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ABSTRACT

A sign operator of energy, analogous to the helicity operator, but in the direction of what we call
energy vector has been introduced. It is possible that there may be physical phenomena where
energy vector should be considered. However, to write a wave function this energy vector needs a
time vector. But, unlike the energy vector the time vector has no physical meaning yet. To make
physical senses of the components of the time vector, the time dilation in special relativity has
been studied and also the components of the time vector have been related to the tunneling times
when an electron crosses a potential barrier. Physical results for quantum tunneling time will not be
limited to this study.

Keywords: Tunneling time; helicity; time dilation; Dirac equation; superluminal velocity.

1 INTRODUCTION

The mysterie of time increases as physics
penetrates deeper and deeper into the secrets
of the Universe. Muga et al. [1] emphasized
that the treatment of time in quantum mechanics

is one of the most important and challenging
open questions in the foundations of quantum
theory.

The title of the paper is reminiscent of
multidimensional time. Three dimensional time
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theories are not anything new. Numerous
authors [2–6] have already discussed this.
From our studies, we found the topic equally
interesting when we encountered the energy
vector. However, given the popular time
quantities such as: tunneling times, decay time,
dwell time, delay time, arrival time, or jump time
in quantum mechanics and proper time, time
dilation in special relativity we are motivated to
propose the concept of time vector in the Dirac
theory which puts time and space on an equal
footing.

The energy quantity
√
c2p2 +m2c4 of a free

particle in special relativity is a combination of an
energy due to the momentum and an energy due
to the mass. We think that it is more fundamental
to take such energy as the magnitude of a vector
E
(
cp,mc2

)
, whose components are an energy

due to the momentum and an energy due to the
mass. We call this vector ”energy vector”.

The resolution of the Dirac equation by using the
tensor product or Kronecker product of matrices
gives rise to an operator [7] whose eigenvalues
are negative energy and positive energy. We
called this operator the ”sign operator of energy”.
Both this operator and the helicity operator are
vectors in the Pauli algebra. Their components
with respect to the Pauli basis

(
σ1, σ2, σ3

)
are,

respectively the components of the energy vector
and the momentum vector.

It is known that the phase − i
~ (Et− p · x) of

a wave function solution of the Dirac equation
is a combination of the components of the
momentum vector coupled with the components
of the position vector, i.e. the scalar product p ·x,
and the energy coupled with the classical time,
i.e. Et. Thus, regarding the energy vector, a
time vector would be needed in the phase of the
wave function, in order that we have as phase
of the wave function − i

~ (E · t− p · x), where t
is the time vector. However, the components of
this time vector should be given some senses, in
order to know in what situations they should be
considered.

We shall first study the time vector for a free
electron and then try to explain the time dilation
in special relativity.

The components of a time vector and any
combinations of these components would evolve
simultaneously from the beginning to the ending
of a phenomenon like the passage time and
the dwell time in quantum tunneling, from the
entrance to the exit of a potential barrier. So, it is
normal to think that it is possible to give senses
to the components of the time vector by using the
tunneling times in quantum tunneling.

The method proposed in this study consists
of putting forward some hypotheses about the
couplings of energies with different combinations
of the components of the time vector, for example
the magnitude of the energy vector couples
with the magnitude of the time vector, E · t =√
c2p2 +m2c4

√
t′2 + t′′2, mc2t′, etc..., and trying

to find out what combination of the components of
the time vector couples with the same energy as
the energy coupled with such and such tunneling
time. That will lead us to which combination of
components of the time vector is equal to the
tunneling time.

The paper is organized as follows: in the first
section we show the road which has led us
to an energy vector; in the second section we
introduce the time vectors for a free electron and
for an electron crossing through a potential; in
the last section we try to give senses to the
components of the time vector compared with
the quantum tunneling times when the electron
crosses a potential barrier.

2 SIGN OPERATOR OF
ENERGY IN THE DIRAC
THEORY

The Dirac equation [8]

i~γµ∂µψ −mcψ = 0 (1)

is the quantum relativistic equation for a free
spin- 1

2
fermion, where the γµ’s are the gamma

matrices. In this equation ~ is the Planck
constant, c the speed of light, m the mass of
the spin- 1

2
fermion and ψ is its wave function.

Throughout this paper we use the Dirac
representation, where the gamma matrices are

γ
0

= σ
3⊗σ0

, γ
1

= iσ
2⊗σ1

, γ
2

= iσ
2⊗σ2

γ
3

= iσ
2⊗σ3

53



Rakotonirina; PSIJ, 26(4): 52-62, 2022; Article no.PSIJ.90853

with

σ
1

=

(
0 1
1 0

)
, σ

2
=

(
0 −i
i 0

)
, σ

3
=

(
1 0
0 −1

)

are the Pauli matrices and σ0 =

(
1 0
0 1

)
the 2× 2-unit matrix.

The wave function solution of the Dirac equation
may be written as a Kronecker product or tensor
product (See, for instance [9])

ψ(t,x) = ξ ⊗ se−
i
~ (±Et−p.x) (2)

of the energy state ξe−
i
~ (±Et−p.x) and

helicity state s, where ξ = |ξ(E, p)〉 =√
E+mc2

2E

(
1
εcp

E+mc2

)
is the eigenvector

associated to the positive energy E =
+
√
c2p2 +m2c4 or ξ =

∣∣ξ̄(E, p)〉 =√
E+mc2

2E

(
− εcp
E+mc2

1

)
, eigenvector associated

to the negative energy −E = −
√
c2p2 +m2c4 of

the hamiltonian operator hD = εcpσ1 + mc2σ3,
and s is the eigenvector of the helicity operator
~
2
σ.n, i.e the spin operator in the direction

of the momentum vector p =

p1p2
p3

, with

n = p
‖p‖ = p

p
=

n1

n2

n3

.

In all of that ε is the sign of the helicity or the
handedness.

We call the operator hD = εcpσ1 + mc2σ3 ”sign
operator of energy” [7,10].

Let us introduce the ”energy vector” E = εcp
0
mc2

. Therefore, the operator ~
2
hD
E

= ~
2
σ.E
E

is the projection of the spin operator in the
direction of the energy vector E. Let us call the
eigenvalues of this operator ”enginity” and this
operator the ”enginity operator”. Therefore, there
is the probabilities of the particle of having the
positive enginity + ~

2
or the negative enginity − ~

2
.

So, a spin- 1
2

particle can be in a superposition of
a state of positive and a state of negative energy.
For seeing that more clearly, let us compare in
Table 1 the enginity operator with the helicity
operator.
However, as mentioned in the introduction, the

energy vector E =

 εcp
0
mc2

 requires a time

vector t =

t1t2
t3

.
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3 THE COMPONENTS OF
THE TIME VECTOR

Consider an electron with a mass m, moving
freely along an x axis, from a point O to a point
A of this axis. An observer observes the motion
of the electron in a frame where the electron is
at rest. So, this observer can measure the time,
the proper time τ = t3 that the electron takes
to move from O to A. To calculate the energy
of the electron the observer uses the formula
E = mc2.

Now, another observer in a frame fixed at the
point O measures the time that the electron takes
to move from O to A with velocity v. For this
observer, A is at a distance L from O. The
electron takes the impulsion p = mv√

1−(v/c)2
,

and the observer measures the time τ ′ for the
passage of the electron from O to A and uses
the formula E =

√
m2c4 + c2p2 to calculate the

energy of the electron. Then, the energy is the

magnitude of the energy vector E =

εcp,0
mc2


which needs the time vector t′ =

t′10
t′3

, where ε

is the sign of the helicity.

mc2t3 = mc2t′3 + εcpt′1 − px (3)

c2t23 = c2t′23 + c2t′21 − x2 (4)

From these equations, t′3 = t3 if, and only if, for
helicity positive, t′1 = x

c
and for helicity negative,

t′1 = −x
c
.

Otherwise, given t′3 6= t3, solving this system of
two equations there are two time vectors. But,
according to (4), these two time vectors have
the same euclidian norm, and according to the
special relativity of Einstein

τ ′ =
√
t′23 + t′21 =

1√
1− (v/c)2

τ (5)

t′3 ≤ t3 if, and only if for helicity positive, t′1 ≥ x
c

and for helicity negative, t′1 ≤ −xc , that is t′1 is
the time of a subluminal velocity for moving from
O to A. Then, according to the formula (5) the
time t′1 which appears when the electron takes

the impulsion p is responsible for the time dilation
in special relativity.

But otherwise, t′3 > t3, where t′1 < x
c

for helicity
positive or t′1 > −xc for helicity negative. In this
case, we cannot say what the contribution of t′1
to the dilation of time is.

The classical time τ ′ =
√
t′23 + t′21 and the

component times t′3, t′1 evolve from O to A, but
only the classical time can be observed. Then,
the wave function is of the form (2).

Now, suppose that from O to A the electron
moves in a uniform potential U . For the observer
at the frame where the electron is fixed the

energy vector is E′ =

 0,
U
mc2

 and the time

vector is T =

 0
T2
T3

. Whereas for the observer

in the second frame the energy vector is E =εcp,U
mc2

 whose components are respectively the

energy due to the impulsion, the energy due to
the mass and the potential energy, i.e the energy
due to the space, which makes the second
component of the time vector appear, T ′ =T ′1T ′2
T ′3

. It follows

φ = T3mc2 + T2U = mc2T ′3 + εcpT ′1 + UT ′2 − px
(6)

c2T 2
3 + c2T 2

2 = c2T ′23 + c2T ′21 + c2T ′22 − x2 (7)

and√
T ′23 + T ′21 + T ′22 =

1√
1− (v/c)2

√
T 2
3 + T 2

2

The total energy of the electron is the magnitude

E =
√
m2c4 + c2p2 + U2 (8)

of the energy vector, which is like the one in [11]
for the extension to the Klein-Gordon equation,
and we suppose that the magnitude

T ′ =
√
T ′23 + T ′21 + T ′22

of the time vector T ′ is the classical time.
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The following hypotheses are put forward for
possible couplings of energy with time in the
phase of the wave function:

ET ′ =
√
m2c4 + c2p2 + U2

√
T ′23 + T ′21 + T ′22

(9)

ET =
√
m2c4 + c2p2

√
T ′23 + T ′21 (10)

mc2T ′3 (11)

UT ′2 (12)√
c2p2 + U2

√
T ′22 + T ′21 (13)

εcpT ′1 (14)

4 COMPONENTS OF THE
TIME VECTOR AND THE
TUNNELING TIMES OF
AN ELECTRON

To provide physical meaning to the components
of the time vector, we think that it is normal to try
to find their possible relations with the tunneling
times. Firstly, the Dirac type equation for the
electron in a potential less than the kinetic energy
of the electron has to be determined.

4.1 A Dirac Equation with Parity
Violation

The Dirac equation to be determined is a Dirac
equation which has the energy vector E =εcp,U
mc2

, i.e whose operator enginity is:

H = εcpσ1 + Uσ2 +mc2σ3 (15)

with U <
√
c2p2 +m2c4.

The search for a solution of the form ψ =

A(p)e−
i
~ (Et−p·x) for the Dirac-Sidharth equation

[12]

i~γµ∂µψ −mcψ − i
√
αl~γ5∆ψ = 0

employing the kronecker product leads to the
operator enginity

H ′ = εcpσ1 − c
√
αp2

l

~
σ2 +mc2σ3

with γ5 = iγ0γ1γ2γ3 = σ1 ⊗ σ0.
Then, working backwards from the operator
enginity (15) we obtain as a Dirac equation,
for discribing an electron in a potential U , the
following equation

i~γµ∂µψ −mcψ + i
U

c
γ5ψ = 0 (16)

Because of the presence of γ5, the parity is
violated [13]. Looking for a wave function of the
form

ψ = A(p)e−
i
~ (Et−p·x)

i.e. of the form of (2), by using the kronecker
product of matrices, the following

ψ =

√
E +mc2

2E
1√

2
(
1 + n3

) (1−cp+iU

E+mc2

)
⊗

(
−n1 + in21 + n3

)
×e−

i
~ (Et−p·x)(17)

is obtained as solution with positive enginity
and negative helicity. The resolution of this
equation using the kroneker product is given in
the appendix.

4.2 The Components of the Time
Vector and Tunneling Times

The components of the time vector make us
think to one of the controversial issues of modern
quantum theory, the question of tunneling time,
i.e. the time a particle takes to move from
one side of a barrier of potential to the other
side [14]. Some experimental investigations
have supported a nonzero tunneling time, while
others supported a zero tunneling time, [15, 16].
However, to make sense to the components of
the time vector we have to choose the nonzero
tunneling time and consider the case of one
dimensional tunneling of an electron through a
potential barrier.

Quantum tunneling is a phenomenon in which
particles penetrate a potential energy barrier with
a height greater than the total energy of the
particles. The phenomenon is interesting and
important because it violates the principles of
classical mechanics. Suppose that an uniform
and time-independent beam of electrons with
an energy E traveling along the x-axis (in the
positive direction to the right) encounters a
potential barrier (Fig. 1) described by (See, for
instance [17])
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Fig. 1. An electron e with kinetic energy E moves along the x-axis and interacts with a
rectangular barrier with height U , U > E, and width L

U(x) =


0 when x < 0

U when 0 ≤ x ≤ L
0 when x > L

When both the width L and the height U are
finite, a part of the incident quantum wave packet
on one side of the barrier can penetrate the
barrier boundary and continue its motion inside
the barrier, where it is gradually attenuated on
its way to the other side. A part of the incident
quantum wave packet eventually emerges on
the other side of the barrier in the form of the
transmitted wave packet that tunneled through
the barrier. How much of the incident waves
can tunnel through a barrier depends on the
barrier’s width L and its height U , and on the
energy E of the incident quantum particle. For
such transmitted waves, there are four widely
used tunneling times calculated by finding the
transmission amplitude given by: T = |T | eiθ [18],
where θ and |T | are the phase and the magnitude
of the transmission amplitude, respectively. The
two of them are : Larmor time [20, 21], τLM and
Eisenbud-Wigner times [22], τEW . The first has

been called resident or dwell time:

τLM = −~ ∂θ
∂U

(18)

The second has been called the passage time,

τEW = ~ ∂θ
∂E

+
L

k
(19)

The phase of the transmitted wave behind the
barrier (region III) is given by [19]

θIII = θ +
p

~
x (20)

An additional term, L/k is present in τEW , where
L and k are the barrier width and the electron
velocity, respectively. This additional term would
correspond to the propagation of the electron in
the barrier region if that barrier were absent, and
has to be added to get the total time [23], since
the first term only gives a relative time shift [22].

However, the quantum tunneling phenomena and
the consideration of the time vector lead to think
that the Dirac equation inside the potential barrier
(E < U ) is not of the form (16) [25]. So, let
us construct the wave function of the electron
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inside the barrier in terms of the components
of the time vector. The energy vector E = εcp

0
mc2

 before the barrier region becomes E = εcp
U
mc2

 when the particle is inside the barrier

region. The time T =
√
T ′23 + T ′21 and T ′2

can be qualified respectively as passage time
Tp =

√
T ′23 + T ′21 and resident time Tr = T ′2 .

These three types of time, the classical time
T ′ =

√
T ′23 + T ′21 + T ′22 , the passage time Tp

and the resident time Tr evolve from the entrance
to the exit of the barrier region. But according to
the quantum tunneling phenomena, the classical
time can not be observed, whereas at least one
of the passage time and the resident time can be.
Actually,

T ′ > Tp T ′ > Tr

All these times evolve from zero to positive
values.
Let us search for θ in (18) and (19) in terms of
τLM and τEW . From (18)

θ = −1

~
τLMU +K(E)

where K(E) is a function of E. Then,

∂θ

∂E
= K′(E)

in substituting in (19)

K′(E) =
1

~
τEW −

1

~
L

v

Using the relations p = mv√
1− v2

c2

and E = mc2√
1− v2

c2

(See for instance, [24]), we have

K′(E) =
1

~
τEW −

1

c~
E√

E2 −m2c4
L

K(E) =
1

~
EτEW −

1

c~
√
E2 −m2c4L+ λ(L)

and then,

θ =
1

~
(EτEW − UτLM − pL) + λ(L) (21)

with λ(L) independant of E and U , such that
U > E.

It follows that according to the couplings (10) and
(12), the times evolve from 0 to τEW and τLM are
respectively

√
T ′23 + T ′21 and T ′2 . Then, to give

senses to the components of the time vector, the
phase which evolves from the phase at x = 0
to x = L, inside the potential barrier, should be
defined as

θII = −1

~

(
−E
√
T ′23 + T ′21 + UT ′2 − px

)
(22)

with at x = L,
√
T ′23 + T ′21 = τEW and T ′2 =

τLM . The equation (20) yields that the phase for
the transmitted wave in region III is

θIII = −1

~
(−EτEW + UτLM + pL− px) + λ(L)

At x = L, θII = θIII . Then, we have λ(L) = p
~L

and for the case of positive enginity and negative
helicity: incident, reflected and transmitted wave
functions are

ψI(x) =

(
1
−cp

E+mc2

)
⊗
(
−1
1

)
e
− i

~

(
E
√
t′23 +t′21 −px

)

+A

(
1
cp

E+mc2

)
⊗
(
−1
1

)
e
− i

~

(
E
√
t′23 +t′21 +px

)
(x < 0)

ψII(x) = B

(
1

−cp+iU
E+mc2

)
⊗
(
−1
1

)
e
− i

~

(
−E
√
T ′23 +T ′21 +UT ′2−px

)

+ C

(
1

cp+iU
E+mc2

)
⊗
(
−1
1

)
× e−

i
~

(
−E
√
T ′23 +T ′21 +UT ′2+px

)
(0 < x < L) (23)
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ψIII(x) = D

(
1
−cp

E+mc2

)
⊗

(
−1
1

)
e−

i
~ (−EτEW+UτLM−px) (L < x) (24)

The form of each term of the wave function (23) inside the barrier is not like the one that has been
thought in [25]. It is a wave function solution, not of (1 + 1) spacetime Dirac equation, like a particular
case of (4.1), but a (1 + 2) spacetime Dirac equation.

In the case where the energy of the electron is higher than the value of the potential (E > U), the
wave function inside the potential will be of the form

ψII(x) = A′
(

1
−cp−iU
E+mc2

)
⊗
(
−1
1

)
e
− i

~

(
E
√
T ′23 +T ′22 +T ′21 −px

)

= A′
(

1
−cp−iU
E+mc2

)
⊗
(
−1
1

)
e
− i

~

(
E
√
τ2
EW

+τ2
LM
−px

)

because according to (9) the classical time t in the wave function (4.1) is t =
√
T ′23 + T ′22 + T ′21 .

Since the Eisenbud-Wigner time τEW is positive and
√
T ′23 + T ′21 should evolve from 0 to τEW , then

there is negative energy −E in the phase inside the barrier.

5 RESULTS AND DISCUSS-
ION

The first component t′1 of the time vector which
occurs when the electron takes an impulsion
is responsible for the time dilation in special
relativity, if it is the time of a subluminal velocity.
Otherwise, we cannot say what the contribution
of t′1 to the dilation of time is.

Under the hypotheses that the classical time
is the magnitude of the time vector and that
energy couples with time under the form of the
expressions (9) to (14), the following results
have been obtained, in the Dirac representation,
during the tunneling of the electron through a
potential barrier. Only for the second component
a physical meaning can be given. It can be
defined as the Larmor time τLM or the dwell time,
T ′2 = τLM . It is not possible to give physical
senses to the first and the third components. But,
the magnitude of the projection of the time vector
into the plan of the first and third components can
be defined as the Eisenbud-Wigner time τEW or
the passage time,

√
T ′23 + T ′21 = τEW . Then it

follows the following relation∥∥T ′∥∥ =
√
τ2EW + τ2LM

between the classical time, the Eisenbud-Wigner
time and the Larmor time. Then, we can see that

the classical time is higher than the Eisenbud-
Wigner time and the Larmor time. Thus,

v =
L

‖T ′‖
<

L

τEW
and v =

L

‖T ′‖
<

L

τLM

This show the possibility of supeluminality.

Due to the minus sign in the equation (18), a
negative energy (−E) couples with

√
T ′23 + T ′21

in the phase (22) inside the barrier. According to
the Dirac interpretation of negative energy (See,
for example, [26]), can we interpret it that it is not
the electron which spends the passage time but
its antiparticle a positron?

Finally, for a free electron, it is not possible
to make sense of t′3 or t′1 separately. We
think that a possible observability of these two
components of the time vector would be in a
phenomenon of free superluminal spin- 1

2
particle,

whose wave function would be a solution of a
(3 + 2) spacetime Dirac equation. Thus, this
study agrees with the authors of [27,28] who said
:”The problem of representation and localizations
of superluminal particles has been solved only
by the use of higher dimensional space and it
has been claimed that the localization space for
tachyons is T 4- space with one space and three
times”. As a consequence, the wave function of
a spin- 1

2
particle inside a potential barrier would

be of the form ΦII = AeεPT
′
1−UT

′
2+mc

2T ′3 , if the
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particle was a free superluminal spin- 1
2

particle
before the potentiel barrier U , U >

√
P 2 +m2c4

[25].

6 CONCLUSION
The energy vector in the Dirac theory came out
when the purpose was to show the analogy
between helicity and enginity. This energy
vector needs a time vector. A component of
the time vector appears when the electron takes
an impulsion. This component of the time
vector is responsible for time dilation in special
relativity.

Under some hypotheses, during the tunneling
of the electron through a potential barrier,
one component can be defined as the Larmor
time, whereas the Eisenbud-Wigner time is a
combination of the two other components. Then,
a relation between the classical time, the Larmor
time and the Eisenbud-Wigner time has been
obtained. When the electron is inside the barrier,
in the phase of the wave function a negative
energy couple with the Eisenbud-Wigner time.
So, what actually about the times spend by the
electron and its antiparticle inside the barrier?.
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Appendix

A. Resolution of the Dirac equation i~γµ∂µψ −mcψ + iU
c
γ5ψ = 0

To make appear the operator enginity we use, for solving the equation (16), the kronecker product.
Put this solution of the form

Ψ̆ = A(p)e−
i
~ (Et−p.x)

Then,

i~σ3 ⊗ σ0 ∂

c∂t
Ψ̆ + i~iσ2 ⊗ σj ∂

∂xj
Ψ̆−mcΨ̆ + i

U

c
σ1 ⊗ σ0Ψ̆ = 0

i~σ0 ⊗ σ0 ∂

∂t
Ψ̆ + ic~σ1 ⊗ σj ∂

∂xj
Ψ̆−mc2σ3 ⊗ σ0Ψ̆− Uσ2 ⊗ σ0Ψ̆ = 0

Let p̂j = −i~ ∂
∂xj

the mometum operator in the direction of xj and Ê = i~ ∂
∂t

the energy operator,

p̂jΨ̆ = pjΨ̌ and ÊΨ̆ = EΨ̆. Then, we have

Eσ0 ⊗ σ0A(p)− cpjσ1 ⊗ σjA(p)−mc2σ3 ⊗ σ0A(p)− Uσ2 ⊗ σ0A(p) = 0

But let us search for a solution where A(p) is of the form A(p) = ϕ ⊗ u with u is an eigenvector of
the helicity operator

( ~
2
σ · n

)
=
(

~
2
σ·p
p

)
, whose eigenvalues are the helicities + ~

2
and − ~

2
.

Eσ0 ⊗ σ0ϕ⊗ u− 2

~
cpσ1 ⊗

(
~
2
σ · n

)
ϕ⊗ u−mc2σ3 ⊗ σ0ϕ⊗ u− Uσ2 ⊗ σ0ϕ⊗ u = 0

Eϕ⊗ u− cpσ1ϕ⊗ εu−mc2σ3ϕ⊗ u− Uσ2ϕ⊗ u = 0

or (
Eϕ− εcpσ1ϕ−mc2σ3ϕ− Uσ2ϕ

)
⊗ u = 0

where ε is the sign of helicity. However, u 6= 0, thus

Eϕ =
(
εcpσ1 +mc2σ3 + Uσ2)ϕ (25)

That is ϕ is the eigenvector of the operator

hD = εcpσ1 +mc2σ3 + Uσ2 = σ · E

in the Dirac representation, whose eigenvalues are the negative energy −E and the positive energy
+E . The enginity operator ~

2
hD
E = ~

2
σ·E
E in the direction of the energy vector E will be the analogous

of the helicity operator.

The resolution will be finished in solving the equation (25) and the equation(
σ1n1 + σ2n2 + σ3n3)u = εu
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