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Introduction: Early breast carcinomas can be e�ectively diagnosed and

controlled. However, it demands extra work and radiologist in China often

su�er from overtime working due to too many patients, even experienced

ones could make mistakes after overloaded work. To improve the e�ciency

and reduce the rate of misdiagnosis, automatic breast diagnosis on Magnetic

Resonance Imaging (MRI) images is vital yet challenging for breast disease

screening and successful treatment planning. There are some obstacles that

hinder the development of automatic approaches, such as class-imbalance of

samples, hardmimics of lesions, etc. In this paper, we propose a coarse-to-fine

algorithm to address those problems of automatic breast diagnosis on multi-

series MRI images. The algorithm utilizes deep learning techniques to provide

breast segmentation, tumor segmentation and tumor classification functions,

thus supporting doctors’ decisions in clinical practice.

Methods: In proposed algorithm, a DenseUNet is firstly employed to extract

breast-related regions by removing irrelevant parts in the thoracic cavity. Then,

by taking advantage of the attention mechanism and the focal loss, a novel

network named Attention Dense UNet (ADUNet) is designed for the tumor

segmentation. Particularly, the focal loss in ADUNet addresses class-imbalance

andmodel overwhelmed problems. Finally, a customized network is developed

for the tumor classification. Besides, while most approaches only consider one

or two series, the proposed algorithm takes in account multiple series of MRI

images.

Results: Extensive experiments are carried out to evaluate its performance

on 435 multi-series MRI volumes from 87 patients collected from Tongji

Hospital. In the dataset, all cases are with benign, malignant, or both

type of tumors, the category of which covers carcinoma, fibroadenoma,

cyst and abscess. The ground truths of tumors are labeled by two

radiologists with 3 years of experience on breast MRI reporting by

drawing contours of tumor slice by slice. ADUNet is compared with other

prevalent deep-learningmethods on the tumor segmentation and quantitative

results, and achieves the best performance on both Case Dice Score

and Global Dice Score by 0.748 and 0.801 respectively. Moreover, the

customized classification network outperforms twoCNN-M basedmodels and

achieves tumor-level and case-level AUC by 0.831 and 0.918 respectively.
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Discussion: All data in this paper are collected from the same MRI device,

thus it is reasonable to assume that they are from the same domain and

independent identically distributed. Whether the proposed algorithm is robust

enough in a multi-source case still remains an open question. Each stage of

the proposed algorithm is trained separately, which makes each stage more

robust and converge faster. Such training strategy considers each stage as a

separate task and does not take into account the relationships between tasks.

KEYWORDS

breast diagnosis, computer-aided diagnosis, magnetic resonance imaging, deep

learning, multi-series

1. Introduction

As one of the leading causes of deaths, breast cancer is the

most common cancer for women globally. Moreover, breast

cancer tends to show a high incidence, especially for people

with high-risk factors, such as nulliparity, use of hormonal

replacement therapy, strong family history, and so on Torre

et al. (2017) and Bray et al. (2018). Once reaching a certain size,

malignant breast tumors are known to grow their own blood

supply network, which enables the cancer to grow continually.

Although the non-metastatic breast cancer has a long survival

time, it will be incurable once metastasis occurs. Therefore, early

detection of breast cancer is a crucial step in the treatment of this

disease (Kalli et al., 2018).

Medical imaging plays an important role in reducing the

mortality rate of breast cancer. Through screening, diagnosis,

image-guided biopsy, treatment planning and treatment

response monitoring, early detection of breast cancer can be

facilitated (Yuan et al., 2010). Compared with other medical

imaging techniques, Magnetic Resonance Imaging (MRI)

shows advantages of high resolution, no radiation, multi-

directional and multi-functional imaging. Furthermore, MRI

has demonstrated its worth by showing its superiority in

categorizing lesions, assessing morphological and architectural

characteristics, as well as assessing kinetic parameters (Frana

et al., 2017). Nevertheless, analyzing MRI images is time-

consuming and requires experienced radiologists. To make

things worse, with the widespread application of MRI, it

is always short of experienced radiologists. Therefore, it is

inevitable to introduce automatic breast diagnosis on MRI

images to assist radiologists.

Some studies have extracted hand-crafted features of lesions

to identify the genomic composition of breast tumors and the

malignancy probabilities (Zheng et al., 2007; Bhooshan et al.,

2010; Vignati et al., 2011). Although those studies have reported

satisfactory results within their datasets, the applicability of

those methods is limited due to the varied breast MRI images

caused by different MRI protocols and breast variations among

patients. Besides, some studies have applied deep learning

techniques, especially Convolutional Neural Networks (CNNs)

(Chen et al., 2019), to extract deep semantic features fromwhole-

volume MRI images (Maicas et al., 2018; Luo et al., 2019; Zhou

et al., 2019). Deep features are beyond human understanding, so

it is critical to develop new mechanisms in deep learning based

breast diagnosis to guarantee accurate segmentations, which

have been taken into consideration during the development of

hand-crafted features.

As the fast growth of deep learning, CNNs, especially Fully

Convolutional Neural Networks (FCNs), have been proven

to be quite effective for biomedical image segmentation and

require few hand-crafted features or prior knowledge (Long

et al., 2015; Ronneberger et al., 2015; Li et al., 2018b). In this

scenario, some studies have proposed two-stage approaches,

which firstly segment breast tumors through a FCN and then

identify cancer candidates at the second stage. However, it is a

common challenge for FCNs that the imbalanced distribution

of positive (tumors) and negative (non-tumor regions) samples

could overwhelm the model (Christ et al., 2017). In addition, as

shown in Figure 1, some hard samples, like inapparent tumors

and the tumor necrosis which are different from common

ones, make breast tumor segmentation more challenging. By

far, very few deep learning based methods, which address the

aforementioned problems, are developed for the breast tumor

segmentation.

In this paper, we develop a coarse-to-fine algorithm based

on deep learning for breast diagnosis on MRI images. The main

idea is about a divide-and-conquer algorithm, which divides

the diagnosis process into several single target and progressive

tasks. At the first stage, a DenseUNet model (Li et al., 2018b)

is employed to generate breast masks so that irrelevant regions

inside MRI images can be removed to obtain breast regions. At

the second stage, given breast regions as inputs, we present the

Attention Dense UNet (ADUNet) by implementing attention

mechanisms to generate tumor segmentation results. To deal

with class-imbalance and hard samples problems, we further

introduce the focal loss (Lin et al., 2017), an effective technique

for balancing object samples, to supervise ADUNet during the

training. At the third stage, with the help of breast tumor
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FIGURE 1

Examples of hard samples. (A) An example with inapparent tumor; (B) An example with the tumor necrosis. The left one of each pair is the

original image, and the right one is the segmentation annotation.

segmentation results from the previous stage, a customized

classification network is designed to identify whether tumors are

benign or malignant.

The specific contributions and highlights are as follows:

• We propose a coarse-to-fine algorithm for breast diagnosis

on MRI images, which consists of breast segmentation,

tumor segmentation, and tumor classification.

• ADUNet, a network enhanced by attention blocks and the

focal loss with DenseUNet as the backbone, is proposed

for the breast tumor segmentation to overcome the

class-imbalance and overwhelmed model problems and

improves the performance significantly.

• Suggested by experienced radiologists, rather than one or

two series, 4 series of MRI images are collected as the input

of ADUNet.

• A network-based binary classifier is constructed to predict

tumor-level classification results and case-level (also known

as patient-level) classification results are deduced from

tumor-level ones.

2. Related work

The tumor segmentation is a crucial step in breast

diagnosis on MRI images. Many semi-automatic methods,

such as Fuzzy C-Means (FCM) (Chen et al., 2006) and active

contour models (Yao et al., 2009), are often employed in

tumor segmentation tasks. Those methods cannot directly

distinguish tumors from MRI volumes, because they require

initial cluster centers or a rough initial contour of breast tumors

by radiologists. Zheng et al. (2007) proposed to use a graph-

cut-based method, while it still needs a rough segmentation

from manual annotations. Ashraf et al. (2013) developed a

multichannel Markov Random Field (MRF) framework for the

tumor segmentation. In this framework, kinetic feature maps are

derived from breast Dynamic Contrast-Enhanced (DCE) MRI

as observation channels in MRF, where the slices containing

tumors are selected according to experiments. Fully automatic

methods can perform breast tumor segmentation tasks by

training a pixel-wise classification through supervised learning.

For example, Support Vector Machine (SVM) and Bayesian

classifier are adopted for breast tumor segmentation tasks

on thermogram images (Dinsha and Manikandaprabu, 2014).

Jiang et al. (2012) proposed a method that uses an AdaBoost

classifier on Harr-like features to detect a preliminary set of

tumor regions, which are further screened with a SVM classifier

by using quantized intensity. However, most conventional

machine-learning methods demand manual features or prior

knowledge, so the performance will degrade inevitably when

applied in complex scenarios. Recently, deep neural networks,

which do not require any manual extracted feature or prior

knowledge, have been proven to be effective for biomedical

image segmentation (Long et al., 2015; Yuan et al., 2017; Zhang

et al., 2017).

Also, some deep learning based Computer-Aided Diagnosis

(CAD) systems for the breast diagnosis have been proposed

(Piantadosi, 2018; Herent et al., 2019). Piantadosi (2018)

proposed a hierarchical architecture by implementing modules

for breast segmentation, attenuation of motion artifacts,

localization of lesions and final classification according to

their malignancies. Herent et al. (2019) developed a deep

learning model that simultaneously learnt to detect lesions

and characterize them. Nonetheless, these methods either still

use conventional machine learning methods rather than deep

learning methods or consider only a few series.

Deep neural networks achieve the purpose of segmentation

by performing pixel-wise classification and can be trained in an

end-to-end way. FCNs are often regarded as baseline models for

segmentation tasks (Long et al., 2015). UNet (Ronneberger et al.,

2015) is a well developed FCN and improves the segmentation

performance by connecting intermediate encoders and decoders

to learn context information. Yu et al. (2017) proposed a 3D

CNN with mixed residual connections to segment the prostate

automatically in MRI volumes. Li et al. (2018b) developed a
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hybrid densely connected UNet named H-DenseUNet, which

consists of a 2D DenseUNet and a 3D DenseUNet. To a

certain extent, such combination can address the problems

that 2D convolutions could ignore the volumetric contexts and

3D convolutions may bear heavy computational cost. These

methods combine the low-level features with high-level features

directly, but neglect the possibility that the global context

information embedded in high-level features could guide the

low-level feature extraction conversely.

With the boost of researches and applications in deep

learning, attention mechanism has been widely used in

knowledge graphs (Wen et al., 2017), Natural Language

Processing (NLP) (Yin et al., 2016), and image analysis (Mnih

et al., 2014; Wang et al., 2017; Li et al., 2018a; Oktay et al.,

2018). Attention models can be categorized into hard-attention

and soft-attention depending on whether it is differentiable or

not. Mnih et al. (2014) presented a hard-attention model which

can adaptively propose regions for processing. But the hard-

attention models have difficulties in training the model, because

the standard back-propagation requires differentiable activation

functions. To address this problem, soft-attention models are

proposed and employed more frequently. Li et al. (2018a)

developed a channel-wise attention model to provide global

information captured with high-level features, which guide low-

level features to capture category localization details for natural

image segmentation. Oktay et al. (2018) proposed an spatial-

wise attention model and integrated it into UNet architecture

for multi-class CT abdominal image segmentation.

3. Methods

All experiments including all relevant details in this paper

have been approved by Tongji Hospital, Tongji University

School of Medicine and performed in accordance with relevant

guidelines and regulations. In addition, informed consent was

obtained from all subjects.

We propose a coarse-to-fine algorithm named ADUNet for

automatic breast diagnosis on multi-series MRI images by using

deep learning with attention mechanisms and the focal loss

(see Figure 2). Firstly, we train a DenseUNet model to generate

breast masks on Turbo Spin Echo (TSE) modality (Stage 1).

TSE imaging, also known as Fast Spin Echo (FSE) imaging, is

a commercial implementation of the Rapid Acquisition with

Refocused Echoes (RARE) technique (Hennig et al., 1986). The

DCE series have been registered with TSE modality in the

scanning machine, hence we then align the two modalities by

simply resizing the breast masks to the same size of DCE series.

Subject to breast masks in DCE images, ADUNet is trained

to predict regions of tumors (Stage 2). At last, a customized

classification network is developed to distinguish benign or

malignant tumors (Stage 3). The following sections present

detailed descriptions for each stage.

3.1. Breast segmentation

With the prior knowledge that breast tumors only exist

in the breast gland, it is intuitive to firstly generate a Region

Of Interest (ROI) that only contains the mammary region.

Inspired by Thakran et al. (2018), we initialize breast masks by

automatic landmark detection technique based on TSE images.

But its performance is not robust and cannot completely remove

irrelevant organs in some cases. Therefore, we choose the images

with well segmented masks and ask experienced radiologists to

fine-tune on them to build a breast segmentation dataset, which

is then utilized to train a FCN to obtain better segmentation

results.

As an improved FCN with the encoder-decoder structure,

UNet can learn context information by connecting intermediate

encoders and decoders. But its encoders are shallow and the

learning ability is limited. Hence, we employ a DenseUNet (Li

et al., 2018b), which uses a DenseNet (Huang et al., 2017) as

the encoder and adopts UNet-like connections. DenseNet is a

powerful network for feature extraction. It consists of blocks

with repeated dense connections of different output sizes. In

each tightly connected block, there are direct connections from

any layer to all subsequent layers. One advantage of dense inter-

layer connectivity is lower output dimensions than traditional

networks to avoid learning redundancy. Furthermore, the dense

connected path ensures themaximum information flow between

layers, thus improving the gradient flow and relieving the

burden of finding the optimal solution in a very deep neural

network. The UNet-like connections can unite the encoders

and decoders to preserve low-level information when restoring

resolution. The network of breast segmentation is trained by a

Dice loss (Milletari et al., 2016) as follows:

LDice = 1−

∑

x∈� 2p(x)y(x)
∑

x∈� p(x)p(x)+
∑

x∈� y(x)y(x)
, (1)

where � denotes the position space, p(x) ∈ [0, 1] is the

probability of positive samples at position x in the predictions,

and y(x) ∈ {0, 1} is the corresponding ground truth.

3.2. Tumor segmentation

The shape and size of tumor are critical for the breast

disease analysis, so the tumor segmentation is a vital step of the

proposed algorithm and will be depicted in this section.

Image representation: Although irrelevant regions can be

excluded by breast masks predicted by the trained DenseUNet,

there are still a lot of negative regions, leading to a serious class-

imbalance problem. Thus, images are cropped to reduce negative

regions and more details can be found in the experimental

section. Then, we employ the image representation as the

same as Amit et al. (2017) for the cropped regions of DCE

images, where a multi-channel sample is constructed to capture
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FIGURE 2

An illustration of the proposed algorithm for automatic breast diagnosis on multi-series images.

anatomical and metabolic characteristics. Figure 3 shows an

illustration of the 3-channel image representation, where Ibase

denotes the pre-contrast T1 image, Ipeak is the image at peak

enhancement, Iearly is the initial response image after contrast

injection, and Idelayed is the delayed enhancement which is

usually the last acquired temporal series. All the 4 series are raw

images exported from the sameMRI scanner directly. Hence, the

first channel is Ipeak, the second channel is the T1-subtracted

image at peak enhancement Ipeak-Ibase, and the last channel is

the contrast washout image Iearly-Idelayed.

Attention block:Hereinafter, the meanings of encoders and

decoders are the feature extraction stage and the generating

stage of semantic segmentationmasks in a network, respectively.

In an encoder, a feature map is gradually reduced to obtain a

large receptive field and semantic contextual information. In this

way, high-level feature maps may catpure abundant semantic

information, which is harmful for recovering spatial details of

small objects. Therefore, for decoders, most methods either

employ UNet-like connections to gradually recover the shape

of objects (Ronneberger et al., 2015) or introduce an object

localization model which highly increase the number of training

parameters (Roth et al., 2017; Khened et al., 2019). Recent

studies have shown that attention mechanisms can enhance

feature responses in foreground regions without an additional

model (Wang et al., 2017; Oktay et al., 2018). Here, we develop

an attention block which combines the channel-wise attention

with the spatial-wise attentionmechanisms. Attention blocks are

applied in upsampling blocks of decoders. As shown in Figure 4,

the resolution of the low-level feature maps l is reduced to the

resolution of high-level feature maps h by convolving a 3 × 3

kernel with stride 2. The high-level feature maps are performed

by a convolutional layer with a 1×1 kernel to reduce the number

of its channels and added with the low-level feature maps. To

generate spatial-wise attention coefficient maps within a single

channel, the fused feature maps go though a convolutional layer

with a 1×1 kernel and stride 1, and a sigmoid function. Then, the

resolution of the coefficient map is doubled by the bidirectional

interpolation (the green part in Figure 4). On the other hand, the

channel-wise attention performs global average pooling on high-

level feature maps to provide abundant categorical information

for enhancing regions of interest in low-level feature maps. In

detail, the information flows through a convolutional layer with

a 1× 1 kernel and a sigmoid function to generate a channel-wise

attention coefficient vector at size 1× 1× c, where c denotes the

number of channels of low-level feature maps (the red part in

Figure 4). Finally, the low-level feature maps are multiplied by

the spatial-wise attention coefficient map and the channel-wise

attention coefficient vector. As a result, the regions of interest in

the low-level feature maps are highlighted under the guidance

of high-level feature maps. Afterwards, the high-level feature
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FIGURE 3

An illustration of the image representation with three channels. (A) The first channel:Ipeak; (B) The second channel:Ipeak-Ibase; (C) The third

channel:Iearly-Idelayed.

FIGURE 4

An illustration of attention blocks and upsampling blocks.

maps are upsampled and concatenated with the weighed low-

level feature maps. The concatenated feature maps are fed into

a convolutional block which consists of a convolution layer

with a 3 × 3 kernel, a Group Normalization (GN) (Wu and

He, 2020) layer and a ReLU activation function to fuse context

information. Furthermore, dropout layers are attached after each

convolution block to prevent overfitting.

ADUNet: The decoder is composed of sequential

upsampling blocks and recovers spatial information gradually.

The attention blocks are interposed into a deep neural

network to construct ADUNet (as shown in Figure 5) for

tumor segmentation. The purple blocks and aqua-green

blocks denote the feature maps generated by encoders and

decoders, respectively. The numbers on the top and bottom

of blocks denote the number of channels. It is worth noting

that the input l of Upsampling Blocks (UBs) is the output

of the convolutional layer with a 1 × 1 kernel in Transition

Layers (TLs), whose purpose is to reduce the number of

feature maps, instead of the output of Downsampling Blocks

(DBs).

Focal loss: The imbalanced distribution of positive and

negative samples in breast MRI images can overwhelm the

model during training. Furthermore, some hard samples

like inapparent tumors, are difficult to distinguish, even

for experienced radiologists. Both problems could make the

loss function converge to a local optimal and reduce the

generalization ability of the model (Lin et al., 2017). Therefore,

we take advantage of the focal loss to address the extreme

class imbalance and prevent too many easy samples from

overwhelming the model during training. In this paper,
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FIGURE 5

An illustration of ADUNet. (A) The architecture of ADUNet; (B) Dense Block (DB(n)); (C) Convolutional Block; (D) Transition Layer (TL); (E)

Upsampling Layer (UL).

the focal loss in the tumor segmentation can be defined

as:

Lfocal =
∑

x∈�

(−α · (1− p(x))γ · y(x) log p(x)

−(1− α)p(x)γ (1− y(x)) log(1− p(x)))

(2)

where α ∈ [0, 1] is a factor to balance the class frequencies.

The parameter γ > 0 controls the contribution of hard and

easy samples to the loss. For a positive sample, the larger p(x)

is, indicating a simple sample, the smaller the corresponding

(1− p(x))γ is, thus reducing its contribution to the loss. The

focal loss not only solves the imbalance between positive samples

and negative samples, but also adaptively tunes the contribution

of hard and simple samples in the loss, thus leading to a more

general model.

3.3. Classification of tumors

The ROIs of tumors are obtained by circumscribed

rectangles of the segmentation results predicted by ADUNet.

A customized network is developed as a tumor-level classifier

(as shown in Figure 6). The designed network consists of

3 convolutional layers with a 5 × 5 kernel and a ReLU

activation function, pooling layers and fully-connected layers

at the end. The same image preprocessing described in Section

3.2 is applied here and 3-channel input images are resized

to 32 × 32 × 3. For case-level classification, all tumors are

collected to train the model, so that it can learn features of

samples in various sizes. The network is trained with the cross

entropy loss function. At the testing phase, only a portion of

predicted tumors in each case are selected according to sizes

of tumors. Because small tumors are rare in training samples

and may feed noisy data to the classification model. Besides,

fewer tumor candidates also reduce the testing time, a sensitive

performance index in clinical practice. The case-level category

is determined by the results predicted from the majority of

tumors.

4. Results

Experiments are conducted on the breast MRI dataset

collected from Tongji Hospital, Tongji University School of
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FIGURE 6

An illustration of the classification network.

Medicine. The dataset contains 435 volumes collected from

87 patients and is divided into the training set of 70 patients

and the test set of 17 patients. As summarized in Table 1, all

cases, consisting of 43 benign cases and 44 malignant cases,

are scanned by Siemens Verio 3.0t MRI and histopathologically

confirmed by ultrasound guided biopsy or radical mastectomy

from January 2013 to December 2017. The benign cases include

25 cases of fibroadenoma, 8 cases of cyst, 7 cases of inflammation

and 3 cases of abscess, while the malignant cases include

14 cases of carcinoma in situ, 23 cases of invasive ductal

carcinoma and 7 cases of invasive lobular carcinoma. For

each case, raw data contain 1 TSE and 4 DCE series which

are acquired at different times after intravenous injection of

a contrast agent. About annotations, two radiologists with 3

years of experience on breast MRI reporting label ground truths

of tumors by drawing contours of tumors slice by slice and

labeling them by different colors (i.e., red for malignant tumors

and green for benign ones), but the breast masks are not

directly provided for saving the workload of radiologists. To

address this problem, the breast masks are firstly generated by

an unsupervised method proposed in Thakran et al. (2018)

on TSE series. Then 1421 well-performing slices are selected

and fine-tuned by radiologists as the training set for the

further supervised learning on breast segmentation. In the

second stage, the generated breast masks are interpolated to

the size of DCE series, i.e., 448 × 448 × 140. The breast

regions can be easily obtained by element-wise multiplication

between DCE images and binarized breast masks. To reduce

areas of negative regions, all images are further cropped

to the size 288 × 448 × 140 as shown in Figure 2. At

the classification stage, tumor regions are given by ground

truths during training, while segmentation predictions from

the previous stage are used instead during testing. All ROIs

of tumors is resized to the size 32 × 32 × 3 to keep the

input dimension fixed, which is required by most classification

networks.

TABLE 1 Statistics of the dataset.

Category Cases

Benign Fibroadenoma 25

Cyst 8

Inflammation 7

Abscess 3

Malignant Carcinoma in situ 14

Invasive ductal carcinoma 23

Invasive lobular carcinoma 7

4.1. Evaluation metrics

Dice Similarity Coefficient (DSC) is commonly used for the

quantitative analysis of the medical image segmentation. To

evaluate the performance of tumor segmentation from the case

level and global level perspectives, Case Dice Score and Global

Dice Score are employed and defined, respectively as follows:
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(3)

where pji ∈ {0, 1} and gji ∈ {0, 1} denote the category at

i th pixel on the prediction and the annotation, respectively. N

is the number of pixels in one case, i.e., the whole volume of a

patient, and M denotes the number of cases. Case Dice Score is

an average Dice Score over cases while Global Dice Score refers

to a Dice Score obtained by regarding all volumes as a whole. For
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classification tasks, accuracy (Acc.), sensitivity (Sens.), specificity

(Spec.), and Area Under the receiver operating characteristics

Curve (AUC) are adopted.

4.2. Implementation details

The proposed models are implemented by using keras

package (Chollet et al., 2015) on a NVIDIA TITAN XP GPU

to accelerate training. We train the models with Adam (Kingma

and Ba, 2015) with an initial learning rate of 0.001. Similar to Li

et al. (2018b), a “poly” learning rate policy is employed, namely

the initial learning rate is multiplied by
(

1− iter
max_iter

)power
,

where iter denotes the iter-th training step, max_iter is the

number of total training steps, and power = 0.9. Since deep

learning demands a large amount of data for training, data

augmentation methods, including random mirroring, rotation,

scaling ranging from 0.8 and 1.2, and elastic distortion, are

applied to increase training samples. Furthermore, the tumor

segmentation network is initialized by transfer learning with a

DenseNet-161 (Huang et al., 2017) pre-trained on the large-

scale natural image dataset ImageNet (Deng et al., 2009) for

classification tasks.

Since ground truths of breast are not provided directly

but fine-tuned by radiologists on chosen ones from results

generated by automatic landmark detection, the corresponding

quantitative evaluation is not constructed due to the unfair

comparison between a supervised learning model and an

unsupervised learning one.

4.3. Ablation analysis

In this section, we conduct experiments to verify the

effectiveness of the proposed methods that include attention

blocks, focal loss, and pre-trained models. The quantitative

results can be seen in Table 2.

Attention blocks: It is worth noting that the loss function is

1 − Dice if not specified. When attention blocks are removed

(denoted as ADUNet w/o Attention), UNet-like connections

TABLE 2 Segmentation results of the ablation studies.

Method
Tumor

Case dice score Global dice score

ADUNet w/o Attention 0.688 0.750

ADUNet w/o Focal Loss 0.714 0.770

ADUNet w/o Transfer Learning 0.730 0.785

ADUNet 0.748 0.801

Bold value means the best (highest) result along the column among different methods or

settings.

are used instead. As shown in Table 2, it can be found that

both scores decrease when the attention blocks are removed,

so it demonstrates that attention blocks can improve the

performance of ADUNet.

Focal loss: The performance of Dice loss function is

compared with that of focal loss function to verify the

effectiveness of the focal loss in ADUNet. We set α = 0.75 and

γ = 0.25 for the focal loss empirically. From Table 2, compared

with ADUNet w/o Focal Loss, it has improved the performance

by 0.016 and 0.015 in Case Dice and Global Dice, respectively on

the tumor segmentation.

Pre-trained models: The architecture of the encoder in a

DenseUNet as the same as that in DenseNet-160, which is the

features-learning part of DenseNet-161 trained on ImageNet.

The DenseUNet can be initialized by transfer learning with the

pre-trained model, which can find an optimal solution more

quickly. To achieve that, weights of the encoder are loaded with

pre-trained ones, while weights of the decoder are randomly

initialized. Since the model is also trained with the focal loss, it

can be regarded as pre-trained ADUNet with focal loss (denoted

as ADUNet). It achieves Case Dice Score 0.748 and Global Dice

Score 0.801, respectively, outperforming ADUNet without pre-

trained weights (denoted as ADUNet w/o Transfer Learning).

4.4. Comparative experiments

In this section, ADUNet is compared with other prevalent

deep-learning methods on the tumor segmentation and

quantitative results are showed in Table 3. 2D UNet

(Ronneberger et al., 2015) is a widely used network for

medical segmentation and often regarded as a baseline

model. Different from 2D UNet, 3D UNet (Çiçek et al.,

2016) utilizes 3D convolution to learn volumetric contexts.

However, 3D UNet suffers from high computational cost

and GPU memory consumption, especially in a medical

imaging scenario. Therefore, in practice, the implementation

of 3D UNet is constrained by limited resources and

cannot achieve significant superior performance as the

TABLE 3 Experimental results of the tumor segmentation.

Method
Tumor

Case dice Global dice

2D UNet (Ronneberger et al., 2015) 0.686 0.742

3D UNet (Çiçek et al., 2016) 0.691 0.765

FusionNet (Quan et al., 2016) 0.641 0.771

ADUNet 0.748 0.801

Bold value means the best (highest) result along the column among different methods or

settings.

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1054158
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Xue et al. 10.3389/fcomp.2022.1054158

theory claims. FusionNet (Quan et al., 2016) is a fully

residual network with summation-based skip connections

and much deeper than UNet. As shown in Table 3,

ADUNet achieves better results than other comparison

methods.

4.5. Qualitative analysis of our method

The qualitative results of ourmethod can be seen in Figure 7.

The first and second rows show that the sizes of tumors vary

greatly. Especially, the second row shows an example of an

inapparent tumor. Even so, our method can segment these

tumors accurately. The last row shows a hard example of tumor

necrosis, which is also segmented accurately, indicating the

effectiveness of ADUNet. Besides, the irrelevant organs in the

abdominal cavity do not affect the segmentation as they have

been excluded in stage 1, i.e., the stage of breast segmentation.

Moreover, the 3D visualization of segmentation results and

ground truths share similar shape.

4.6. Classification results

In the testing phase, we sort tumors by size in descending,

then select a portion of tumors for testing. Because small

tumors are usually regarded as negative samples due to lack

of biopsy results (ground truths) and their predictions are not

trustworthy, the contribution of small tumors to the benignancy

or malignancy is neglected. As shown in Figure 8A, three ROC

curves in gray, yellow and blue, respectively, are drawn in

terms of true positive rates (the vertical axis) and false positive

rates (the horizontal axis) at different thresholds of probabilities

predicted by the classification network. When all predicted

tumors are considered, the gray ROC curve (denoted as Top

100%) indicates the smallest AUC, while the best performance

is achieved by the blue ROC curve when only the top 50% of

tumors (denoted as Top 50%) are selected by size. The ROC

curves of case-level in Figure 8B also show that the top 50% is

the best choice among all.

To determine which size of tumor images is themost suitable

for the proposed classification network, several experiments are

conducted to analyze how the performance is affected by the

size of tumors. As shown in Table 4, due to the square shape of

tumor images, the image size denotes the width or the height.

Obviously, the image size 32 is the best choice among all and

employed in the proposed classifier.

Our customized classification network is compared with

two baseline models which both use CNN-M (Ioffe and

Szegedy, 2015) as the feature extractor and a SVM and

a softmax as the classifier, respectively. The quantitative

results are showed in Table 5. The proposed method

achieves sensitivity 0.920 and specificity 0.830, respectively

at case-level. It outperforms the compared methods both

on the accuracy and AUC. In addition, there are quite

fewer parameters in the proposed classification network,

i.e., 140K vs. 138M, the total number of parameters

in CNN-M.

FIGURE 7

Examples of tumor segmentation results. (A) Test images; (B) Segmentation results; (C) Ground truths; (D) 3D visualizations of tumor

segmentation results; (E) 3D visualizations of ground truths.
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FIGURE 8

ROC curves when the top 50, 75, and 100% of tumors are selected. (A) Tumor-level; (B) Case-level.

TABLE 4 Evaluations of tumor images at di�erent sizes.

Image size (pixel) Tumor-level Case-level

Acc Sens Spec AUC Acc Sens Spec AUC

16 0.749 0.756 0.764 0.804 0.856 0.880 0.820 0.918

24 0.741 0.736 0.769 0.795 0.856 0.840 0.870 0.896

32 0.771 0.875 0.701 0.831 0.880 0.920 0.830 0.918

48 0.737 0.764 0.737 0.795 0.856 0.920 0.780 0.875

64 0.703 0.734 0.682 0.771 0.773 0.800 0.740 0.836

Bold value means the best (highest) result along the column among different methods or settings.

TABLE 5 Experimental results of the tumor-level and case-level classification.

Methods Tumor-level Case-level

Acc Sens Spec AUC Acc Sens Spec AUC

CNN-M + SVM 0.758 0.854 0.687 0.801 0.861 0.899 0.812 0.901

CNN-M + Softmax 0.703 0.714 0.727 0.766 0.836 0.840 0.830 0.906

Ours 0.771 0.875 0.701 0.831 0.880 0.920 0.830 0.918

Bold value means the best (highest) result along the column among different methods or settings.

5. Discussion

Breast cancer is a major public health problem worldwide

for women. Fortunately, early breast carcinomas can be

effectively diagnosed and controlled, so it is vitally important

to diagnose breast cancer as early as possible. However,

doctors in China often suffer from overtime working due

to too many patients and even experienced radiologists

could make mistakes after overloaded work. Although, from

perspective of ethics, the automatic diagnosis is not well

accepted, we believe an automatic diagnostic algorithm is

a decision supporter for doctors rather than a substitution

of doctors. Therefore, we propose a united algorithm

including breast segmentation, tumor segmentation and

tumor classification to save analyzing time and assist diagnosis

of the radiologists.

Some limitations of our method are also worth mentioning

and will be addressed in our future work. All data in this
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paper are collected from the same MRI device, thus it is

reasonable to assume that they are from the same domain

and independent identically distributed. Whether the proposed

algorithm is robust enough in a multi-source case still remains

an open question. Nonetheless, in our opinion, increasing

training samples from different domains could ensure the

proposed model as general as possible. Moreover, many domain

adaptation methods are proposed to tackle multi-domain issues,

and they can be applied to the proposed approach in our future

work.

Although the proposed coarse-to-fine algorithm provides

a united pipeline to generate breast segmentation, tumor

segmentation and tumor classification results consecutively,

each stage of the algorithm is trained separately, which

makes each stage more robust and converge faster. Such

training strategy considers each stage as a separate task

and does not take into account the relationships between

tasks. For instance, the detection of malignant tumors has

a higher priority than that of other lesions in clinical

practice, so it is valuable to pay more attention to them, but

such information is not utilized at the tumor segmentation

stage.

In conclusion, we present a full stack algorithm for

automatic breast diagnosis on multi-series MRI images,

where we predict regions and categories of tumors in a

coarse-to-fine way. At the first stage, a DenseUNet model

is employed to generate breast masks so that confusing

organs in the abdominal cavity can be excluded afterwards.

At the second stage, ADUNet, enhanced by attention blocks,

is developed for the tumor segmentation. The attention

blocks implement both the channel-wise attention and

the element-wise attention. Furthermore, the focal loss

is utilized to tackle class-imbalance and hard samples

problems in tumor segmentation tasks. At the final stage,

a customized classification CNN is proposed to identify

whether a tumor is benign or malignant, guided by

tumor segmentation results in previous stage. ADUNet

can gracefully recover spatial locations of tumors by

attention blocks in decoders. In summary, the automatic

algorithm ADUNet is a full stack solution for breast

diagnosis on multi-series MRI images from scanners to

final predictions and can be easily deployed into clinical

workflows.
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