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Abstract 
The SIR(D) epidemiological model is defined through a system of tran-
scendental equations, not solvable by elementary functions. In the present 
paper those equations are successfully replaced by approximate ones, whose 
solutions are given explicitly in terms of elementary functions, originating, 
piece-wisely, from generalized logistic functions: they ensure exact (in the 
numerical sense) asymptotic values, besides to be quite practical to use, for 
example with fit to data algorithms; moreover they unveil a useful feature, 
that in fact, at least with very strict approximation, is also owned by the (nu-
merical) solutions of the exact equations. The novelties in the work are: the 
way the approximate equations are obtained, using simple, analytic geometry 
considerations; the easy and practical formulation of the final approximate 
solutions; the mentioned useful feature, never disclosed before. The work’s 
method and result prove to be robust over a range of values of the well known 
non-dimensional parameter called basic reproduction ratio, that covers at 
least all the known epidemic cases, from influenza to measles: this is a point 
which doesn’t appear much discussed in analogous works. 
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1. Introduction 

The SIR model [1]-[6] is a simple compartmental model of infectious diseases 
developed by Kermack and McKendrick [1] in 1927. It considers three com-
partments: 

S, the set of susceptible individuals; 
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I, the set of the infectious (or currently positive) individuals, who have been 
infected and are capable of infecting susceptible individuals; 

R, the set of the removed individuals, namely people who recovered (healed, 
H subset) from the disease or deceased due to the disease (D subset), the former 
assumed to remain immune afterwards. 

The SIR model does not consider at all the sub-compartments H and D; in-
stead the SIRD model simply assumes them to constitute a partition of R, frac-
tionally fixed over time, so that, actually compared to the SIR model, nothing 
substantially changes in the dynamics of the epidemic progression. 

It is assumed that births and non-epidemic-related deaths can be neglected in 
the epidemic timescale and that the incubation period is negligible, too. Indicat-
ing with letters not in bold the cardinality of each of the compartments, it is 
taken 

( ) ( ) ( )0 0 0 ,S t I t R t N+ + =                     (1) 

where 0t  is an initial time, usually with ( )0 0R t = . 
The model introduces two parameters, β and γ, having dimension of a fre-

quency. Saying t the time variable, γ is defined as the fractional removal rate 
( )( )1 d dI R t  of individuals from the infectious compartment. Since SI is un-
derstood as the number of possible contacts among the infectious and the sus-
ceptible individuals, β/N is defined as the fractional decrease rate ( ) ( )1 d dSI S t−−  
of the number of individuals in the susceptible compartment: it expresses there-
fore the fractional increment rate of the number of infectious individuals, that is 
the increment rate of the infectious compartment I, after subtraction of the rate 
of people entering the removed compartment R. 

Usually one introduces the following non-dimensional variable and new func-
tions: 

( ) ( ) ( ) ( ) ( ) ( )
: , : , : , : , : ,

S t I t R t
x t s x i x r x

N N N
βα γ
γ

= = = = =       (2) 

α  called basic reproduction ratio. Then the basic equations given by Kermack 
and McKendrick [1] are written as 

( ) ( ) ( )d
d

s x i x s x
x

α= −                       (3a) 

( ) ( ) ( )( )d 1
d

i x i x s x
x

α= −                     (3b) 

( ) ( )d
d

r x i x
x

=                          (3c) 

with 
( ) ( ) ( ) ( ) ( ) ( )0 0 0 1,s x i x r x s x i x r x+ + = + + =              (4) 

and 

( ) ( ) ( )0 0 0 0 0 0: , : , : 0.s s x i i x r r x= = = ≡                (5) 

Using Equation (3c) in Equation (3a) and formally integrating, one gets 
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( ) ( )
0e r xs x s α−= ; using this and Equation (3c) again, from Equation (3b) one eas-

ily finds ( ) ( ) ( )01 e r xi x s r xα−= − − ; then from Equation (3c) she/he will obtain 

( ) ( ) ( )0
d 1 e .
d

r xr x s r x
x

α−= − −                      (6) 

This is a transcendental equation, whose solutions one cannot give explicitly 
in closed analytic form by elementary functions. In their original paper Kermack 
and McKendrick themselves [1] gave approximate solutions, however without 
any exhaustive discussion of applicability for various values of the basic repro-
duction ratio. Quite recently various authors have approached the problem in 
different ways, but with the same incompleteness [7] [8] [9] [10] [11]. In the se-
quel, on the basis of simple, analytic geometry considerations, a novel method is 
introduced, producing approximate but accurate solutions, given explicitly, 
piece-wisely, from generalized logistic function (see [12] for a description of the 
origin of the logistic function and its adoption in bio-assay); due attention is 
paid for the method to be robust over the whole range of possible known values 
of α , from just above 1 as for influenza, to 1.4 - 3.9 as for Covid-19, to 3 - 5 as 
for SARS, to 5 - 7 as for polio, to 10 - 12 as for varicella, to 12 - 18 as for measles 
(see for instance [13] and references therein). 

2. Getting the Key Differential Equation 

For the epidemic to spread, the increment rate of the newly infectious individu-
als must be higher than the increment rate of the newly removed individuals. 
Dividing Equation (3a) by Equation (3c), one finds that it must be 

( ) ( )d1 .
d

s t s t
r

α< − =                         (7) 

As a matter of fact this condition implies that ( )i t  increases over time due to 
Equation (3b). The functions ( )s x , ( )i x  and ( )r x  are all defined positive 
and less or equal to 1; consequently it must be 1α >  for the epidemic to spread 
and ( )s x  turns to be monotonic decreasing according to Equation (3a), while 
( )r x  monotonic increasing according to Equation (3c). It follows that the func-

tion ( )i x  starts growing due to (7), reaching necessarily a maximum at a time 

M Mt x γ=  such that 

( ) 1,Ms xα =                            (8) 

then asymptotically decreasing to zero. This implies that the bounded monoton-
ically increasing function ( )r x  must exhibit a point of inflection at Mt , after 
which it bends, increasing slower and slower, finally flattening to some limiting 
value 

( ) 1.r r∞ ≡ +∞ ≤                          (9) 

So one must have 

( ) 0
d0 lim 1 e ,
d

r

x

r x s r
x

α ∞−
∞→+∞

= = − −                   (10) 
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thus getting a transcendental equation for r∞ . 
Conveniently for the following developments, a new function is introduced, 

namely 

( ) ( )
01 e ,r xw x s α−= −                        (11) 

in terms of which Equation (6) is re-written as 

[ ]d ,
d
w F w
x
=                          (12a) 

[ ] ( ) ( ): 1 ln 1 ,F w w w wα= − + + −                  (12b) 

( ) ( )0 0ln ln 1 .s i= − = − −                    (12c) 

Clearly 

( ) 0ˆ : lim 1 e r

x
w w x s rα ∞−

∞→+∞
= = − =                  (13) 

must be solution of the equation 

[ ]ˆ 0,F w =                           (14) 

for Equation (10) and the fact that 

( )
0

d de ,
d d

r xw rs
x x

αα −=  

so that 

d d0 0.
d d
w r
x x
= ⇔ =  

The functional [ ]F w  is null in 1w = , but ŵ  cannot be 1 because 
( )0 1r x≤ ≤  and 0s  is not null (see Equation (11)); thus ŵ  must be solution 

of the equation 

( )ˆ ˆln 1 0,w wα+ + − =                      (15) 

which is nothing but Equation (10), as can be easily verified. Equation (15) is 
transcendental and is to be solved numerically; the interval [ ]ˆ0, w  is the range 
of ( )w x  as x runs from 0x  to +∞ . 

The second derivative of F, namely 

[ ]
2

2

d 12
1d

F w
ww

α= − +
−

                    (16) 

starts and remains negative from 0w = , until it reaches the point of inflection 

f lxw , given by 

11 ;
2f lxw
α

= −                         (17) 

then it becomes positive: thus [ ]F w  starts and remains concave until f lxw w= ; 
then it becomes convex. Of course, in an interval around its inflection point, 
[ ]F w  is nearly straight. Figure 1 shows how ŵ  and f lxw  vary as a function 

of α : for cr 1.75α α<   one has ˆ f lxw w<  and consequently [ ]F w  is always 
concave in the domain [ ]ˆ0, w ; otherwise it changes from concave to convex 
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Figure 1. Point of inection and ŵ  as a function of α . 

 
after f lxw w= . It is worth noting that as α  increases, ŵ  (together with f lxw ) 
approaches more and more the limiting value 1, namely a region where the log 
term in [ ]F w  becomes important: this fact is relevant here because such log 
term, with its argument approaching zero, rises complications in searching for 
an effective approximation. 

3. Approximating the Key Differential Equation 

The idea is to approximate [ ]F w  by few stretches of up to second order poly-
nomials, joining continuously each other with the first derivative. Then in each 
stretch the obtained approximate differential equation becomes analytically and 
explicitly solvable by a generalized logistic function. For 1w , it is taken 

( ) ( ) 11 ln 1 1 ,
2

w w w w − − ≈ − − 
 

                  (18) 

so that 

( ) ( ) [ ]12d 11 .
d 2
w w w F w
x

α α ≈ + − − − − = 
 

              (19) 

Figure 2 shows on the left, in red, this ( ) [ ]1F w  segment against [ ]F w  (black 
curve) for 2.74α =  and (consequently) ˆ 0.92w , extending to its maximum 
point, which is rather close to the maximum of [ ]F w . Clearly ( ) [ ]1F w  is a 
parabola with axis along the ordinate line, so that the maximum is its vertex. 

Denoting by ( )1
1w  and ( )1

2w  the roots of ( ) [ ]1F w , one can write 
( ) [ ] ( )( ) ( )( )1 1 1

1 2 ,F w A w w w w= − − −                 (20a) 

1: ,
2

A α= −                          (20b) 

with 

( ) ( ) ( )2
1

1 2

1 1 2 2 1
.

2 1
w

α α α
α

− − ± − − + −
=

−

  
             (21) 

The vertex is located in 
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( ) ( )1 1
1 2 .

2M
w ww +

=                         (22) 

A new parabola is chosen as the second approximation stretch, tangent to 
[ ]F w  on its descending side, with axis along the ordinates and the vertex coin-

cident with that of the first segment ( ) [ ]1F w : 
( ) [ ] ( )( ) ( )( )2 2 2

1 2 ,F w Z w w w w= − − −                (23a) 

( ) ( ) ( ) ( )1 1 2 2
1 2 1 2 ,

2 2M
w w w ww+ +

= =                  (23b) 

( )( ) ( )( ) ( )( ) ( )( )1 1 2 2
1 2 1 2 ,M M M MA w w w w Z w w w w− − − = − − −        (23c) 

( ) [ ] [ ]2 ,F w F w=                        (23d) 

( )
( ) ( )

2

.F Fw x w x
w w

δ δ
δ δ

=                         (23e) 

Equations (23b) and (23c) impose that the two stretches have in common 
their vertexes, located in Mw w= ; the system of the last two equations states the 
conditions for ( ) [ ]2F w  to be tangent to [ ]F w . It is convenient expressing 
Z  , appearing in Equation (23c), in terms of the unknown tangency point w  
using Equation (23e), so that consequently one solves Equation (23d) for w . 

Namely, introducing 

( )
( ) ( )1 1

1 1 2: ,
2

w wwδ −
=                       (24a) 

( )
( ) ( )2 2

2 1 2: ,
2

w wwδ −
=                      (24b) 

due to Equation (23c) one can write 

( )( ) ( )( )2 22 1 ,Z w A wδ δ=                     (25) 

while from Equation (23e) and Equation (23d) one has 

( ) ( ) ( ) ( )( )22 11 ln 1 ,Mw w w Z w w A wα δ − + + − = − − + 
         (26a) 

( )
( )

1 2 ln 1
.

2 M

w w
Z

w w

α α+ + + − −
=

−

 





               (26b) 

Using this expression for Z   in Equation (26a), one obtains a transcenden-
tal ordinary equation for w , to be solved numerically: 

( ) ( )( ) ( )

( ) ( )

212 1 2 2 1

2 ln 1 0.

M M

M

w A w w w

w w w

α δ α α+ − − − + − − +

+ − − − =



 

  
        (27) 

Using w  so obtained, one gets Z   from Equation (26b) and finally ( )2
1w  

and ( )2
2w  via Equation (25) and Equation (23b). In Figure 2, on the left, the 

second segment for 2.6α =  is shown in blue, extending from Mw  to the point 
of tangency of the successive approximation segment still to be chosen. 

https://doi.org/10.4236/am.2021.121005


I. Lazzizzera 
 

 

DOI: 10.4236/am.2021.121005 64 Applied Mathematics 
 

 
Figure 2. Examples of two cases, with three approximation stretches on the left (red, blue, green) and four approximation 
stretches on the right (red, blue, green, magenta). 

 
With reference to the discussion before the end of Section 2, it should be 

noted that [ ]F w  remains concave up to ˆw w=  when crα α≤ , while it hap-
pens that the root ( )2

1w  of ( ) [ ]2F w  (see Figure 3) remains very close to ŵ : 
this suggests in that range of α  values replacing the above ( ) [ ]2F w  by a dif-
ferent arc of parabola ( ) [ ]2f w , keeping its vertex in common with ( ) [ ]1F w  as 

( ) [ ]2F w  does, but just ending in ŵ , thus imposing the constraint ( )2
1 ˆw w=  

instead of the tangency to [ ]F w . 
Then for crα α≤  

( ) [ ] ( )( ) ( )( )2
1 2 ,f ff w Z w w w w= − − −                  (28a) 

( ) ( ) ( ) ( )1 1
1 2 1 2 ,

2 2

f f

M
w w w ww+ +

= =                   (28b) 

( )( ) ( )( ) ( )( ) ( )( )1 1
1 2 1 2 ,f f

M M M MA w w w w Z w w w w− − − = − − −       (28c) 

( )( )
( )

21

2

1 ,
2 ˆ M

w
Z

w w

δ
α = − 
  −

                    (28d) 

( ) ( ) ( )
1 2ˆ ˆ ˆ, 2 , .f f f

M Mw w w w w w w wδ= = − = −            (28e) 

For cr 6α α< ≤  [ ]F w  is almost always concave, ending roughly as a straight 
line when approaching ŵ . In this range of α’s one keeps ( ) [ ]2F w , but com-
pletes the approximation through a new parabola, requiring it to be tangent to 

( ) [ ]2F w  and to reach ŵ  along the tangent to [ ]F w  in ŵ ; an alternative is 
the ray originating in ŵ , tangent to ( ) [ ]2F w . The latter is settled by 

[ ] ( )ˆ: 2 ,L w uZ w w= − −                     (29a) 

[ ] ( ) [ ] [ ] ( ) [ ]( ){ }2 20 0 ,' L w F w L w F w∋ − = ∧ ∆ − =        (29b) 
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Figure 3. ( )2
1w  and ŵ  as functions of α . 

 
where [ ] ( ) [ ]( )2L w F w∆ −  is the discriminant of the second order algebraic equa-
tion [ ] ( ) [ ]2 0L w F w− = , set to zero to assure [ ]L w  to be tangent to ( ) [ ]2F w . 
The appropriate solution for u is 

( ) ( )( )22 2ˆ ˆ .M Mu w w w w wδ− = − − − −                (30) 

The problem with this approximation is that, looking for instance at the func-
tion ( )r x  obtained from ( )w x , it gets unacceptably overestimated in the re-
gion where it bends to reach the asymptotic value as x → +∞ : this is because 
[ ]L w  necessarily remains below [ ]F w  due to the concavity of the latter. 
The quadratic alternative is defined by 

( ) [ ] ( ) ( )23 ˆ ˆ: 2 ,F w w w w wλ σ= − − + −                (31a) 

( ) [ ]( ) ( )2

ˆ

ˆ1 1
,

2w w

w
F w

α
λ

=

− −′= =                 (31b) 

( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ]( ){ }3 2 3 20 0 ,' F w F w F w F w∋ − = ∧ ∆ − =       (31c) 

where “prime” stands for derivative and ( ) [ ] ( ) [ ]( )3 2F w F w∆ −  is the discrimi-
nant of the second order algebraic equation ( ) [ ] ( ) [ ]3 2 0F w F w− = , set to zero so 
to assure ( ) [ ]3F w  to be tangent to ( ) [ ]2F w . In this case, however, with respect 
to using [ ]L w , one has the opposite effect on ( )r x , because the given choice 
for λ  forces ( ) [ ]3F w  to stay somewhat above [ ]F w . 

The solution is to keep the quadratic alternative, but replacing the previous 
value of λ  by a compromise one, defined through 

( )( )
( ) ( )arctan 2 arctan 2

: tan arctan 2 tan .
2

u Zλ
λ λ −

 − − −
 = − +
 
 





      (32) 

Then the parameter σ  in (31a) is set by means of the condition (31c): 
2

2 ,
ˆ ˆ2

Z h g
wg h Z w

σ −
=

− −



                       (33a) 
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( ) ( )2 2
1 2 ˆ, 2 ,Mg Z w h Z w w wλ λ= + = +                 (33b) 

ˆ
,w gw

Z
σ
σ

+
=

+


                           (33c) 

where w  is the tangency point of ( ) [ ]3F w  to ( ) [ ]2F w . 
So, for cr 6α α< ≤  the third and last approximation segment is given by 

(31a), with λ  replaced by λ  , extending from w  to ŵ . 
For 6w >  the convexity trait of [ ]F w , following the almost straight stretch 

around flxw , gets more and more included in the domain [ ]ˆ0, w , because ŵ  
increases with α . Then, the solution adopted is to introduce a linear segment 
[ ]T w  parallel to the tangent in flxw  to [ ]F w  and tangent to ( ) [ ]2F w  in a 

point that will be denoted w ; this linear segment will be continued by a new 
parabola ( ) [ ]4F w , which is similar to ( ) [ ]3F w , thus ending in ŵ , but tangent 
to [ ]T w . Namely 

[ ] : 2 ,T w fw I= − +                          (34a) 

[ ] ( )2 : ln 2 ,
flxw w

f F w α α
=

′− = = − −                 (34b) 

[ ] ( ) [ ] [ ] ( ) [ ]( ){ }2 20 0 ,' T w F w T w F w∋ − = ∧ ∆ − =         (34c) 

giving 
( )( )222 2

MI Z w w wδ = − +  




                    (35a) 

.M
fw w

Z
= +






                        (35b) 

Then the ( ) [ ]4F w  approximation stretch, constrained to end in ŵ  and to 
be tangent to [ ]T w  in a point uw  chosen by trial and error optimization, is 
given by: 

( ) [ ] ( ) ( )24 u uˆ ˆ: 2 ,F w w w w wλ σ= − − + −               (36a) 

( )u ˆ: 1 , 0.575,f lxw z w zw z= − + =                (36b) 

( ) [ ] [ ] ( ) [ ] [ ]( ){ }4 40 0 ,F w T w F w T w′∋ − = ∧ ∆ − =         (36c) 

giving 
u

u

ˆ2 ,
ˆ

wf If
w w

λ −
= +

−




                       (37a) 

( )
u

2u

ˆ2 .
ˆ

wf I

w w
σ −

=
−




                       (37b) 

4. The Approximate Analytic Solution 

For each of the above approximation segments a differential equations is defined 
of the type 

( ) ( )d ,
d
w x w x
x

=                          (38) 
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where [ ]w  is one of ( ) [ ]iF w ( )1,2,3,4i =  or ( ) [ ]2f w  or [ ]T w , with given 
α  and β parameters (or β and γ) and initial conditions. For [ ] ( ) [ ]1w F w= , 
from the definition in Equation (11), the initial condition is ( )0 0 01w x s i= − =  
( 0 0x =  without loss of generality), while for each of the remaining approxima-
tion segments it is given by the value of the respective preceding segment at the 
junction point. Since [ ]w  is at most a second order polynomial, Equation 
(38) is indeed quite trivially solved, giving a generalized logistic function. 

For [ ] ( ) [ ]1w F w= : 

( ) ( )
( ) ( ) 1

1

1 1
1 1 2 e

,
1 e

x

x

w w kw x
k

γτ

γτ

−

−

+
=

+
                   (39a) 

( )

( ) ( ) ( ) ( )( )
1

1 0
11 1 1

0 2 1 2

1, .
1 2

w i
k

i w w w
τ

γ α

−
= =

− ⋅ − −
            (39b) 

For [ ] ( ) [ ]2w f w= , thus crα α≤ : 

( ) ( ) ( ) ( )

( )

ˆ ˆ2 e
,

1 e

M f

M f

x x
f M

x x

w w w
w x

γτ

γτ

− −

− −

+ −
=

+
               (40a) 

( ) ( ) ( )
( )

( )
1

1 1 11
ln , .

f

M M M f
wx k ' w x w
w

δγτ τ τ τ
δ

= ∋ = = >        (40b) 

For [ ] ( ) [ ]2w F w= , thus crα α> : 

( ) ( )
( ) ( ) ( )

( )

2

2

2 2
2 1 2 e

,
1 e

M

M

x x

x x

w ww x
γτ

γτ

− −

− −

+
=

+
                 (41a) 

( ) ( ) ( )
( )

( )

2
1

1 2 1 11
ln , .M M M

wx k ' w x w
w

δγτ τ τ τ
δ

= ∋ = = >        (41b) 

For [ ] ( ) [ ]3w F w= , thus cr 6α α< ≤ : 

( ) ( )
( ) ( )

( )

3

3

3
ˆ ˆ 2 e

,
1 e

x x

x x

w w
w x

γτ

γτ

λ σ φ

φ

− −

− −

− +
=

−





 



              (42a) 

( )

( )
( ) ( )

2
22

2 2
1

= ln ,M
w wx x ' w x w
w w

γ γτ
 −

+ ∋ =  − 



  



           (42b) 

3
ˆ 1, .

2 2ˆ

w w

w w
φ τ

λ λ γ
σ

−
= =

− +





 



                 (42c) 

For [ ] [ ]w T w= , thus 6α >  (see (34) and (35)): 

( ) ( ) ( ) ( )1 2 e ,
2

T x xw x I I wf
f

γτ− − = − − 
 


 





              (43a) 

( )

( )
( ) ( )

2
22

2 2
1

1 , ln .
2 M

w wx x ' w x w
f w w

τ γ γτ
γ

 −
= = + ∋ =  − 



   





        (43b) 

Finally for [ ] ( ) [ ]4w F w=  thus 6α > : 
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( ) ( )
( ) ( )

( )

u
4

u
4

u u u
4

u

ˆ ˆ 2 e
,

1 e

x x

x x

w w
w x

γτ

γτ

λ σ φ

φ

− −

− −

− +
=

−
             (44a) 
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It is convenient to introduce 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ): , : , : , : , etc.,.r t r t i t i t s t s t w t w tγ γ γ γ
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= = = =    (45) 

Then, from Equation (11) one has 
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On the other hand Equation (12) implies 
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and consequently (see Equation (46)) 
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Finally, of course, due to (4): 

( ) ( ) ( ) ( )1 1 .s t i t r t w t∨ ∨ ∨ ∨
= − − = −                  (48) 

In the case of the SIRD model one defines 

,r h d
∨ ∨∨

= +                          (49a) 

so that and .h r d rγ µγ γ µ
γ µ γ µ

∨ ∨∨ ∨
→ + = =

+ +
         (49b) 

Figure 4 shows a comparison between the numerical “exact” solutions of the 
SIRD model and the approximate solutions of this work with 0.25β =  and 

1.6,2.5,4.5,8.3α = . 
Imitating a formal expression typical of computing languages1, the result for w 

can be summarized as follows: 

 

 

1 ( )a b≤ ? then c f= : otherwise c g= . 
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Figure 4. Comparison of “exact” numerical solutions and approximate solutions for the SIRD model. 
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for 6α > : 
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Similarly for ( )s t∨ , ( )i t∨ , ( )h t
∨

 and ( )d t
∨

. 
In practice one does: 

• solve numerically the transcendental ordinary Equation (15) to get ŵ ; 
• use Equation (21) and Equation (39) to get ( ) ( )1w x  as in Equation (39); 
• for crα α≤  use Equation (22), Equations (28d) and (28e) to get ( ) ( )fw x  as 
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in Equation (40); 
• for crα α>  use Equation (27), Equation (26b), Equation (22), Equation 

(24b), Equation (25) and Equation (41) to get ( ) ( )2w x  as in Equation (41); 
• for cr 6α α< ≤  use Equation (32), Equation (33a) and Equation (33b), Equ-

ation (33c) and finally Equation (42) to get ( ) ( )3w x  as in Equation (42); 
• for 6α >  use Equation (34b), Equation (35) and Equation (43) to get 

( ) ( )Tw x  as in Equation (43); 
• for 6α >  use Equation (17), Equation (36b), Equation (37) and Equation 

(44) to get ( ) ( )4w x  as in Equation (44); 
• eventually use Equation (46), Equation (47), Equation (48), Equation (49). 

The four plots in Figure 4 are produced by a C++ code implementing the 
above steps, then sending the produced analytic function to the graphing utility 
“gnuplot”: the C++ code could be re-used easily to fit-study data. 

5. A Useful Feature 

The equation of the first approximation segment can be re-written as 
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Using the explicit solution Equation (39), one has 
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and consequently 
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Typically 
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but anyway with 0t t−  greater than some 1τ ’s, in the end one can write 
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Analogous results hold for all the approximation stretches in the different α  
intervals as summarized in Equation (50); for instance, with t t−   greater enough 
then 3τ , one has 
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These piecewise linear behaviors can be seen in Figure 5 for 2.6α = . The plot 
on the left shows the numerical solution of the exact equation, compared with the 
corresponding approximate analytic solution: it is worth recalling (see Equation 
(47)) that ( ) ( ) ( )w x r x i x= + , so that w is directly related to the data. The plot on 
the right shows that the function ( )r t∨  of the removed individuals exhibits an 
analogous behavior: since in the SIRD model the ( )d t

∨
 function is a fraction of 

( )r t∨ , then one has the analogous behavior for the function of the deceased indi-
viduals. Figure 6 refers to the data of the deceased individuals during the win-
ter-spring 2020 first wave of Covid-19 in Italy: it remarkably confirms this model 
feature. One important point here is that the slopes of the straight segments, that 
are inversely proportional to the related time constants τ , are completely deter-
mined by the parameters α  and β  (besides the initial conditions) and so is the 
angle between such straight segments: consequently one can compare that angle 
with the theoretically predicted one and argue about the effects of social measures 
to reduce the pandemic, of course within the trustworthiness of the model. 
 

 
Figure 5. A couple of checks of the particular piece-wise linearity disclosed by the approximation approach of the present work 
against the numerical solution of the exact equations. 

 

 
Figure 6. The special piece-wise linearity disclosed in the present work as exhibited by the real data for Covid-19 originated deaths 
during the winter-spring 2020 wave in Italy. 
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6. Conclusions 

In this paper the equations of the SIR(D) epidemiological model are replaced by 
approximate ones, whose solutions are totally defined uniquely by the basic re-
production ratio α and the fractional removal rate γ (alternatively by β γ α= ). 
These solutions are continuous (with the first derivative) chains of two or three 
or four generalized logistic related functions, the number depending on the val-
ue of α  only; they are summarized in Equation (50) and easily implementable 
and usable, for instance, to fit-study data. 

The analytic geometry based approximation method used here is novel and set 
stably at least over the range of the measured values of the basic reproduction 
ratio for several known pandemic diseases. A useful feature of the SIR(D) model, 
never disclosed before, is also given. 
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