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Abstract

An infinite-horizon, multidimensional optimization problem with arbitrary yet finite periodicity

in discrete time is considered. The problem can be posed as a set of coupled equations. It is

shown that the problem is a special case of a more general class of contraction problems

that have unique solutions. Solutions are obtained by considering a vector-valued value

function and by using an iterative process. Special cases of the general class of contraction

problems include the classical Bellman problem and its stochastic formulations. Thus, our

approach can be viewed as an extension of the Bellman problem to the special case of non-

autonomy that periodicity represents, and our approach thereby facilitates consistent and

rigorous treatment of, for example, seasonality in discrete, dynamic optimization, and fur-

thermore, certain types of dynamic games. The contraction approach is illustrated in simple

examples. In the main example, which is an infinite-horizon resource management problem

with a periodic price, it is found that the optimal exploitation level differs between high and

low price time intervals and that the solution time paths approach a limit cycle.

1. Introduction

Periodicity is an important characteristic of many systems that are subject to control. A rigor-

ous treatment of periodicity in optimization problems is nontrivial because periodicity is a spe-

cial case of nonautonomy [1]. Nonautonomy typically renders many optimal control problems

difficult and costly to deal with, or even intractable. Thus, periodicity in applied work is often

abstracted from altogether, or treated by considering the aggregate or mean forcing. For exam-

ple, in many natural resource management models where natural growth is described as an

annual process—modeled by a growth operator that is applied once per year—and where envi-

ronmental conditions are known to have significant seasonal variations, an implicit assump-

tion is that seasonal effects are aggregated up or averaged out [2]. But as shown in various

research, modeling seasonal or periodic effects properly can lead to surprising and operation-

ally important results [1, 3, 4].

To the best of our knowledge, periodicity in infinite-horizon optimal control problems in

discrete time has not been treated formally in the literature. A large class of periodic problems
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is a special case of a general class that can be shown to be fix-point problems for a family of

contraction operators. The contraction operator can be used to obtain the solution in an itera-

tive procedure. The class of problems considered in this study includes the classical Bellman

problem, the periodic problem formulations of initial interest [1], stochastic problems, and

other, more esoteric formulations. Our key contribution is nevertheless an extension of the

classical Bellman result in the special case of nonautonomy that periodicity represents.

Let us first clarify the term periodicity. By periodicity, or periodic characteristics or features

of optimization problems, we presently mean conditions or structures that repeat themselves

at given time intervals. These recurring conditions or structures are represented by an objec-

tive function or in the description of how the state develops over time. Perhaps the simplest

illustration of such periodicity is the seasonal variation inherent in many natural systems,

where growth varies over a year but where the same growth conditions arise repeatedly. But

note that periodic features are not necessarily described by some trigonometric relationship,

and neither are solutions periodic in any other sense than that the decision rule is the same

when the same conditions arise. That is, the structure of the problem repeats itself at given

time intervals. The classical discrete, infinite-time dynamic programming problem in econom-

ics has discounting as the only nonautonomic feature; that is, time enters explicitly only

through the discounting of the objective function. This problem represents a problem with

period 1 in our setting, which is reflected by the fact that the running value function does not

explicitly depend on time.

To motivate our study of periodicity in decision problems, let us briefly mention some

applied examples. These examples include demand systems subject to supply control. In partic-

ular, annual, seasonal, weekly, or daily cycles in demand are well-known for electricity [5] and

energy in general, and a broad range of consumer goods have seasonal fluctuations in demand.

For example, McClain and Thomas [6] considered production planning under seasonal

demand, whereas Bradley and Arntzen [7] further considered inventory policy and capacity

constraints. More recently, Nagaraja et al. [8] provided a brief review of the theory related to

seasonal demand problems and applied it to the bullwhip effect in supply chains. There is also

an extensive literature on cyclical pricing policies discussed by Besbes and Lobel [9]. Other

dynamic decision problems with periodic features are found in transport and logistics systems

subject to routing control (Liebchen [10] discussed the use of optimization in the periodic

event-scheduling problem) or natural systems subject to management control. For example,

renewable natural resources may exhibit periodicity in growth or other natural processes, as

well as in prices and costs [11, 12]. In particular, Ni and Sandal [4] studied a multiseason, multi-

state bioeconomic model. Kvamsdal et al. [1] provided a generic treatment of periodicity in

resource management problems, which can be considered a special case of our results below.

To illustrate our approach to periodic problems, we apply our derived numerical scheme to

a stylized decision problem with periodicity in the objective function. This example demon-

strates the feasibility of our approach and suggests significant, practical implications of explic-

itly accounting for periodicity. In particular, the solution of the periodic problem exhibits

features that are not typically present in problems with no periodicity. We also present a solu-

tion to a simple dynamic game to further illustrate the generality of our approach.

Given the prevalence of periodic characteristics of many systems subject to control, we

believe that our contribution is important and highly valuable. We show that the classical Bell-

man problem approach can be extended to periodic problems and that this extension is, while

nontrivial, both conceptually and numerically feasible and practical. Ultimately, a broader

class of problems can be treated using our approach. However, both the Bellman and periodic

problems are directly applicable to real-world decision problems, and thus, we maintain our

focus on these formulations. Furthermore, as the periodic problem is the motivation behind
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considering the problems we target in our most general result, we begin our analysis by show-

ing how the general problem formulation suggests itself from the periodic problem setup.

The remainder of our paper is organized as follows. In the next section, we first set up a

standard infinite-horizon, discrete-time optimization problem. We then generalize the prob-

lem formulation to allow for periodic variation in the problem structure and establish a set of

equations that govern the problem solution. The set of equations is a special case of a general

class of problems that we show are contraction problems whose solutions can be obtained

through iterations. In the following section, we offer two illustrative examples: A periodic opti-

mization problem and a dynamic game. In the dynamic game example, the notation is inter-

preted differently, but the equations governing the problem solution belong to the general

class that we consider. In the final section, we summarize and discuss potential applications of

our generalized problem formulation.

2. A contraction operator for the periodic problem

Dynamic decision problems under various periodic variations are our primary problem type

of interest in this paper, and we begin our analysis by showing how the general problem for-

mulation suggests itself from the periodic problem setup. We arrive at the periodic problem

setup by allowing for periodic variations in a standard, infinite-horizon, discrete-time optimi-

zation problem.

A deterministic, infinite-horizon, autonomous, discounted, discrete-time optimization

problem considers the following:

max
fukg

1
k¼0

X1

k¼0
b

kþ1
�Pðxk; ukÞ ð1Þ

such that xk+1 = F(xk, uk), uk2U(xk), k = 0, 1, 2,. . ., and x02X given. For the discount factor β,

we have 0<β<1. X�Rn is a feasible state space, and xk2X is an n-dimensional dynamic state

variable at the beginning of time interval k. Here, we use the term “interval” rather than

“period,” and reserve the latter to denominate the periodic length characteristic (denoted T,

see below). U: X!Rp is a nonempty and compact valued correspondence that specifies the

admissible p-dimensional controls uk in state xk. That is, uk is the decision or control variable

that must be decided for each instant of the infinite time sequence {t0, t1, t2.. . .}.P: X×U!R is

bounded and continuous and gives the performance measure (return) at the end of each inter-

val. F: X×U!X is a continuous operator that governs the state variable such that xk+1 = yk is

the state at the beginning of interval k = 1. Under these conditions, optimal controls fu�kg
1

k¼0

and corresponding paths fx�kg
1

k¼0
exist, as does the value function VðxÞ ¼

P1

k¼0
b

kþ1
�

Pðx�k; u
�
kÞ with x�

0
¼ x. The value function is the unique fix-point of the Bellman operator T B,

which is defined on the space of real, bounded, and continuous functions on X, denoted BC
(X), and given by

T BVðxÞ ¼ max
u2UðxÞ
fb �Pðx; uÞ þ b � VðyÞg ð2Þ

with V2BC(X) and y = F(x, u). Using the operator defined in Eq (2), the Bellman equation for

the problem in Eq (1) can be written simply as

VðxÞ ¼ T BVðxÞ ð3Þ

See Bertsekas [13] for a more general treatment of the type of problems presented in Eq (1).

We now consider a nonautonomous but periodic problem where Pk(x, u) is the return

function and Fk(x, u) is the time evolution operator for interval k. That is, the return function
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and the time evolution operator may vary between intervals. Sets for the feasible states (Xk�X)

and admissible controls (Uk) may also vary between intervals. The control set may vary with

the state such that Uk = Uk(xk), but we typically omit the state argument. The problem is peri-

odic in the sense that for a finite integer N�1 and for all k2N, we have Pk =Pk+N, Fk = Fk+N,

Xk = Xk+N, and Uk = Uk+N. We say that the problem is periodic with period N, where N is the

smallest integer satisfying these equalities, and that the performance or return measure and the

dynamic constraint functionally repeat themselves. Each period comprises k intervals. The

classical outset yielding Eq (1) is then a problem with period 1.

Without adding significant complexity, we can allow for varying interval lengths. Thus,

each interval has potentially different discount factor values. We write the length of interval k
as Tk = tk−tk−1 and its discount factor as βk. Periodicity implies Tk = Tk+N and βk = βk+N. Then,

the length of the cycle of N intervals can be expressed as

T ¼
XN

i¼1
Ti ¼ tN � t0 ð4Þ

The discount factor for the cycle of N intervals is b ¼
QN

i¼1
bi. Here,

QN
i¼1
ð�Þ is the usual prod-

uct operator, unrelated to the objective function elsewhere denoted byPk(�). Fig 1 accounts

for interval index references.

Although a real discounted problem cannot have a periodic present value, the running

value will be periodic under time discounting if βk, involved operators (Pk, Fk), or spaces (Uk,

Xk) are periodic, as described above. As suggested above, a periodic feature repeats itself with

some inherent period. If a problem includes several periodic features, the problem period N
will be the least common multiple of the potentially different inherent periods of the different

features.

The periodic problem intuitively suggests a set of N nested equations (see S1 Appendix):

VkðxÞ ¼ max
uk2UkðxÞ

fbkPkðx; ukÞ þ bkVkþ1ðx0Þg; k ¼ 1; . . . ;N � 1

VNðxÞ ¼ max
uN2UN ðxÞ

fbNPNðx; uNÞ þ bNV1ðx0Þg
ð5Þ

In equation set (5), x0 = Fk(x, uk) is a shorthand notation for the state variable one interval

ahead. If Vk is interpreted as the value function for interval k, the equation set (5) follows from

value additivity with its inherent economic logic that the present value is what you earn pres-

ently plus the discounted value of future earnings. “Earn” is not necessarily meant in its strict,

monetary sense, but can be any type of utility-like flow.

In what follows, we first define generalized operators for deterministic and two stochastic

formulations of optimization problems, of which the periodic problems discussed above are

special cases. We then present a theorem that holds for all generalized formulations. Finally,

we present a corollary that applies our theorem to the periodic problem in equation set (5).

Fig 1. Interval index reference for periodic problems. Return (Pk) is yielded at the end of interval k, whereas the

value Vk refers to the beginning of interval k.

https://doi.org/10.1371/journal.pone.0260257.g001
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First, we consider functional equations of the type

VðxÞ ¼ T VðxÞ ð6Þ

where VðxÞ is an N-dimensional bounded vector function in BC(X) (that is, the components

are bounded and continuous), and further, x2X�Rn. The components of the operator T are

defined as

T kVðxÞ≜ max
u2GkðxÞ

fbPkðx; uÞ þ bkLkVðx
0

Þg; k ¼ 1; . . . ;N ð7Þ

In (7), Lk are Lipschitz continuous with Lipschitz constants gk;
bPkðx; uÞ are bounded func-

tions, and the correspondence Γk(x) specifies admissible sets. bPkð�Þ can take on two forms

depending on the timing of the return. If returns are realized at the end of each interval, as in

equation set (5), they are discounted and we have bPkðx; uÞ ¼ bkPkðx; uÞ. In contrast, if returns

are realized at the beginning of each interval, they are not discounted and we have

bPkðx; uÞ ¼ Pkðx; uÞ. We have βk2(0,1). As we will argue below, equation set (5) is a special

case of (6) when T is defined by (7).

Furthermore, the definition in Eq (7) is a special case of two different stochastic formula-

tions. Let z2Z�Rq be a real-valued, q-dimensional vector of stochastic elements that are reali-

zations of a known, stochastic process (that is, the probability transition function is known

and the expectation operator over z, denoted Ez, is well-defined; see Stokey et al. [14], p. 241).

The stochastic elements can be present in both the return functions and the operators govern-

ing the state variables that are considered to be Markov decision processes. We thus write

Pk(x, u, z) and Fk(x, u, z), both of which are measurable. If both present and future realizations

of the stochastic process are uncertain, we consider the following definition of T :

T kVðxÞ≜ max
u2GkðxÞ

Ezf
bPkðx; u; zÞ þ bkLkVðx

0Þg; k 2 f1; . . . ;Ng ð8Þ

The definition in Eq (8) aligns with the typical formulation in Bertsekas [13].

Other problem formulations, however, consider the present realization of the stochastic

process as known. Such formulations require the stochastic elements to be considered as part

of the state vector. We consider s = (x, z) as an extension of the state variable and consider the

following definition of T :

T kVðsÞ≜ max
u2GkðsÞ

fbPkðs; uÞ þ bkEz0LkVðs
0Þg; k 2 f1; . . . ;Ng ð9Þ

In (9), s0 is a shorthand for the extended state one interval ahead, and Ez0 is the expectancy over

possible realizations of the stochastic elements in the next interval, z0. The definition in (9)

aligns with the typical formulation in Stokey et al. [14]. By inspection, we see that (7), the

deterministic case, is a special case of both (8) and (9). The following theorem holds for all

these potential definitions of T , that is, (7)–(9).

Theorem: T is a contraction operator on bounded vector functions if

Z≜maxfbkgkjk ¼ 1; . . . ;Ng < 1 ð10Þ

Proof: Let VðxÞ and WðxÞ be arbitrary elements in B(X), which is the space of bounded vec-

tor functions over X, and let k�k denote the sup-norm. If we write L
0

k ¼ bkEz0Lk, we have, for
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component k,

T kV ¼ T kðW þ V � WÞ

¼ max
u2GkðsÞ

fbPkðs; uÞ þ L
0

kWðs
0

Þ þ L
0

kVðs
0

Þ � L
0

kWðs
0

Þg

� T kW þ jjL
0

kV � L
0

kWjj

� T kW þ bkjjLkV � LkWjj

� T kW þ bkgkjjV � Wjj

ð11Þ

The first inequality follows from the properties of the sup-norm, the second inequality follows

from the expectancy operator having a Lipschitz constant of one, and the final inequality fol-

lows from the properties of the Lipschitz operator Lk. From Eq (11), we have

T kV � T kW � bkgkjjV � Wjj

We can revert the roles of V and W in Eq (11) to obtain

T kW � T kV � bkgkkV � Wk

We can thus conclude that

jT kV � T kWj � bkgkjjV � Wjj ð12Þ

Inequality (12) holds for all values of k, and we have

jjT V � T Wjj � ZjjV � Wjj ð13Þ

where η≜max{βkγk|k = 1,. . .,N}. That is, T is a contraction operator if η<1. Q.E.D.

If T is operating on continuous functions on a compact state space, then it has a unique fix-

point. Because T is a contraction, the fix-point can be obtained by iterations.

For our result to apply to a periodic problem, it remains to be shown that the equation set

(5) is a special case of (6) and that the requirement on η holds. By definition, the left-hand

sides of (5) and (6) are identical. We thus need to show that the right-hand side in (5), for all

values of k, is a special case of (7), which defines the right-hand side of (6). Because we have

proved that the stochastic formulations in (8) and (9) are also contractions, our result also

applies to the stochastic analogous extensions of equation set (5). We summarize this result in

the following corollary:

Corollary: The periodic optimization problem in equation set (5) and analog stochastic

problems are contraction problems having unique solutions, that is, the value functions.

Proof: The operator defined by LkV≜Vi for all values of k, with i = k+1 for k2(1,. . .,N−1)

and i = 1 for k = N, is a Lipschitz operator with Lipschitz constant γk = 1. That is, (5) is a special

case of (6). The parameter βk in (5) is a discount factor, and for all values of k we have βk<1.

Thus, η<1, and the corollary follows from the theorem. Q.E.D.

The proof of the corollary can be readily modified to show that the classical Bellman prob-

lem (that is, set i = k for all k in the proof) is also a special case of (6), as is any choice for i2
{1,. . .,N}. Furthermore, there exists a large set of Lipschitz continuous operators that fulfill the

requirements of the theorem, and there are many potential applications of (6).

Note the use of the sup-norm in the theorem above. It represents a type of worst-case sce-

nario regarding convergence (that is, no single point in state space can “hang out”). Thus, in

many applications, we expect convergence to be faster than that implied by η.

A varying interval length requires suitable adaptions ofPk, Fk, X, and Yk (or the comparable

stochastic elements). If discounting is uniform in time and interval k represents a share δk of
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the N-cycle, such that tk−tk−1 = δk�(tN−t0), we have bk ¼ b
dk . In many applied settings, the N-

cycle represents a year, and β, the discount factor over N intervals, is then the annual discount

factor. The extension to varying interval length is important, not least because it allows for

reductions in dimensionality. For example, consider a problem that is formulated on an

annual level, but where one month is different such that the problem is periodic. Without the

option of varying the interval length, the model will require N = 12 to rigorously capture the

periodic feature. With varying interval length, N = 2 suffices.

3. Examples of applications

In this section, we provide two examples that illustrate the use of our method and the proposed

numerical scheme. We first return to the problem that led to the above developments: a

dynamic, infinite-horizon, discounted discrete-time optimization problem with a periodic fea-

ture. In addition to demonstrating our method, the first example also shows the relevance and

potential importance of considering periodic features in operational decision problems. The

example has two intervals with different prices. In the second example, we consider a simple,

dynamic game where two agents with different production parameters supply a good to a com-

mon market. This example can be solved exactly and we illustrate that the iterative solution

converges to the exact solution. It also illustrates a different type of application than that in the

first example.

3.1 Periodic price in a resource model

We consider a management model for a renewable capital stock with periodic variations in the

price parameter. The question becomes how to shift resource extraction toward the high-price

intervals to maximize the net present value of returns. We compare the optimal periodic solu-

tion with solutions for models where the price is assumed constant and nonperiodic. The

equation governing the stock evolution is

xkþ1 ¼ FðxkÞ � uk ð14Þ

where xk is the capital level at the beginning of interval k, and uk is the level of exploitation.

Natural growth, represented by the function F(xk) = δxk/(1−xk(1−δ)/ω), with δ = 4 and ω = 1,

is a version of the Beverton–Holt growth function. δ is the growth rate and ω is the saturation

point where F(xk) =xk. Beyond the saturation point (xk>ω), the natural surplus growth (F(xk)

−xk) is negative. The growth function is identical in all intervals and thus carries no interval

subscript. The return function for interval k is a constant relative risk aversion utility function:

Pk xk; ukð Þ ¼ pk
u1� g

k

1 � g
ð15Þ

The parameter pk is an interval-specific price, and γmeasures the degree of relative risk aver-

sion. The example has two intervals with different prices, where p1 = 1.0 and p2 = 0.2. Further-

more, γ = 1/2. We consider the capital left for future growth, yk = xk+1, as our decision variable.

That is, uk is eliminated with uk = F(xk)−yk. With the price entering linearly as in Eq (15), the

decision is independent of price in the nonperiodic problem (that is, if p1 = p2, the price

parameter can be factored out of the decision problem). Thus, the periodic problem poses a

more complex problem than that posed by the “associated nonperiodic problems.”

We solve equation set (5) numerically, subject to Eqs (14) and (15), and derive periodic

optimal feedback decision rules as functions of the capital level at the beginning of each inter-

val: y1(x) and y2(x). Fig 2 reports these decision rules together with the replacement curve (the

45-degree line, y = x). If the curves of the decision rules are below the replacement curve, the
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capital level is effectively reduced in the given interval and for the given capital level. The

replacement curve also serves as the identity map used to transfer the state between subsequent

periods (yk = xk+1). For comparison, the figure also reports the solutions to the two nonperio-

dic problems (with p1 = p2, one case with prices equal to 1.0 and the other with prices equal to

0.2). Because the price enters linearly in the objective function, the solutions to the nonperio-

dic problems are, as mentioned above, independent of the price and thus identical. Finally, the

figure reports a sample time path for the stock level under the periodic solution, tracing out

the stock level from interval to interval.

The decision rules for the periodic problem show significant and considerable discrepancies

between intervals. In intervals with a high price (p1), relatively small levels of capital are left for

future growth (see the blue curve in Fig 2). Contrarily, in intervals with a low price (p2), rela-

tively high levels of capital are left for the future (see the red curve in Fig 2). Again, when the

price is nonperiodic, the decision rule is invariant to the price level and, here, lies between the

periodic decision rules (see the dashed red and blue curves in Fig 2). The sample time path

starts at a chosen initial stock level (x0 = 0.1), moves to the stock level in the first interval on

the identity map via the first interval decision rule (x1 = y1(x0) = 0.138), then moves to the

stock level in the second interval via y2 (x2 = y2(x1) = 0.365), then moves to the stock level in

the third interval via y1 again (x3 = y1(x2) = 0.199), and so on. The sample time path shows that

the system under the periodic solution moves toward a stable two-period limit cycle and exhib-

its a more complex behavior than what can be discerned from the two nonperiodic problems

that are associated with the periodic problem. The stock values of the limit cycle are

Fig 2. Decision rules for the periodic problem example. Decision rules for the periodic problem (blue solid curve y1,

red solid curve y2), nonperiodic problems with prices 1.0 (blue dashed curve) and 0.2 (red dashed curve), replacement

curve (black dashed curve), and sample path with initial x0 = 0.1 (thin black path).

https://doi.org/10.1371/journal.pone.0260257.g002
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approximately xk = 0.208 at interval 1 times (high price) and xk = 0.463 at interval 2 times (low

price). In the associated nonperiodic problems with both the high and the low price, the stock

level approaches xk = 0.323.

This example suggests that taking periodicity into account has significant practical implica-

tions. A more elaborate case was studied by Ni and Sandal [4], who examined a commercial

fishery management problem involving a seasonal and regional separation of the spawning

stock from the remaining stock. The problem is a two-state case with two intervals of 3 and 9

months. They implemented a special case of the present approach and were the first ones to

demonstrate that a no-harvest region and a seasonal closure can develop naturally as a conse-

quence of a first-best feedback policy. Another example was examined in Kvamsdal et al. [1],

which demonstrated the potential pitfalls of a heuristic approximation of a periodic feature in

a dynamic decision problem.

3.2 A dynamic game of supply

In our second example, we illustrate a different type of application than that considered in the

first example. We consider a simple dynamic game where two agents with different cost

parameters supply a good to a common market. In this market, the agents face a price that

they both influence through their supply. The agents thus play a game where the optimal sup-

ply of each agent depends on the supply of the opposite agent. The example is designed such

that it can be solved exactly for a given set of parameter values. We use this feature to compare

the iterative solution—based on our theorem—with the exact solution.

The index k has a different role in this example than in the periodic problem formulation

(Fig 1). In the periodic problem, k refers to time intervals; however, in this dynamic game

problem, k refers to agents. As we will see, the equations governing the solution of the dynamic

game have the same structure as that of the equations governing the solutions of periodic prob-

lems, and thus, our approach is applicable.

Each agent k (k = 1,2) owns a capital stock xk, which has the following dynamics:

xk;tþ1 ¼ aþ bxk;t � uk ð16Þ

The production uk is supplied to the market where it obtains the price 1−∑iui, i = 1,2. That is,

the common price depends on the total supply to the market. The agents have private costs

Ck(xk) = ck+dkxk. Then, the objective function of agent k is revenues minus costs,Pk(xk, u) =

(1−∑iui)uk−Ck(xk). Agent k solves the following problem:

VkðxÞ ¼ max
uk�aþbx

fPkðx; uÞ þ bkVkðx
0Þg; x0 ¼ aþ bx � uk; k 2 f1; 2g ð17Þ

That is, each agent maximizes the net present value of present returns, Pk(x, u), where the

price they obtain depends on the total market supply, plus the discounted future value of their

capital stock. Eq (17) defines an equation set that can be solved using our iterative approach.

The significance of this example is that we can obtain a formal solution that yields an exact

solution for certain parameter values. Thus, we can confirm that our contraction approach

yields the correct solution. To obtain the formal solution, we make an educated guess that the

value functions take the quadratic form

VkðxÞ ¼ y1;kx
2

1
þ y2;kx1x2 þ y3;kx

2

2
þ y4;kx1 þ y5;kx2 þ y6;k ð18Þ

where θi,k are coefficients to be determined. Value functions of the second order is reasonable

because the involved expressions (objective functions and dynamic constraints) are at most of

the second order.
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The first-order conditions can be solved to derive expressions for the decision rules of the

agents, yielding a solvable set of equations for the coefficients θi,k. That is, we take the deriva-

tive of the argument of the maximum operator in (17), substitute in Eqs (16) and (18), and put

the resulting expressions equal to zero. These equations provide a solvable set of equations for

the coefficients in Eq (18). The expression for Vk(x) in (18) has six unknown coefficients for

each of the two values of k, and we can derive 12 equations that define the solution. The first-

order conditions also provide expressions for the decision rules uk defined in terms of the coef-

ficients θi,k. The resulting algebra is of limited interest; the interested reader can, in the Supple-

mental material, find pseudocode to solve the problem in Maple (or the algebraic solver of

choice). Below, we only report the exact solution and convergence measures for the iterative

solution.

For a numeric illustration, we choose the following set of parameters:

½a; b; c1; c2; d1; d2; b1; b2� ¼ ½0:5; 0:5; 0:4; 0:3; 0:2; 0:1; 0:95; 0:8�

For these parameters, we obtain the following exact solution (reporting only the first two non-

zero digits):

V1ðxÞ ¼ 0:019x2
1
� 0:0095x1x2 þ 0:0012x2

2
þ 0:072x1 � 0:018x2 þ 1:0

V2ðxÞ ¼ 0:0041x2
1
� 0:0090x1x2 þ 0:0050x2

2
� 0:046x1 þ 0:056x2 þ 0:39

ð19Þ

The coefficients in Eq (19) show that the value function for each agent increases with their pri-

vate capital stock and decreases with the capital stock of the opposite agent. The corresponding

optimal decision variables are defined in terms of the coefficients in equation set (19) and are

given as the following feedback formulas:

u1ðxÞ ¼ 0:12x1 � 0:030x2 þ 0:13

u2ðxÞ ¼ � 0:061x1 þ 0:064x2 þ 0:26
ð20Þ

That is, the optimal supply of each agent increases with their own capital stock and decreases

with that of the other agent. The two supply functions in (20) are illustrated in Fig 3. The

numeric approximation obtained from the contraction scheme closely matches the solutions

in equation sets (19) and (20). To obtain the contraction solution, we use a rough uniform grid

(50×50 on the unit square, [0,1]2) and apply five main policy iterations, each followed by 1,000

value iterations. The largest numeric deviations from the exact solutions are as follows:

V1 : 0:0029; V2 : 0:00029; u1 : 0:00032; u2 : 0:00038

These deviations are small with regard to the grid size, and we conclude that the iterative solu-

tion has converged to the exact solution.

4. Conclusions

We arrived at the above theorem while working on periodic optimization problems. The

major innovation that facilitated our insights was the consideration of a vector function rather

than a scalar value function. The use of a vector function and our theorem above may be useful

in applications other than periodic optimization problems. In what follows, we will discuss

some potential applications and how problems can be formulated for our method to apply. We

presume here that (8) is a suitable definition of the contraction operator, but depending on the

application, the definitions in (7) or (9) may be better suited.

An application closely related to periodic optimization problems is finite-time optimization

problems. These problems are typically solved by backward induction, but such solutions may
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be cumbersome to conciliate with given initial values. In contrast, our approach can be directly

applied, where each interval is represented by an element in the vector function. Any form of

nonautonomy can be accommodated (as with backward induction). Thus, for interval k, we

have

VkðxÞ ¼ max
u2GkðxÞ

Ezf
bPkðx; u; zÞ þ bkVkþ1ðx

0Þg; k 2 f1; . . . ;Ng ð21Þ

With VN+1(x) = G(x) representing the salvage value, the system of equations can be interpreted

as a finite-time optimization problem with N time intervals. Our corollary applies and shows

that we have a contraction problem that, in general, can be solved. Solutions are on a general

feedback form that is readily conciliated with a given initial value.

As one of our examples above demonstrates, some game theory problems can also be

addressed using our methodology. We consider dynamic games over infinite time with non-

cooperative (self-serving) behavior of N agents, but where the decisions of other agents influ-

ence the return of each individual agent. Many common-pool resource games [15] fall within

this type of games. For agent k, the problem is to maximize over one’s own decisions while tak-

ing account of the decisions of others on both the current and future returns. Furthermore, the

decisions may depend on, or be restricted by, a state vector x. Elements in the state vector may

be common or private goods. The problem can be formulated as follows:

VkðxÞ ¼ max
uk2GkðxÞ

Ezf
bPkðx; uk; u� k; zÞ þ bkVkðx

0Þg; k 2 f1; . . . ;Ng ð22Þ

The notation bPkðx; uk; u� k; zÞ explicitly indicates that the return for agent k depends on the

Fig 3. Optimal supply for the dynamic game example. Optimal supply for agent 1 (blue surface) and agent 2 (red

surface) in the dynamic game.

https://doi.org/10.1371/journal.pone.0260257.g003
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agent’s own decisions (uk) and those of all other agents (u−k). The fact that the return function

depends on the entire vector of decision variables ([u1,. . .,uN]) necessitates the consideration

of a vector function ([V1,. . .,VN]). The proof of the corollary can be modified (with i = k) to

show that this definition of the vector function can have a unique feedback solution. It relies

on the specificities of the game and whether they imply the properties required for the various

sets involved.

While known methods are applicable to decisions under uncertainty over future states,

some decisions under risk of regime changes can be addressed using our approach. We think

of regime changes as imposing significant changes to conditions for growth or production

(utility). Say there are N different regimes, and under a given regime, the return is given by

bPkðx; u; zÞ, while time evolution of the state variable may be regime-dependent and given by

Fk(x,u,z). Furthermore, let ωk(x,u,z) denote a vector of probabilities for transitioning from

regime k to one of the N regimes in the next period. These probabilities may differ under the

different regimes and may further depend on the state variable, decision variable, or the sto-

chastic component. Under regime k, the decision problem is as follows:

VkðxÞ ¼ max
u2GkðxÞ

Ez
bPkðx; u; zÞ þ bk

X

i

okiðx; u; zÞViðx
0

Þ
� �

; k 2 f1; . . . ;Ng ð23Þ

Here, we sum over i = 1..N. The probabilities sum to one, such that βk<1 ensures that the

above theorem holds. From this formulation, we see that the value for any given regime

depends on a weighted sum of the elements in the value vector function. While the other sug-

gested applications are clearly reminiscent of the original Bellman problem and can perhaps

be perceived as “Bellman in a higher dimension,” considering a linear combination of the

value vector function is a fundamentally different structure.

A general solution method to solve periodic optimization problems is potentially a valuable

tool in a wide range of settings. The renewable capital example above suggests that complex

and atypical dynamics arise for a relatively modest deviation from the autonomous (nonperio-

dic) formulation. Fig 2 shows that the optimal periodic solution approaches a long-run limit

cycle. Moreover, abstracting from periodicity—for example, by using heuristic approaches,

such as considering an average effect rather than a periodic effect—can lead astray. Further

examples show that such heuristics have severe, adverse consequences if management deci-

sions are based on an autonomous approximation while agents, subject to these decisions,

observe and adapt to the periodic phenomenon [1]. Inter-annual or within-season inefficien-

cies that agree well with these examples are observed in empirical studies of fisheries and have

gained considerable attention [11, 12].

Periodicity in applied work in bioeconomics is often treated as short-term (intra-seasonal)

dynamics, where considerable progress has been made in developing models to analyze inter-

annual or within-season inefficiencies [16, 17]. In these models, natural population growth

and discounting processes are frequently ignored. As indicated by Birkenbach et al. [17], these

processes are more significant for the inter-season perspective, as developed in Kvamsdal et al.
[1, 3]. Our results make it possible to merge these developments and develop models that

account for intra- as well as inter-seasonal dynamics.

Our theorem is an intuitive extension of the Bellman result. The classical Bellman result is

valid for a scalar value function. The periodic problems given in equation set (5) and implied

by (7), (8), and (9) are non-autonomous, their value functions are autonomous vector func-

tions, and the Bellman result is not applicable to these problems. But when the periodic cycle is

perceived as the time unit, periodic problems can be perceived as autonomous in a higher

dimension. As our suggestions for applications to dynamic games (equation set (22)) and
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regime shifts (equation set (23)) demonstrate, our result applies to further problems with a

genuinely different structure than that of the classical Bellman problem.

Supporting information

S1 File. Pseudo-code for Example 1.

(PDF)

S2 File. Code for Example 2.

(PDF)

S1 Appendix.

(DOCX)

Author Contributions

Conceptualization: Leif K. Sandal, Sturla F. Kvamsdal, José M. Maroto, Manuel Morán.
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