; Vitale et al., 2011; Yang et al., 2012). However, HCC is commonly at intermediate
tumor stage (BCLC stage B) or advanced tumor stage (BCLC stage C), in which only some palliative
treatment can be used to offer a limited overall survival (∼11–20 months) (Llovet et al., 2002; Hucke
et al., 2011; Sieghart et al., 2015). According to international guidelines, transarterial
chemoembolization (TACE) is the recommended treatment for Barcelona stage B patients with
localized liver disease and good liver function (Camma et al., 2002; Otto et al., 2006; Takayasu et al.,
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2006). However, HCC is highly heterogeneous at the genetic,
molecular, and histological levels, which makes the prediction of
preoperative TACE efficacy and the development of personalized
regimens challenging. Therefore, there are growing demands for
exploiting a method to accurately predict response of TACE in
HCC. Imaging setting, which included ultrasound, computed
tomography (CT), and magnetic resonance imaging (MRI), can
be a promising tool for the detection stage and risk assessment of
HCC (Banerjee et al. (2015);Woodall et al., 2007). Due to the high
sensitivity, worldwide availability, and easy interpretability, CT is
still the most commonly used in the field of response of TACE
therapy. The best response of TACE cannot always be achieved
after one session of CT imaging, especially for patients with large
tumors. However, multiple CT examinations can easily damage
the liver function of patients. Therefore, other clinical evaluation
indexes should be added to build a point-of-care predicting
system for improving the predicting accuracy of TACE
responses. Crucially, inflammation has been recognized as a
major role in the tumorigenic process for HCC. Recent studies
confirm that inflammation also plays a prognostic role in the
whole clinical process of malignancy (Sanghera et al., 2019;
Chan et al., 2020; Wang et al., 2021). A number of
inflammation-based indexes (IBIs) are derived from
peripheral blood counts for prognostic purposes, with
examples including neutrophil-to-lymphocyte ratio (NLR),
platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte
ratio (MLR), systemic immune-inflammation index (SII), and
neutrophil-to-lymphocyte ratio (SIRI) (Pinato et al., 2012;
Yang et al., 2020). Therefore, combined CT images with
inflammation-based indexes to predict postoperative
treatment responses and accurately identify patients who
responded after TACE is of important clinical guiding
significance. Recently, artificial intelligence (AI), which is
capable of maximizing the predictive accuracy from static or
dynamic data sources using analytic or probabilistic models,
has markedly extended the reach of human beings in
biomedical tasks (Esteva et al., 2017; Li et al., 2017;
Kermany et al., 2018; Li et al., 2018; Chang et al., 2019;
Zhang et al., 2020). Deep learning is especially recognized as
demonstrating good performance for assessing radiological and
recognizing images. Because of the multifactorial and complex
nature of HCC, the convolutional neural network of deep
learning algorithms has shown great potential in fully
mining image information. This approach does not need to
manually screen image features, and it shows good training
performance for high-dimensional data processing (Gulshan
et al., 2016; Peng et al., 2019; Liu et al., 2020). The texture
analysis based on contrast-enhanced pretherapeutic dynamic
CT may act as imaging biomarkers to predict response for
HCC. Higher gray-level co-occurrence matrix and smaller
tumor size are significant signs. However, the highest AUC
was only 0.72 (Park et al., 2017; Kermany et al., 2018). It is
necessary to find a new method to increase predicting accuracy
of TACE responses. Because of the multifactorial and complex
nature of HCC, building a deep learning point-of-care
predicting system to integrate multiple factors (e.g., CT
images and inflammation-based indexes) would appear to be

a highly effective technique to autonomously predict the
response of TACE therapy. In this paper, we aim to develop
a point-of-care system for predicting the response of TACE in
HCC by a concept of multi-modal large-scale data by
combining clinical indexes with CT images. This multi-
modal point-of-care predicting system opens new
possibilities for predicting the response of TACE treatment
and can help clinicians to select optimum patients with HCC
who can benefit from the interventional therapy.

MATERIALS AND METHODS

Patients
This study included patients in the Second Affiliated Hospital of
Harbin Medical University. A total of 1,890 patients who
underwent TACE were recruited from January 2011 to
September 2020. Finally, 399 patients were enrolled. The
patients who matched inclusion criteria were as follows: (1)
Patients were diagnosed as HCCs via biopsy or radiological
for the Study. (2) All patients did not have a history of
previous TACE of HCC before CT examination. (3) Those
who had hepatic-arterial CT imaging within 7 days before and
1 month after treatment. (4) Patients with BCLC stage B. The
exclusion criteria were as follows: (1) Those with a history of
previous TACE, liver transplantation, targeting therapy,
radiotherapy, and palliative care treatment. (2) Patients with
major thrombosis in portal vein or abdominal lymph node or
distant metastases. (3) Other liver tumors that were confirmed
with pathology or imaging. The response of hepatic-arterial CT
images was classified into objective response [containing
complete response (CR) and partial response (PR)] and non-
response [containing progressive disease (PD) and stable disease
(SD)] according to the modified Response Evaluation Criteria in
Solid Tumors (mRECIST).

CT Scan Protocols and Region-of-Interest
Segmentation
Contrast-enhanced computed tomography (CECT) was
performed with a 64-detector row scanner CT machine (GE
Healthcare, United States). The scanning parameters were as
follows: tube current, 250 mA; tube voltage, 120 kV; and slice
thickness, 5 mm. Contrast agent (Ultravist, Bayer, Germany) for
CECT was injected through a pump injector at a rate of 3.0 ml/s
from the antecubital vein. Hepatic-arterial phase CT images were
obtained at 35 s. All CT images were input into the Dr. wise AI
software (Deepwise Inc., China). The regions of interest (ROIs)
were delineated manually by two senior radiologists who had
15 years experience (reader 1, Prof. Huijie Jiang) and 13 years
experience (reader 2, Prof. Jinling Zhang). The entire cohort
included 399 patients who were randomly divided into a training
dataset (319 cases) and validation dataset (80 cases) by a ratio of 8:
2. The validation dataset evaluated the accuracy of the training
dataset. The ROIs of CT images from the training cohort and the
validation cohorts were manually segmented by the two readers
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who were specifically blinded to the therapy outcome of the
patients.

Image Analysis and Preprocessing
All CT original images were reconstructed using a post-
processing workstation to achieve uniform slice thickness and
input the reconstructed image into Deepwise software to
delineate the ROIS. We saved one CT image and the
corresponding mask of ROIs for each patient from the largest
tumor area in hepatic-arterial phase CT images. ROI was

delineated around the largest tumor area selected by transverse
and sagittal observations, and the ROI area was outlined close to
the edge of the tumor. A total of 319 patients were used as the
training set and 80 patients were used as the validation set.
Random image cropping and patching (RICAP) were
employed for data augmentation for deep convolutional neural
network training (Takahashi et al., 2018). The details are as
follows: RICAP cropped new training CT images randomly
from the original CT images and patched them to compose
new training CT images set. Using this method, 5,460 patches

FIGURE 1 | Schematic of multi-modal point-of-care predicting system. (A) Schematic of point-of-care system to predicting the response of TACE in HCC by
integrating multi-modal large-scale CT imaging and clinical evaluation indexes. (B) The architecture of GhostNet and deep learning model flowchart.
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were used to construct the new training set. In order to enhance
the generalization ability of the model, the RICAP-based data
augmentation was used in real time.

Deep Learning Convolutional Neural
Network
GhostNet is an improved deep convolution neural network
developed by Huawei Noah Ark Laboratory (Han et al., 2020;
Paoletti et al., 2021). A GhostNet is a type of convolutional neural
network that is built using Ghost modules, which aim to generate
more features by using fewer parameters (allowing for greater
efficiency). The architecture of GhostNet and the flowchart of
deep learning for CT images are shown in Figure 1B. There
are two important constituent concepts in the GhostNet. One
is the Ghost module that can generate more feature maps from
cheap operations. Through a series of linear transformations,
ghost module can generate many ghost feature maps that can
fully reveal the information behind the intrinsic features at a
low computational cost. Another important concept is the
Ghost bottleneck, which is designed to stack Ghost modules.
The Ghost bottleneck appears to be the basic block in
Ghostnet in which several convolutional layers and
shortcuts are integrated. In general, the ghost bottleneck
consists of two stacked Ghost modules. The first Ghost
module expands the number of channels and the second
Ghost module reduces the number of channels to match
the shortcut path. Then, there is shortcut connected
between the inputs and the outputs of these two Ghost
modules. After each layer, the ReLU nonlinearity and batch
normalization (BN) are applied, except that ReLU is not used
after the second Ghost module. GhostNet mainly consists of a
stack of Ghost bottlenecks that consist of the Ghost modules
as the building block. Here, we clearly explain the meaning of
the parameters of “G-bneck a, b, c, d” in the figure. The
G-bneck denotes Ghost bottleneck, the first parameter “a”
means expansion size, “b” means the number of output
channels, “c” denotes whether using SE module, and “d”
denotes the stride. The first layer is a standard
convolutional layer with 16 filters and then a series of
Ghost bottlenecks with gradually increased channels
connected in turn. According to the sizes of their input
feature maps, these Ghost bottlenecks are grouped into
different stages, and all the Ghost bottlenecks in each stage
are applied with stride � 1 except that the last one is with stride
� 2. At the end of the Ghostnet, the global average pooling (7 ×
7) and the convolutional layer are utilized to transform the
feature maps to a 1,280-dimensional feature vector for final
classification. In the Ghostnet, some ghost bottlenecks also
contain the squeeze and excite (SE) module. However, there is
no hard-swish nonlinearity function due to its large latency,
which is different from the MobileNetV3.

Implementation Details
Our implementation was based on the package for the Ghostnet
Network in python (version 3.7.1). Our training experiments

were performed in a Windows 10 environment on a computer
server with the following specifications: CPU Intel Xeon
Processor Platinum 8124 M at 3.00 GHz, GPU NVIDIA RTX
3060, and 128 GB RAM.

Statistical Analysis
Statistical analyses were performed with R statistical software (R
Core Team, 2018) and Origin 9.1 (OriginLab Corporation,
United States). Categorical variables were described as
frequency (percentage), use Ghostnet to perform 50 iterations
on the data, and finally calculate the AUC value (95% confidence
interval). The performance of the prediction model was evaluated
with the area under the receiver operating characteristic (ROC)
curve, and the confusion matrices were plotted in validation
cohorts to calculate the accuracies of estimating the response of
TACE therapy.

RESULTS

Multi-Modal Point-of-Care Predicting
System
In order to predict the response of TACE for HCC therapy, we
developed a point-of-care system by a concept of integrating
multi-modal large-scale data of CT imaging and clinical indexes
(Figure 1A). This artificial intelligent predicting system could be
divided into two parts: the computed tomography image-based
predicting response of TACE and the clinical index-based

TABLE 1 | Participant characteristics in the training and validation cohorts.

Characteristic Training
cohort (n = 319)

Validation
cohort (n = 80)

Age (years)
≤60 211 (66.3%) 45 (56.5%)
>60 108 (33.7%) 35 (43.5%)

Sex
Male 232 (72.8%) 55 (69.0%)
Female 87 (27.2%) 25 (31.0%)

HBsAg status
Positive 289 (90.5%) 77 (95.6%)
Negative 30 (9.5%) 3 (4.4%)

Child–Pugh classification
A 248 (77.9%) 64 (79.67%)
B 71 (22.1%) 16 (21.33%)

ALT (U/ml)
≤40 173 (54.2%) 52 (64.7%)
>40 146 (45.8%) 28 (35.3%)

AST (U/ml)
≤40 105 (32.9%) 24 (30.3%)
>40 214 (67.1%) 56 (69.7%)

AFP (ng/ml)
≤20 152 (47.5%) 40 (50.3%)
>20 167 (52.5%) 40 (49.7%)

Hepatocirrhosis status
Present 195 (61.0%) 44 (54.9%)
Absent 124 (39.0%) 36 (45.1%)

Response to therapy
Objective response 184 (57.7%) 50 (62.5%)
Non-response 135 (42.3%) 30 (37.5%)
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evaluation of HCC therapy. The GhostNet, which was developed
by Huawei Noah Ark Laboratory, was employed as a deep
learning score for predicting the response of patients with
HCC after treatment. The architecture of GhostNet and the
flowchart of deep learning for CT images are shown in
Figure 1B. The GhostNet consisted of two important
constituent concepts. Firstly, the Ghost module could generate
more feature maps from cheap operations. Secondly, the Ghost
bottleneck was designed to stack Ghost modules. More details can
be seen in Materials and Methods.

Patients Clinical Characteristics
Our retrospective study had been approved by the institutional
review board and Ethical Committee (KY 2019-217). Finally, 399
patients with HCC were enrolled in this study: 319 patients and
80 patients were allocated to the training cohort and validation
cohort, respectively. Table 1 listed the detailed clinical
characteristics of the two cohorts. In the training cohort, the
age of 108 (33.7%) patients was more than 60 years, 87 (27.2%)
were female patients, 289 (90.5%) of the patients were diagnosed
with hepatitis B virus, patients with AST and ALT over 20 U/ml
were 214 (67.1%) and 146 (45.8%), respectively. Patients with
abnormal AFP were 167 (52.5%). Similarly, hepatitis B virus
positive in the validation cohort was 77 (95.6%); patients with

higher than normal AST, ALT, and AFP were 56 (69.7%), 28
(35.3%), and 40 (49.7%), respectively. As can be seen, no
significant differences were observed between the training
cohorts and validation cohorts in the clinical database.

Classification of the TACE Therapy
Response
Four typical CT images with different TACE responses from the
validation cohort are shown in Figure 2. According to the
mRECIST standards, the responses of patients after TACE
treatment could be divided into two groups: the objective
response and non-response. The objective response was defined
as the tumor disappearance or the tumor area and corresponding
cross-sectional diameter decreased at least 30%. After the TACE
therapy, the cross-sectional diameter gradient of tumor of patients 1
and 2 were 43.9% (from 38.2 to 21.3 mm) and 40.7% (from 31.6 to
12.8 mm), respectively. Therefore, patients 1 and 2 were the typical
objective response. The non-response was defined as the tumor area
and corresponding cross-sectional diameter decreased less than
30% or the tumor progressed. Patients 3 and 4 belonged to the non-
response. As can be seen, the cross-sectional diameter of tumor of
patient 3 decreased from 32.5 to 30.7 mm (∼5.5%). Especially for
patient 4, the cross-sectional diameter showed an increased trend

FIGURE 2 |CT images were collected 7 days before treatment and 1 month after treatment, respectively. Themeasurement range was the longest diameter of the
enhanced lesion in the tumor area. The tumor area of validation cohort with HCC of TACE therapy is shown in the red box.
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(from 11.8 to 20.3 mm). In addition, a new tumor lesion occurred in
the bottom of the left lobe of liver.

Training and Validation of the Point-of-Care
Predicting System
The training cohort was augmented through the way of RICP to
avoid data overfitting. In order to increase the robustness of the
model, an improved deep convolution neural network (GhostNet)
was used for data training. As shown in Figures 3A,B, the accuracy
of the improved deep learning model was approximately 98% and
the cross-entropy loss was close to 0.4 after training (∼50 training

epoch). These results indicated that the improved deep learning
model showed good performance on distinguishing the response of
TACE therapy in these cohorts.

In order to evaluate the training effect of the GhostNet based
improved deep learning model, the AUC of the receiver operating
characteristic curve was calculated. As shown in Figure 4A, the
AUC of the deep learning model was about 0.98. The predictive
accuracy of the deep learning model in each patch by confusion
matrix after 50 epochs training was also investigated. The number
of true-positive (TP) patches, false-positive (FP) patches false-
negative (FN) patches, and true-negative (TN) patches were 30, 2,
0, and 48, respectively as shown in Figure 4B. Hence, the
precision, F1 score, and accuracy were 0.94, 0.97, and 0.98,
respectively. These results indicated that the improved deep
learning model could increase the robust accuracy of
predicting the TACE response.

IBI-Based Predicting of TACE Response
The best response of TACE could not always be achieved after one
session of CT imaging, especially for patients with large tumors. In
addition, theCT image could not be achieved frequently due to damage
of ionizing radiation on the patients. Therefore, other evaluation
clinical indexes should be added to this model for efficiently
predicting the response of TACE therapy. Recent studies confirmed
that IBI also plays a prognostic role in the whole clinical process of
malignancies. Figure 5 illustrates the boxplot of the clinical evaluation
indexes. As can be seen, the box and median of objective response for
NLR was extremely larger than that of non-response. Hence, SIRI had
significant association with the response relation of TACE. Other
clinical evaluation indexes had a certain correlation with the response
relation. All the p values of the factors are less than 0.05. It presented
that there are significant differences between the evaluation values of
the six factors in response and non-response.

To further investigate the correlation of clinical evaluation indexes
with TACE therapy, the thermodynamic diagram was also achieved
by statistical analysis. Figure 6 shows the association between the IBI
and the objective response and non-response. Create a dummy
variable for the reaction variable, and then the correlation was
calculated; 1 represented the objective response. According to the
correlation coefficient thermodynamic diagram, among the six

FIGURE 3 | Training and validation processes of the deep learning
model based on the CT images. (A) The accuracies of training and validation
cohort via the ghost network model were approximately 98.0%. (B) The final
training and validation losses were close to 0.4.

FIGURE 4 | Receiver operating characteristic curve and confusion matrix of validation cohort for the ghost network. (A) The AUC value of the ROC was used to
evaluate the training effect of the model. (B) The accuracy of the ghost model in image classification was evaluated by the obfuscation matrix.
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factors, all factors had a certain correlation with the response relation,
among which SIRI had a significant association with a correlation of
0.53, and AFP had no significant association with the response
relation with a correlation of 0.16. Among them, PLR had a
significant association. Hence, SIRI and PLR could be used to
predict the response of TACE therapy.

DISCUSSION

In this study, we demonstrated a new artificial intelligent point-
of-care multi-modal system for predicting the response of TACE
therapy on patients with HCC. Based on integrating the multi-
modal data of CT images and IBI, an improved deep learning
model was employed to formulate precisely the interventional
treatment plan for HCC (especially for patients at intermediate
tumor stage or advanced tumor stage).

According to international guidelines, the TACE was
recommended as the optimal treatment for patients with HCC at
the intermediate tumor stage. The response of TACE therapy was
crucial for clinicians to accurately identify patients who responded

after TACE. Recent studies showed that CT imaging setting could be
a promising tool for the detection, stage, and risk assessment of HCC
(Woodall et al., 2007; Banerjee et al., 2015). In our study, 399 patients
with HCC who underwent TACE had preoperative and
postoperative CT enhanced images and clinical information, were
enrolled to training a new deep learning model for predicting the
response of TACE before operation. Using the random image
cropping and patching method, 5,460 patches, which were
cropped and patched from the original CT images, were used to
construct a new training set. The accuracy of the improved deep
learningmodel was approximately 98.0%, and the cross-entropy loss
was close to 0.4. These results indicated that the improved deep
learningmodel showed a good performance on the distinguishing of
the response of TACE therapy in these cohorts.

However, CT was inapplicable for suspicious recurrence or
atypical image. In addition, the CT images could not be achieved
frequently due to damage of ionizing radiation on patients.
Hence, it was necessary to find other clinical indexes
combined with CT images for TACE response prediction. The
included inflammation indexes (such as the NLR, MLR, PLR, SII,

FIGURE 5 | The boxplot analyzed the relationship between reactive and nonreactive values for clinical evaluation indexes of NLR (A), AFP (B), SIRI (C), SII (D), MLR
(E), and PLR (F).
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and SIRI) and AFP, which were derived from peripheral blood
counts (e.g., neutrophil, lymphocyte, and platelet) and acute-
phase proteins [e.g., C-reactive protein (CRP) and albumin],
represented enabling tumor characteristics. Hence, task
challenge remained about how to preferably integrate multi-
modal data such as clinical index and CT images into an
artificial intelligent system that enabled patients’ outlook to be
predicted accurately. The studies showed that SIRI and PLR are
significantly correlated with the response of TACE therapy.

We showed that this artificial intelligent point-of-care
system integrating multi-modal data of CT images, SIRI, and
PLR could be used for precisely predicting the response of the
patients with HCC. However, our study has several limitations.
First, this was a retrospective research. Second, multi-center
prospective data will be collected for external verification of
GhostNet performance in the following study. In the future, we
would apply other feature selection techniques and clinical
indexes (such as genes and proteins) to further improve the
accuracy of diagnosis of HCC.

CONCLUSION

In summary, a new artificial intelligent point-of-care multi-modal
system based on CT images and clinical evaluation indexes would
potentially serve as a new tool for predicting the response of
TACE therapy on patients with HCC. The accuracy of this
artificial intelligent system was approximately 98.0%, and the
cross-entropy loss was close to 0.4. In addition, SIRI and PLR had
a significant association with the responses of TACE therapy.
These results indicated that this system showed a good
performance on distinguishing the response of TACE therapy.
This multi-modal point-of-care predicting system opened new
possibilities to help clinicians select optimum patients with HCC
who could benefit from the interventional therapy.
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