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Weighted gene co-expression
network analysis and whole
genome sequencing identify
potential lung cancer biomarkers
Mireguli Abudereheman, Zhengjun Lian and Baidurula Ainitu*

Oncology Department, The Eighth Affiliated Hospital of XinJiang Medical University, Urumqi, China
Background: Tuberculosis (TB) leads to an increased risk of lung cancer (LC).

However, the carcinogenetic mechanism of TB remains unclear. We constructed

gene co-expression networks and carried out whole-exome sequencing (WES)

to identify key modules, hub genes, and the most recurrently mutated genes

involved in the pathogenesis of TB-associated LC.

Methods: The data used in this study were obtained from the Gene Expression

Omnibus (GEO) and WES. First, we screened LC-related genes in GSE43458 and

TB-related genes in GSE83456 by weighted gene co-expression network

analysis (WGCNA). Subsequently, we screened differentially expressed genes

related to LC and TB in GSE42834. We also performed WES of 15 patients (TB,

n = 5; LC, n = 5; TB+LC, n = 5), constructed mutational profiles, and identified

differences in the profiles of the three groups for further investigation.

Results: We identified 278 hub genes associated with tumorigenesis of

pulmonary TB. Moreover, WES identified 112 somatic mutations in 25 genes in

the 15 patients. Finally, four common genes (EGFR, HSPA2, CECR2, and LAMA3)

were confirmed in a Venn diagram of the 278 hub genes and the mutated genes

from WES. KEGG analysis revealed various pathway changes. The PI3K–AKT

signaling pathway was the most enriched pathway, and all four genes are

included in this pathway. Thus, these four genes and the PI3K–AKT signaling

pathway may play important roles in LC.

Conclusion: Several potential genes and pathways related to TB-associated LC

were identified, including EGFR and three target genes not found in previous

studies. These genes are related to cell proliferation, colony formation, migration,

and invasion, and provide a direction for future research into the mechanisms of

LC co-occurring with TB. The PI3K–AKT signaling pathway was also identified as

a potential key pathway involved in LC development.
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Introduction

Lung cancer (LC) is a leading cause of cancer-related deaths

and a critical barrier to increasing life expectancy worldwide (1).

Tuberculosis (TB) is one of the major deadly infectious diseases

and remains a global public health threat (2). TB increases the risk

of LC and affects the prognosis of LC patients. The incidence of

lung cancers is approximately 11-fold higher in the cohort of

patients with TB compared with non-tuberculosis subjects (26.3

versus 2.41 per 10,000 person-years) (3, 4). Several prospective

and retrospective studies have suggested that TB is associated with

an increased risk of lung cancer (5–7).

Early diagnosis bias and late treatment strategies for TB might

be factors responsible for the high co-occurrence of TB and LC (8–

11). TB diagnosis is performed by QuantiFERON-TB Gold In-

Tube tests as a gold standard (5, 12). Pulmonary comorbidities can

considerably obscure LC symptoms and delay diagnosis, or may

preclude a comprehensive diagnostic examination with adequate

illness staging. The risk of LC should be assessed before starting

treatment for TB, with the aim of preventing LC development.

Therefore, there is an urgent need to explore signature genes

closely associated with the development of LC to allow early

diagnosis of the development of LC in TB patients.

Co-expression networks are useful to describe pairwise

relationships between gene transcripts (13). Here, we used

weighted gene co-expression network analysis (WGCNA) to

calculate associations between gene significance (GS) and

module membership (MM), analyze the correlation between

modules to construct a weighted gene co-expression network,

and merge differentially expressed genes (DEGs) with key module

genes for functional analysis. By constructing the protein–protein

interaction (PPI) network, we detected certain hub genes as key

factors regulating the occurrence of LC.

For further research, 15 patients (TB, n = 5; LC, n = 5 (3

adenocarcinoma, 2 non-small cell lung cancer); TB+LC, n = 5)

were recruited and whole-exome sequencing (WES) was

performed on the primary fresh tissues. Mutational profiles of

the 15 patients were constructed based on the sequencing data,

and differences in the mutational profiles between the three

groups of patients were investigated further. The combination of

the WGCNA and the identified DEGs revealed four target hub

genes (EGFR, HSPA2, CECR2, and LAMA3) that may be potential

biomarkers for LC diagnosis and treatment.
Abbreviations: LC, lung cancer; TB, tuberculosis; WGCNA, weighted correlation

network analysis; WES, Whole-Exome Sequencing; GEO, Gene Expression

Omnibus; DEGs, differentially expressed genes; PPI, protein–protein

interaction; MM, module membership; GS, gene significance; TOM,

Topological overlap matrix; GO, Gene Ontology; KEGG, Kyoto Encyclopedia

of Genes and Genomes; BP, biological process; CC, cellular component; MF,

molecular function.
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Material and methods

Data information

The GSE43458, GSE83456, and GSE42834 datasets were

obtained from NCBI Gene Expression Omnibus (GEO) ( https://

www.ncbi.nlm.nih.gov/geo/ ). GSE43458 consists of 80 lung cancer

samples and 30 control samples run on an Affymetrix Human Gene

1.0 ST Array [HuGene-1_0-st]. GSE83456 contains 45 pulmonary

tuberculosis samples and 61 control samples run on an Illumina

HumanHT-12 V4.0 Expression BeadChip. GSE42834 contains 20

controls, eight patients with lung cancer, and 19 pulmonary

tuberculosis patients, also run on an Illumina HumanHT-12 V4.0

Expression BeadChip. The R packages affy and annotate were used

to process the raw data, make an expression matrix, and match

probes to their gene symbol. The R package Limma was used to

screen the DEGs based on the GSE42834 data. All DEGs were

screened with q-value < 0.001 and |log2FC| > 0.5 as thresholds. The

common differential genes in these results were selected for

functional analysis.
Patient samples

This study was performed according to the Declaration of

Helsinki (2013) of the World Medical Association. The study

protocol was approved by the Ethics Committees of The Xinjiang

Uygur Autonomous Region Chest Hospital (approval number

2021BAT011). Fresh primary tissues were collected from 15

pathologically confirmed patients undergoing surgery for lung

cancer, pulmonary tuberculosis, or lung cancer combined with

pulmonary tuberculosis at The Eighth Affiliated Hospital of

XinJiang Medical University (Urumqi, China). Histological

diagnosis of tumors was performed and confirmed by two

pathologists. Samples were immediately frozen in liquid nitrogen

and stored at −80°C until further analysis. The clinicopathological

features of the 15 patients are presented in Supplementary Table S5.
WGCNA construction

Based on the expression and clinical pathological data of the

GSE43458 and GSE83456 datasets, the genes showing the top 60%

variance were selected for weighted gene co-expression network

analysis (WGCNA). This was used to calculate the correlation

coefficients between genes for clustering and to construct a co-

expression weighted network. The hierarchical clustering function

was used to classify genes with similar expression profiles into

modules based on the topological overlap matrix (TOM)

dissimilarity with a minimum size of 30 for the gene dendrogram.

The blue modules were significantly associated with TB, and the

turquoise and yellow modules were significantly associated with LC.

The dissimilarity of module eigengenes (MEs) was calculated to

choose a cut-off to merge some modules. Lastly, the network of

eigengenes was also visualized.
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Identification of clinically
significant modules

To determine the appropriate modules, we computed the

association between MEs and clinical traits. The log10

transformation of the P-value (GS = lgP) in the linear regression

between gene expression and clinical data was then used to establish

gene significance (GS). The average GS for every gene in a module

was also defined as the module membership (MM). The module

associated with a clinical feature was the one with the highest

absolute MM ranking out of all the modules that were chosen.
Protein–protein interaction
network analysis

The protein–protein interaction (PPI) network was constructed

using the Search Tool for the Retrieval of Interacting Genes

(STRING) database (https://string-db.org), which covered almost

all functional interactions between the expressed proteins, and

interactions with a combined score greater than 0.4 were

considered statistically significant. The results of this investigation

were shown using Cytoscape software (version 3.7.0).
Enrichment analysis

The R packages clusterProfiler and org.Hs.eg.db were used for

Gene Ontology (GO) functional enrichment and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analysis

of the hub genes for all data.
DNA extraction and quality control

Genomic DNA (gDNA) was extracted from the recently frozen

tissues using the QIAmp DNA Tissue Kit (TIANGEN, Beijing,

China) following the manufacturer’s instructions. The quantity and

purity of the gDNA were assessed using a Qubit® 2.0 fluorometer

(Thermon Fisher Scientific. Waltham, MA, USA) and a NanoDrop

2000 (Thermo Fisher Scientific, Inc.). The fragmentation status was

evaluated using the Agilent 2200 TapeStation system using the

Genomic DNA ScreenTape assay (Agilent Technologies, Santa

Clara, CA, USA) to produce a DNA integrity number. An

additional quality control step to determine the DNA integrity

was performed using a multiplex PCR approach.
Library preparation, hybridization capture,
and amplification

A total of 300 ng of each gDNA sample, based on the Qubit

quantification, was mechanically fragmented (duty factor, 10%;

peak incident power, 175 W; cycles per burst, 200; treatment
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time, 240 s; bath temperature, 2–8°C) on an M220 focused

ultrasonicator (Covaris, Inc.). The target DNA fragment size was

350 bp. Subsequently, 200 ng of sheared gDNA was used to perform

end repair, A‑tailing, and adapter ligation with a library preparation

kit (Agilent Technologies, Inc.) according to the manufacturer’s

protocol. Subsequently, the libraries were captured using Agilent

SureSelect XT custom 0.5–2.9M probes (Agilent Technologies, Inc.)

and amplified. The captured libraries were sequenced on an

Illumina NovaSeq 6000 PE150 (Illumina Inc.) for 2 × 150 paired

end reads, using Cycle Sequencing v3 Reagents (Illumina).
Bioinformatics analysis

Clean data were obtained after filtering out the adapters and reads

with a proportion of N > 10%, with N being the unidentified bases in

the sequencing process, using fastp (fastp 0.20.0). Low-quality bases

(Phred score < 15) were excised from the 3′ ends of reads. Only

sequenced samples with >80% of data with a quality score ≥ Q30

(95% of base call accuracy) were used in the analysis. Reads with

length < 50 bp after excision were removed. The clean data were

mapped to the human reference genome (University of California

Santa Cruz ID: hg38) using the Burrows–Wheeler Alignment

algorithm (BWA 0.7.17). The alignment in SAM format was

converted to BAM files using SAMtools (SAMtools 1.9.0). Next,

the genome analysis toolkit (GATK; v4.0.2.1) was used for sorting,

duplicate marking, and base recalibration. The final BAM files were

analyzed using QualiMap v.2.2.1 to provide a global overview of the

data, including mapped reads, mean mapping quality, and mean

coverage. The variants (single nucleotide variants (SNV) and

insertion–deletion mutations (InDels)) were called for unpaired

tumor sequences with 40 pooled blood samples (from healthy

individuals) using the GATK mutect2 tumor-only mode

(parameter: af-alleles-not-in-resource, 0.00025%), and germline

mutations and contaminations were filtered out using GATK

FilterMutectCalls (parameter: max-germline-posterior, 0.995).

Somatic variants were annotated using the ANNOVAR software tool.

The following filter conditions were used to identify candidate

somatic alterations: i) all variations with COSMIC evidence (http://

cancer.sanger.ac.uk/cosmic) were retained; and ii) SNV acquisition

conditions: (1) tumor samples require at least 10× coverage; (2) at

least 5× coverage supports mutant alleles in tumor DNA; (3)

mutant allele frequency (AF) ≥ 0.05; and (4) genomic locations

with mutant allele frequencies greater than 0.1% in the Thousand

Genomes Project and Exome Aggregation Consortium (ExAC)

were filtered out (AF ≥ 0.001).
Statistical analysis

The mutational landscape across the cohort was created using

the maftools package in R software (R 4.3.0, R Core Team; https://

www.R-Project.org). A cut-off value of an adjusted P-value

(p.adjust) < 0.05 was used to identify significantly enriched terms.
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Results

Weighted co-expression network
construction and identification of
key modules

WGCNA analysis was performed for both GSE43458 and

GSE83456. To construct a scale-free topology network, soft

threshold powers (b) of 12 in GSE43458 (scale-free R2 = 0.80)

(Figure 1A) and 12 in GSE83456 (scale-free R2 = 0.80) (Figure 1B)

were estimated. For GSE43458, the hierarchical clustering tree
Frontiers in Oncology 04
revealed that 17 co-expression modules were clustered (Figure 1C),

and the orange module was negatively correlated with the LC

proportion (Cor = 0.9, P = 1×10−22) (Figure 1E). For GSE83456,

dynamic hybrid cutting clustered 20 co-expression models

(Figure 1D), with the black module having the strongest positive

correlation with the TB proportion (Cor = 0.83, P = 1×10−14), and

the salmonmodule showing the strongest negative correlation (Cor =

0.85, P = 6×10−16) (Figure 1F). In the orange module, scatter plots

showed strong negative correlations between MM and GS for LC

(Cor = 0.92, P = 1×10−200) (Figure 1G); strong positive correlations

were also observed between MM and GS for TB in the black module
B

C

D

E F
G

A

H

FIGURE 1

(A, B) Soft threshold powers (b) of 12 and 12 were selected based on the scale-free topology criterion for GSE43458 (A) and GSE83456 (B),
respectively. (C, D) Clustering dendrograms showing the clustering of genes with similar expression patterns into co-expression modules in
GSE43458 (C) and GSE83456 (D). The gray module indicates genes that were not assigned to any module. (E, F) Module–trait relationships revealing
the correlations between each gene module eigengene and phenotype in GSE43458 (E) and GSE83456 (F). (G, H) Scatter plots of the MM and GS of
each gene in the orange module of GSE43458, showing a negative correlation with the LC proportion (G), and the black and salmon modules of
GSE83456 showing a positive and negative correlation, respectively, with the TB proportion (H). Horizontal axis, correlation between gene and co-
expression module; vertical axis, correlation between gene and phenotype. LC, lung cancer; TB, tuberculosis; MM, module membership; GS,
gene significance.
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(Cor = 0.89, P = 1×10−200), as well as large negative correlations

between MM and GS in the salmon module (Cor = 0.89, P = 1×10

−200) (Figure 1H). Hence, these three modules were selected for in-

depth investigation. A total of 5157 and 1042 genes were

incorporated in the black and salmon modules, respectively, while

the orange module contained 2743 genes.
Differentially expressed genes of GSE42834

To identify differential genes in LC, TB, and TB patients with LC, we

analyzed the DEGs in three modules using another dataset, GSE42834

from the GEO database. We set the cut-off as |log2FC| > 0.5 and q-value

< 0.001 to screen DEGs fromGSE42834. Figure 2A shows a volcano plot
Frontiers in Oncology 05
of the DEGs. We overlapped the DEGs and the genes in the three

modules (LC vs control, LC vs TB, and TB vs control) by Venn diagram

and found that 3606 common genes were present in all three modules

(Figure 2B). Figures 2C, D demonstrate the GO and KEGG analyses of

these 3606 genes. Extracellular matrix was the most enriched cellular

component (CC) term, G protein-coupled receptor activity was the most

enrichedmolecular function (MF) term, and neuroactive ligand–receptor

interaction was the most enriched KEGG pathway.
Functional analyses of hub genes

To assess the function of the hub genes, we extracted the

common genes derived from WGCNA and DEGs. As shown in
B C

D

A

FIGURE 2

(A) Volcano plot visualizing DEGs in GSE42834 (20 control, 8 lung cancer, and 19 pulmonary tuberculosis samples). (B) Identification of common
genes between the DEGs in control, lung cancer, and pulmonary tuberculosis by overlap. (C, D) GO analyses of the enriched BP, CC, and MF terms
(C) and KEGG pathway analysis (D) of the 3606 genes. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological
process; CC, cellular component; MF, molecular function.
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Figure 3A, 278 common genes at the intersection of the three hub

gene sets were detected and visualized via a Venn diagram.

Subsequently, we performed GO and KEGG analyses on these

278 genes. Cell–substrate adhesion was the major enriched

biological process (BP) term, and collagen-containing

extracellular matrix and growth factor activity were the major

enriched CC and MF terms, respectively (Figure 3B). The RAS

and PI3K–AKT signaling pathways were the main enriched KEGG

pathways (Figure 3C). The PPI network was constructed with 278

genes. The EGFR pathway is an oncogenic pathway in human non-

small cell lung cancer (NSCLC), which also affects the levels of some

pathway-related binding proteins or downstream activities (14, 15).

Pathway analyses further revealed that the levels of some EGFR-

related genes were altered, suggesting that EGFR might serve as a

regulatory signal node in the development of TB-associated lung

cancer (Figure 3D).
Recurrently mutated genes in TB and LC
with and without TB

To further investigate the role of EGFR in lung cancer and

pulmonary TB, we performed exon sequencing on samples from
Frontiers in Oncology 06
lung cancer, lung cancer associated with pulmonary tuberculosis,

and pulmonary tuberculosis patients. Supplementary Figure S1

presents a summary of the MAF files (Supplementary Table S6)

for the 15 patients. Totally, 2094 meaningful variations in 497 genes

were identified. Totally, 2094 meaningful variations in 497 genes

were identified. A waterfall plot depicts 25 of the genes containing

indel mutations (Figure 4). For the SNVs, T > C was the most

frequent SNV class. The median number of variants identified in

the 15 samples was 5 (range, 1–24).

Figure 4 presents the mutational profile of the 15 patients with

LC and pulmonary TB, including 25 mutated genes, organized by

the TB, LC, and TB+LC groups. The mutated gene with the

highest frequency was ADCK5 (67%). EGFR, one of the most

frequently mutated genes in lung cancer, had a mutation rate of

20%, similar to the previously reported EGFR mutation rate of

5%–30% in LC (16). The other recurrently altered genes were

mucin-3A (MUC3A; 60%), keratin-associated protein 5–7

(KRTAP5–7; 53%), killer cell immunoglobulin-like receptor

2DL4 (KIR2DL4; 33%), zonadhesin (ZAN; 27%), fatty acid

desaturase 6 (FADS6 ; 27%), cytochrome P450 family 1

subfamily B member 1 (CYP1B1; 27%), and ataxin-3 (ATXN3;

20%). Supplementary Figure S2 illustrates the frequency of

mutations and the resulting protein structure.
B

C D

A

FIGURE 3

(A) Venn diagram showing the intersection between the orange (GSE43458), black (GSE83456), and salmon (GSE83456) module genes and the
GSE42834 DEGs. (B, C) GO analyses of the enriched BP, CC, and MF terms (B) and KEGG pathway analysis (C) of the 278 genes. (D) Three-
dimensional network of the 278 genes. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC, cellular
component; MF, molecular function.
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KEGG signaling pathway enrichment
analysis of all somatically mutated genes

To further investigate the biological functions of the mutated

genes, KEGG signaling pathway enrichment analyses were

performed. Supplementary Table S7 shows enriched signaling

pathways associated with the mutated genes. The results of the

KEGG signaling pathway analysis are presented in Figure 5,

showing that the genes are involved in the PI3K–AKT signaling

pathway and non-small cell lung cancer, which is consistent with

our previous analysis.
Correlation analysis between key genes
and EGFR

EGFR had the highest degree in the aforementioned PPI, with a

mutation rate of 20% in lung cancer. This implies that EGFR is

involved in the progression of lung cancer. Thus, we investigated
Frontiers in Oncology 07
the relationship between EGFR and other genes. The Venn diagram

in Figure 6A depicts the genes common to both the 278 hub genes

and all mutated genes, including EGFR, HSPA2, CECR2, and

LAMA3 (Figure 6A). To investigate the effects of EGFR

expression on HSPA2, CECR2, and LAMA3, we performed the

CIBERSORT algorithm on 15 tumor samples to calculate the

expression of EGFR and the three key genes in each sample. As

shown in Figures 6B–D, CECR2, LAMA3, and HSPA2 were

positively correlated with EGFR expression.
Discussion

Lung cancer is the most dangerous of the common malignant

tumors in China, causing the most cancer deaths each year (17).

Tuberculosis is an infectious illness of the lungs caused by

Mycobacterium tuberculosis, and tuberculosis of the lungs raises

the risk of a patient getting lung cancer by causing inflammatory

irritation that leads to persistent irritation of the lungs (18, 19).
FIGURE 4

The mutational landscape of 15 patients with LC, TB, and LC+TB was determined using whole-exome sequencing. Azu, TB; Bzu, LC; A.Bzu, TB+LC;
ADCK5, AarF domain containing kinase 5; MUC3A, mucin-3A; KRTAP5–7, keratin-associated protein 5–7; KIR2DL4, killer cell immunoglobulin-like
receptor 2DL4; ZAN, zonadhesin; FADS6, fatty acid desaturase 6; CYP1B1, cytochrome P450 family 1 subfamily B member 1; ATXN3, ataxin-3; EGFR,
epidermal growth factor receptor; FCGR1A, high affinity immunoglobulin gamma Fc receptor I; FGA, fibrinogen alpha chain; PPFIA4, liprin-alpha-4;
CEACAM5, carcinoembryonic antigen-related cell adhesion molecule 5; SETD1A, histone-lysine N-methyltransferase SETD1A; NCOR2, nuclear
receptor corepressor 2; VWA1, von Willebrand factor A domain-containing protein 1; FAM136A, family with sequence similarity 136, member A gene;
MUC4, mucin-4; TP53, tumor protein p53; MUC5B, mucin-5B; CECR2, cat eye syndrome chromosome region candidate 2; HSPA2, heat shock
protein A2; LAMA3, laminin subunit alpha 3.
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Younger patients show a significantly higher association between

TB and lung cancer (20). Several studies have shown that LC in TB

patients have lower survival rates than non-TB patients (21, 22). A

study of 6934 patients among patients with primary cancer and TB

infection demonstrated that TB is a risk for facilitating primary

cancer to metastasize to the lung (23). Delayed diagnosis and
Frontiers in Oncology 08
treatment of TB increases the chance of patient complications

and mortality and enhances TB transmission in the population

(24). Therefore, it is of practical significance to explore the

mechanism of the association between TB and lung cancer

development and provide new targets for clinical examination

and future targeted therapy of lung cancer patients.

In this study, WGCNA was performed by extracting co-

expression networks of grouped genes from a large expression

dataset. Among the 37 modules, we found that the orange, black,

and salmon modules were most significantly related to LC or TB. We

analyzed the GSE42834 dataset, which includes LC, TB, and control

groups, to find 3606 DEGs. The confluence of these differential genes

with the genes from the three WGCNA modules resulted in 278

genes for which we determined the PPI network, showing that EGFR

and related genes are highly correlated with TB and LC. KEGG

pathway analysis revealed that the hub genes were primarily enriched

in pathways related to growth, survival, and metabolism of cancer

cells, such as the RAS and PI3K–AKT signaling pathways. The PI3K–

AKT signaling pathway is dysregulated in almost all cancers due to

gene amplification (25). Studies suggest that in patients with an EGFR

mutation, the AKT/mTOR pathway is constitutively activated in 67%

of cases (26, 27). RAS signaling is a major nexus controlling essential

cell parameters, including proliferation, survival, and migration,

utilizing downstream effectors such as the PI3K–AKT signaling

pathway (28, 29).
B C D

A

FIGURE 6

(A) The intersection between the 278 hub genes and the mutated genes shown in a Venn diagram. (B–D) The correlation between EGFR and CECR2
(B), LAMA3 (C), and HSPA2 (D).
FIGURE 5

Kyoto Encyclopedia of Genes and Genomes signaling pathway
enrichment analysis of all somatically mutated genes.
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Next, we examined the somatic mutation patterns of 15

individuals to acquire a better understanding of the progression

from TB to LC. In addition to somatic alterations in previously

known LC-associated genes, such as EGFR, ADCK5, MUC3A, and

KIR2DL4 (16, 30–33), we identified mutations in new genes, such as

CECR2, LAMA3, FADS6, CYP1B1, and ATXN3. Interestingly, we

found that four (EGFR, CECR2, LAMA3, and HSPA2) of the 278

genes obtained in the three GEO datasets were mutated in all 15

patients. EGFR had a mutation rate of 20%, similar to the previously

reported EGFR mutation rate (5%–30%) in LC (16). The epidermal

growth factor receptor (EGFR) gene encodes signaling proteins

crucial for cell proliferation and survival, and EGFR mutations are

major driver mutations occurring in lung adenocarcinomas (16, 34,

35). The incidence of LC EGFRmutations was found to be higher in

East Asian countries, as was the prevalence of TB infection (2, 34).

Studies have examined the expression of CECR2 in breast cancer

and found that it regulates the tumor immune microenvironment to

promote breast cancer metastasis (29). However, there have been no

reports to date implicating CECR2 in LC. Reducing the methylation

of the LAMA3 promoter inhibits the proliferation, invasion,

migration, and drug resistance of lung adenocarcinoma cells (36).

The data reported show that HSPA2 does not promote a malignant

NSCLC phenotype. HSPA2-deficient keratinocytes show

accelerated differentiation in a reconstituted human epidermis

model (37–39). These four genes may be key proteins that predict

the development of LC in TB. Additionally, the altered genes were

discovered to be highly enriched in the PI3K–AKT signaling

pathway, consistent with other previous studies (40–42).

Nevertheless, further research is required to fully explore their

roles in TB and LC.

We acknowledge that there were some limitations and

shortcomings of this study. First, this study was mainly focused on

data mining and data analysis, which are based on methodology.

Clinical information available in public databases is limited, and

contaminated tissues and biases in sequencing may lead to biased

results in WGCNA. In addition, after obtaining the hub gene, the

association with the tumor microenvironment should also be analyzed

and further verified by experiments (43, 44). Second, the single method

of whole-exon sequencing used, and the minimal sample size, may

have an impact on the accuracy of the results. Our future research will

include large sample sizes, analyzed by different methods.
Conclusion

We applied WGCNA andWES to explore the development of LC,

and determined a mutational profile of 15 patients by WES. This

identified four genes (EGFR,CECR2, LAMA3, andHSPA2) that play an

important role in LC tumorigenesis. Furthermore, the present study

confirms EGFR mutations in LC and verifies the enrichment of gene

alterations in the PI3K–AKT signaling pathway in a small cohort of

Chinese patients with LC. These results may shed light on

opportunities for diagnosis and personalized treatment of TB with LC.
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SUPPLEMENTARY FIGURE S1

Summary and visualization of maf files using the maftools package in R

software. (A) Variant classification. (B) Variant type. (C) SNV class. (D) The
count of variants per sample. (E) Variant classification summary. (F) Top 30
mutated genes. The colors of variant classification in subfigure D, E and F are

in accordance with subfigure A. Del, deletion; Ins, insertion; SNP, single
nucleotide polymorphism; SNV, single nucleotide variant.

SUPPLEMENTARY FIGURE S2

Proportion of all mutated genes.
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