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Abstract
Many studies have been done on products of measurable sets. The most recent results highlight the properties
of tensor products expressed as matrix products. Therefore, this study builds on existing research on product
of measurable sets focusing on properties expressed in matrix products. This study investigates the conditions
under which sequentially generated products of functions are measurably bound using (ε − δ) criterion
for uniform continuity . This article explores the connection between topological properties of measurable
sets and boundedness of their products. The study sheds light on the application of r-neighborhood
topological properties of refinement of measurable sets in determining the boundedness of sequentially
generated products of measurable functions. Concepts such as monotonicity of functions, continuity
from above of set functions, almost everywhere properties and r-neighborhood partition of measurable sets
are applied in the context of p-integrable functions. The results of this research can be applied to develop the r-
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neighborhood business models where r represents the physical distance around a fixed business focal point
that geographically creates a fruitful business environment for achievement of the optimal industrial and
commercial profit margins determined by the boundedness of product functions. For a fixed product of
functions i.e. the target of achievement, one can sequentially and by monotonicity of measurable functions
determine the quantitative (or measurable) convergence of the product of functions which represents the
interactive operational activities towards the defined business goals. Further, the results of this study can
be applied in developing geometrical models in engineering by quantitative approximation to desired standards.

Keywords: Refinement, measurably bound; monotonically; decreasing; r-neighborhood.

1 Introduction
This study makes the sequence (fi ⊗ χA)∞i=1 of products of fi and χA where fi ⊗ χA ∈ Lp(µ) ⊗ Σ move
quantitatively closer to f⊗x′ for each i . With an appropriate choice of a real number r > 0, the r-neighborhood
Nr(xi) of a point xi ∈ X as discussed in [1, 2] partitions an open set Gi for i ∈ I [3, 4] such that the set

(Lp(µ)f⊗x
′

fj⊗χA
)nj=1 :‖ (< µ|fj |p(Nr(xi)), x

′ >)1/p-(< µ|f |p(Gi), x
′ >)1/p) ‖ x′ ‖1/p

′
‖≥ ε)

is made progressively smaller for large values of j.

Concepts on uniform continuity of functions (see[5]) and geometrical estimation of distance from a point to a
given set (see[4, 6]) are utilized so that the quantity

(< µ|fj |p(Nr(xi)), x
′ >)1/p ‖ x′ ‖1/p

′
is kept within the ε-distance of the quantity (< µ|f |p(Gi), x

′ >)1/p ‖ x′ ‖1/p
′

as we restrict a point y ∈ Gi for each i ∈ I to smaller intervals Nr(xi) of xi ∈ X

While the continuity of functions is discussed, we study the behaviour of sequentially generated tensor products
within the ε-distance parameter where the (ε− δ) criterion for uniform continuity is applied.

2 Preliminaries
In this study, we consider 1 ≤ p <∞ and the conjugate real number p′ such that 1/p+ 1p′ = 1 (see[3, 7, 8, 9]).
Throughout this paper, (Ω,Σ, µ) denotes a measure space where Σ is a sigma ring of subsets of Ω, µ : Σ→ X is
a countably additive vector measure, X a Banach space, Lp(µ) the space of p-integrable functions with respect
to µ . The function < x, x′ > denotes the duality between the Banach space X with its topological dual X ′.
For each x′ ∈ X ′, we have < µ(A), X ′ >=< x, x′ > for every A ∈ Σ (see[3]). If a sequence (fn)∞i=1 ∈ Lp(µ) and
χA is the characteristic function of a measurable set A of finite measure, then fn ⊗ χA denotes the product of
fn and χA such that fn ⊗ χA ∈ Lp(µ)⊗ Σ for each n

Let < µ, x′ >= µx′ for every x′ ∈ X ′ such that µx′ = µx′÷‖x′‖(‖x′‖)

Considering the results in [[10], P. 10, Proposition 3.2] on integral representation of the vector measure duality
function, we have
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(
∫
| fj |p .χAδ < µ, x′ >)1/p ‖ x′ ‖1/p

′
‖= (< µ|fj |p(A), x′ ÷ ‖x′‖ >)1/p(‖ x′ ‖)

= (< µ|fj |p(A), x′ >)1/p(‖ x′ ‖) ‖ x′ ‖−1/p

= (< µ|fj |p(A), x′ >)1/p ‖ x′ ‖1/p
′

Therefore, (< µ|fj |p(A), x′ >)1/p ‖ x′ ‖1/p
′
is well defined as demostrated in [3, 7, 4, 11, 12, 8, 13], where

µ|fj |p(A) ∈ X for every A ∈ Σ.

Definition 1(Refinement)(see [14])

A family (Aj : j ∈ α) of subsets of X is called a refinement of a set G if for every ri-neighborhood Nri(xi) of a
point xi in Ai, there is a subset Gi in G such that

(< µ|fj |p(Nri(xi)), x
′ >)1/p ≤< µ|fj |p(Gi), x

′ >)1/p for each i and j

Therefore,

(< µ|fj |p(
⋃∞
i=1Nri(xi)), x

′ >)1/p = (< µ|fj |p(Gi), x
′ >)1/p

∑∞
i=1(< µ|fj |p(Nri(xi)), x

′ >)1/p = (< µ|fj |p(Gi), x
′ >)1/p

for each j

Definition 2(Measurably bound Products)

Let (Ω,Σ, µ) be a measure space and Enj+1 ⊂ Enj for each nj be set of measurable sets each of which is a
refinement ofG such that µ(En1) <∞ for all nj . There exists a neighborhoodNr(xi) such thatNr(xi) ⊂ Gi ∈ G.

Define Enj = (Lp(µ)f⊗x
′

fj⊗χA
)nj=1 :‖ [(< µ|fj |p(Nr(xi)), x

′ >)1/p- (< µ|f |p(Gi), x
′ >)1/p] ‖ x′ ‖1/p

′
‖≥ ε)

Such that

(< µ|fj |p(En), x′ >)1/p = (< µ|fj |p(
⋂∞
j=1Enj ), x′ >)1/p where En ↓ ∅ for each n.

Therefore,

(< µ|fj |p(En), x′ >)1/p = (< µ|fj |p(
⋂∞
j=1Enj ), x′ >)1/p

≤ (< µ|fj |p(Enj ), x′ >)1/p ≤ (< µ|fj |p(En1), x′ >)1/p
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for all nj

As noted in [15, 4] regarding monotonically increasing sets , it follows that

(< µ|fj |p((Enj )c), x′ >)1/p ↑ (< µ|fj |p((En)c), x′ >)1/p for each n

where (Enj )c and (En)c are the complements of Enj and En respectively (for examples on complements of sets,
see [1, 16]).

The results in [8, 15] on monotonically decreasing sets and on Banach space of locally integrable functions where
fn ↓ 0 (see [18]) satisfy

(< µ|fj |p((Enj )), x′ >)1/p ↓ (< µ|fj |p((En)), x′ >)1/p for each nj

From the results in [17] on the convergence of measurable sets to zero with respect to c∗-algebra valued measures,
in (see [3]) on integral mappings and order continuous Banach spaces of integrable functions with respect to
vecror measure and in [11, 9] on projective tensor products, the sequence (fi⊗χA)∞i=1 of products of measurable
functions, where fi ⊗ χA ∈ Lp(µ)⊗ Σ is therefore said to be measurably bound to f ⊗ x′ at a point x if

(Lp(µ)f⊗x
′

fj⊗χA
)nj=1 :‖ [(< µ|fj |p(Nr(xi)), x

′ >)1/p- (< µ|f |p(Gi), x
′ >)1/p] ‖ x′ ‖1/p

′
≥ ε)

is monotonically decreasing to a null set as n→∞ for ε > 0

Definition 3(r-Neighborhood Partition)

Let (Gi : i ∈ I) be a family of measurable open subsets of the normed space X and (xi)
∞
i=1 be a sequence of

elements in Gi for each i ∈ I where I is an index set. The sequence (Nr1(x1), Nr2(x2), ..., Nri−1(xi−1),
Nri(xi), Nri+1(xi+1)...) of ri - neighborhoods of xi such that Nri(xi)

⋂
Nrj (xj) = ∅ for i 6= j is said to partition

Gi into disjoint sets for each i ∈ I if

Nri(xi) ↑ Gi for each i ∈ I (see [15, 4]).

Considering the collection (Nri(xi) : i = 1, 2, ...) of non-overlapping ri - neighborhoods of xi called partitions of
Gi as illustrated in [6], then

⋃∞
i=1Nri(xi) = Gi for each i ∈ I.

If r = min (r1, r2, ....ri−1, ri, ri+1, ...), then

Nr(xi) ⊂ Gi for each i ∈ I (see [1, 2])
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Definition 4(Directed Set of Vector Measure Duality)(see [11, 12])

A set (< µi, x
′ >)ni=1 of non-negative vector measure duality is said to be increasingly directed if for < µi, x

′ >
≤ < µki , x

′ > where 1 ≤ i < ki ≤ n we have

< µi(A), x′ > = LUBk < µki(A), x′ > for every A ∈ Σ

Definition 4(Almost Everywhere Property)(see [3, 7, 8])

Let x be an element in X. A proposition P (x) is true almost everywhere if there exists a null set E such that
x ∈ X ∼ E

3 Main Results
Proposition 1

Let (fn)∞i=1 and f be p-integrable functions such that fn converges to f uniformly.The set (fi ⊗ χA)ni=1 of
measurable functions where fi ⊗ χA ∈ Lp(µ)⊗Σ for each i is said to be measurably bound to f ⊗ x′ at a point
x if

(Lp(µ)f⊗x
′

fj⊗χA
)nj=m :‖ [(

∑n
j=m < µ|fj |p(Nr(xi)), x

′ >)1/p - (< µ|f |p(Gi), x
′ >)1/p] ‖ x′ ‖1/p

′
‖ ≥ ε/2)

is monotonically decreasing to a null set as n→∞ for ε > 0

Proof

Since fn converges to f uniformly and fi ⊗ χA ∈ Lp(µ)⊗ Σ for i = 1, ..., n is measurably bound to f ⊗ x′ at a
point x (by hypothesis), we need to sequentially show that set (f1 ⊗ χA, ..., fn ⊗ χA) and f ⊗ x′ which are at
a distance greater than an arbitrary real number ε > 0, can be made progressively smaller for values that are
in some r-neighborhood Nr(xi) of xi ∈ X (see [1, 2]). Further, the (ε − δ) criterion on uniform continuity of
functions (see [5]) is apllied to obtain the desired results. Therefore, given ε > 0 there exists a δ > 0 such that

∇fn = (Lp(µ)f⊗x
′

fj⊗χA
)nj=1 :‖ [(

∑n
j=1 < µ|fj |p(Nr(xi)), x

′ >)1/p - (< µ|f |p(Gi), x
′ >)1/p] ‖ x′ ‖1/p

′
‖ ≥ ε)

is monotonically decreasing to a null set as n→∞

provided y ∈ Nδ(xi) ∀ y ∈ Gi.

Suppose we choose n > m such that

∇fm−1 = (Lp(µ)f⊗x
′

fj⊗χA
)m−1
j=1 :‖ [(

∑m−1
j=1 < µ|fj |p(Nr(xi)), x

′ >)1/p- (< µ|f |p(Gi), x
′ >)1/p] ‖ x′ ‖1/p

′
‖ ≥ ε/2)

91



Olwamba; J. Adv. Math. Com. Sci., vol. 39, no. 5, pp. 87-101, 2024; Article no.JAMCS.116164

The choice of ε > 0 and ε/2 > 0 Implies that

∇fm−1 ⊆ ∇fn

Therefore,

(Lp(µ)f⊗x
′

fj⊗χA
)nj=1 :‖ [(

∑n
j=1 < µ|fj |p(Nr(xi)), x

′ >)1/p - (
∑m
j=1 < µ|fj |p(Nr(xi)), x

′ >)1/p] ‖ x′ ‖1/p
′
‖ ≥ ε/2)

Fix n, taking limits as m→∞ and applying Cauchy criterion as discussed

in [3, ?], we obtain

(Lp(µ)f⊗x
′

fj⊗χA
)nj=m :‖ [(

∑n
j=m < µ|fj |p(Nr(xi)), x

′ >)1/p - (< µ|f |p(Gi), x
′ >)1/p] ‖ x′ ‖1/p

′
‖ ≥ ε/2)

= ∇fm−1
⋂
∇fn

whenever y ∈ Nδ(xi) ∀ y ∈ Gi

Therefore,

(Lp(µ)f⊗x
′

fj⊗χA
)nj=m :‖ (

∑n
j=m < µ|fj |p(Nr(xi)), x

′ >)1/p ‖ x′ ‖1/p
′

- (< µ|f |p(Gi), x
′ >)1/p ‖ x′ ‖1/p

′
‖ ≥ ε/2) ⊆ ∇fn ↓ ∅

as n→∞

Hence,

(Lp(µ)f⊗x
′

fj⊗χA
)nj=m :‖ [(

∑n
j=m < µ|fj |p(Nr(xi)), x

′ >)1/p ‖ x′ ‖1/p
′

- (< µ|f |p(Gi), x
′ >)1/p] ‖ x′ ‖1/p

′
‖ ≥ ε/2) ↓ ∅

as n→∞ provided y ∈ Nδ(xi) ∀ y ∈ Gi

Proposition 2

Let (fn)∞i=1, f and g be p-integrable functions such that the set (f1 ⊗ χA...fn ⊗ χA) of products where
fi ⊗ χA ∈ Lp(µ) ⊗ Σ for each i is measurably bound to f ⊗ x′ and g ⊗ x′ at a point x. If for ε > 0, we
have
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‖ (< µ|f |p(Gi), x
′ >)1/p - (< µ|g|p(Gi), x

′ >)1/p ‖< ε

where (Gi : i ∈ I) is a family of measurable open subsets of the normed space X, then

(< µ|f |p(Gi), x
′ >)1/p = (< µ|g|p(Gi), x

′ >)1/p a.e.

Proof

Let (∇)gf = ((Lp(µ)g⊗x
′

f⊗x′) :‖ [(< µ|f |p(Gi), x
′ >)1/p - (< µ|g|p(Gi), x

′ >)1/p] ‖ x′ ‖1/p
′
‖< ε)

for each i ∈ I

Let the collection (Aj : j ∈ α) be a refinement of a set G. For every ri-neighborhood Nri(xi) of a point xi in
Aj , there exists a subset Gi in G such that Nri(xi ⊆ Gi for each i and j (see [14])

The δ-criterion for generation of a closed unit ball and a unit sphere in a Banach space as demostrated in [19]
is applied constructing ri-neighborhood of a point xi as follows

Take r = 1/2 min (r1, r2, ..., rn). It follows that r > 0 and

Nr(xi) ⊆ Nri(xi) ⊆ Gi for each i ∈ I

On application of (ε− δ) criterion on uniform continuity as discussed in [20] and the duality function < µ, x′ >
(see [3, 7, 12, 8, 13]), we take y closer to xi such that for δ > 0, we have

y ∈ Nδ(xi) ∀ y ∈ Gi

Consequently,

(Lp(µ)f⊗x
′

fj⊗χA
)nj=1 :‖ [(

∑n
j=1 < µ|fj |p(Nr(xi)), x

′ >)1/p) - (< µ|f |p(Gi), x
′ >)1/p] ‖ x′ ‖1/p

′
‖ ≥ ε/2)

Let ∇ffn = (Lp(µ)f⊗x
′

fj⊗χA
)nj=1 :‖ [(

∑n
j=1 < µ|fj |p(Nr(xi)), x

′ >)1/p - (< µ|f |p(Gi), x
′ >)1/p] ‖ x′ ‖1/p

′
‖ ≥ ε/2)

and

∇gfn = (Lp(µ)g⊗x
′

fj⊗χA
)nj=1 :‖ [(

∑n
j=1 < µ|fj |p(Nr(xi)), x

′ >)1/p - (< µ|g|p(Gi), x
′ >)1/p] ‖ x′ ‖1/p

′
‖ ≥ ε/2)

Since ‖ [(< µ|f |p(Gi), x
′ >)1/p

- (< µ|g|p(Gi), x
′ >)1/p] ‖ x′ ‖1/p

′
‖< ε on (∇)gf
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for each i ∈ I, it follows that

((∇)gf )c = ((Lp(µ)g⊗x
′

f⊗x′) :‖ [(< µ|f |p(Gi), x
′ >)1/p - (< µ|g|p(Gi), x

′ >)1/p] ‖ x′ ‖1/p
′
‖≥ ε)

Therefore,

((∇)gf )c ⊆ ∇ffn
⋃
∇fgn

Since the set

(f1 ⊗ χA...fn ⊗ χA) is measurably bound to f ⊗ x′ and g ⊗ x′ at a point x (by hypothesis), it follows that

∇ffn and ∇fgn are both monotonically ↓ ∅ as n→∞

Subsequently,

The < µ, x′ > - measure of ((∇)gf )c is zero,

provided y ∈ Nδ(xi) ∀ y ∈ Gi

Suppose,

((Lp(µ)g⊗x
′

f⊗x′) :‖ [(< µ|f |p(Gi), x
′ >)1/p - (< µ|g|p(Gi), x

′ >)1/p] ‖ x′ ‖1/p
′
‖6= 0)

=
⋃∞
k=1((Lp(µ)g⊗x

′

f⊗x′) :‖ (< µ|f |p(Gi), x
′ >

- (< µ|g|p(Gi), x
′ >)1/p) ‖ x′ ‖1/p

′
‖≥ 1/k) = 0

It follows that

((Lp(µ)g⊗x
′

f⊗x′) :‖ [(< µ|f |p(Gi), x
′ >)1/p - (< µ|g|p(Gi), x

′ >)1/p] ‖ x′ ‖1/p
′
‖6= 0)

is a null set since it is equal to the countable union of null sets (see [3, 4]).

The results on almost everywhere property in [3, 7, 8] demostrate that

(< µ|f |p(Gi), x
′ >)1/p = (< µ|g|p(Gi), x

′ >1/p a.e.
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Proposition 3

Let (fn)∞i=1, f and g be p-integrable functions such that the set (f1 ⊗ χA, ..., fn ⊗ χA)

of products where fi ⊗ χA ∈ Lp(µ)⊗ Σ for i = 1, ..., n is measurably bound to f ⊗ x′ at a point x. If

((Lp(µ)g⊗x
′

f⊗x′) : (< µ|f |p(Gi), x
′ >)1/p 6= (< µ|g|p(Gi), x

′ >)1/p)

where Gi for each i ∈ I is null set, then (f1 ⊗ χA, ..., fn ⊗ χA) is measurably

bound to g ⊗ x′ at a point x

Proof

Let E denote the set

((Lp(µ)g⊗x
′

f⊗x′) : (< µ|f |p(Gi), x
′ >)1/p 6= (< µ|g|p(Gi), x

′ >)1/p

Then E is a null set (by hypothesis). From the results on almost everywhere

property in [3, 7, 8], it follows that

< µ|f |p(Gi), x
′ >)1/p = (< µ|g|p(Gi), x

′ >)1/p a.e.

Let Fn = ((Lp(µ)g⊗x
′

fj⊗χA
)nj=1 :‖ (

∑n
j=1[< µ|fj |p(Nr(xi)), x

′ >)1/p - (< µ|g|p(Gi), x
′ >)1/p] ‖ x′ ‖1/p

′
‖ ≥ ε)

⊆ E
⋃

(Lp(µ)f⊗x
′

fj⊗χA
)nj=1 :‖ (

∑n
j=1 < µ|fj |p(Nr(xi)), x

′ >)1/p ‖ x′ ‖1/p
′

- (< µ|f |p(Gi), x
′ >)1/p ‖ x′ ‖1/p

′
‖ ≥ ε)

Since E is null set and (f1 ⊗ χ,..., fn ⊗ χA) is measurably bound to f ⊗ x′ at a point x by hypothesis), then

((Lp(µ)g⊗x
′

fj⊗χA
)nj=1 :‖ ((

∑n
j=1[(< µ|fj |p(Nr(xi)), x

′ >)1/p - (< µ|g|p(Gi), x
′ >)1/p] ‖ x′ ‖1/p

′
‖ ≥ ε)

From which the results follows (see Proposition 1) that

Fn ↓ ∅ as n→∞

Proposition 4
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Let (fn)∞i=1, (gn)∞i=1 and f be p-integrable functions such that the set (f1⊗χA, ..., fn⊗χA) is measurably bound
to f ⊗ x′ at a point x. If

((Lp(µ)gi⊗χA
fj⊗χA

) :‖ [(< µ|fj |p(Nr(xi)), x
′ >)1/p - (< µ|gi|p(Nr(xi)), x

′ >)1/p] ‖ x′ ‖1/p
′
‖ = 0)

is a non empty set for each j = 1, ..., n, then given a real ε > 0, the set

((Lp(µ)f⊗x
′

gj⊗χA
) :‖ [(

∑n
j=1 < µ|gj |p(Nr(xi)), x

′ >)1/p - (< µ|f |p(Gi), x
′ >)1/p] ‖ x′ ‖1/p

′
‖≥ ε)

Proof

The result in (see [21]) on linearly independent sequences of the form (fn)∞i=1 and (gn)∞i=1 in a Hilbert space
H1⊗H2 and the associated representation in terms of bounded operators is applied in proving this proposition.

Let En = ((Lp(µ)gi⊗χA
fj⊗χA

) :‖ [(< µ|fj |p(Nr(xi)), x
′ >)1/p - (< µ|gi|p(Nr(xi)), x

′ >)1/p] ‖ x′ ‖1/p
′
‖ = 0)

Since En 6= ∅ (by hypothesis), then by almost everywhere property for pairwise distinct sets as discussed in
[3, 7, 8], it follows that

(En)c = ((Lp(µ)gi⊗χA
fj⊗χA

) : (< µ|fj |p(Nr(xi)), x
′ >)1/p

6= (< µ|gi|p(Nr(xi)), x
′ >)1/p

is a null set.

Suppose

((Lp(µ)f⊗x
′

gj⊗χA
)nj=1 :‖ [(

∑n
j=1 < µ|gj |p(Nr(xi)), x

′ >)1/p - (< µ|f |p(Gi), x
′ >)1/p] ‖ x′ ‖1/p

′
‖≥ ε)

⊆ (En)c
⋃

((Lp(µ)f⊗x
′

fj⊗χA
)nj=1 :‖ (

∑n
j=1 < µ|fj |p(Nr(xi)), x

′ >)1/p ‖ x′ ‖1/p
′

- (< µ|f |p(Gi), x
′ >)1/p ‖ x′ ‖1/p

′
‖≥ ε)

It can be deduced from the results in [18] and [10], p. 15] on integrable functions which are equal almost
everywhere that (En)c is a null set.

Therefore, (f1 ⊗ χA, ..., fn ⊗ χA) is measurably bound to f ⊗ x′ at x. It follows from Proposition 3 that

((Lp(µ)f⊗x
′

gj⊗χA
)nj=1 :‖ [(

∑n
j=1 < µ|gj |p(Nr(xi)), x

′ >)1/p - (< µ|f |p(Gi), x
′ >)1/p] ‖ x′ ‖1/p

′
‖≥ ε)
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is monotonically ↓ ∅ as n→∞ as required

Proposition 5

Let the family (Aj : j ∈ α) of subsets of X be a refinement of a set Gi for each i and (fn)∞i=1, f be p-integrable
functions such that the set (f1 ⊗ χA, ..., fn ⊗ χA) is measurably bound to f ⊗ x′ at x ∈ X . If for given real
numbers β > 0 and ε > 0, the set

((Lp(µ)f⊗x
′

fk⊗χA
)k≥n :‖ [(

∑
k≥n < µ|fk|p(Nr(xi)), x

′ >)1/p - (< µ|f |p(Gi), x
′ >)1/p] ‖ x′ ‖1/p

′
‖≥ 1/β)

then for ε(β) > 0,

‖ [(
∑
k≥n < µ|fk|p(Nr(xi)), x

′ >)1/p - (< µ|f |p(Gi), x
′ >)1/p] ‖ x′ ‖1/p

′
‖< ε

Proof

Since (Aj : j ∈ α) is a refinement of a set Gi for each i (by hypothesis), then for every r-neighborhood Nr(xi)
of a point xi in Ai, there is a subset Gi in G such that Nr(xi) ⊆ Gi for each i and j (see [14])

For each natural number i, each Nr(xi) has non empty lower bound B in Gi such that

(< µ|fj |p(B), x′ >)1/p ‖ x′ ‖1/p
′
< ε

(< µ|fj |p(Nr(xi)), x
′ >)1/p ‖ x′ ‖1/p

′
< ε

Therefore,

limj→∞(< µ|fj |p(Nr(xi)), x
′ >)1/p ‖ x′ ‖1/p

′
< ε

Define Eβn =
⋃
k((Lp(µ)f⊗x

′

fk⊗χA
)k≥n :‖ [(

∑
k≥n < µ|fk|p(Nr(xi)), x

′ >)1/p

- (< µ|f |p(Gi), x
′ >)1/p] ‖ x′ ‖1/p

′
‖≥ 1/β)

The above inequality satisfy the j-convergence properties [see [22] of measurable products , where the norm
difference between sequentially generated measurable products monotonically becomes zero.

Since (f1 ⊗ χA, ..., fn ⊗ χA) is measurably bound to f ⊗ x′ at x ∈ X, as noted in proposition 1, there exists a
real number β > 0 satisfying

((Lp(µ)f⊗x
′

fk⊗χA
)k≥n :‖ [(

∑
k≥n < µ|fk|p(Nr(xi)), x

′ >)1/p - (< µ|f |p(Gi), x
′ >)1/p] ‖ x′ ‖1/p

′
‖≥ 1/β) ↓ ∅ as n→∞
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Subsequently,

(< µ|f |p(Eβn), x′ >)1/p ↓ 0

Define E =
⋃∞
β=1E

β
n

Ec =
⋂∞
β=1(Eβn)c where Ec is the complement of E in Lp(µ)⊗X ′

Applying the results on topological properties of integrable functions with respect to a Banach space valued
measure which have been extensively studied in [20], it follows that

Ec =
⋂∞
β=1

⋂
k((Lp(µ)f⊗x

′

fk⊗χA
)k≥n :‖ [(

∑
k≥n < µ|fk|p(Nr(xi)), x

′ >)1/p

- (< µ|f |p(Gi), x
′ >)1/p] ‖ x′ ‖1/p

′
‖≥ 1/β)c

=
⋂∞
β=1

⋂
k((Lp(µ)f⊗x

′

fk⊗χA
)k≥n :‖ [(

∑
k≥n < µ|fk|p(Nr(xi)), x

′ >)1/p

- (< µ|f |p(Gi), x
′ >)1/p] ‖ x′ ‖1/p

′
‖< 1/β)

Let 1/β < ε for β > 0

Therefore,

⋂∞
β=1

⋂
k((Lp(µ)f⊗x

′

fk⊗χA
)k≥n :‖ [(

∑
k≥n < µ|fk|p(Nr(xi)), x

′ >)1/p - (< µ|f |p(Gi), x
′ >)1/p] ‖ x′ ‖1/p

′
‖< ε)

On Ec.

Corollary 1

Let (fn)∞i=1, (gn)∞i=1 and f be p-integrable functions with respect to an increasingly directed scalar measure
< µi, x

′ > for each i and (Gi : i ∈ I) be a family of closed measurable subsets of X. If (f1 ⊗ χA, ..., fn ⊗ χA) is
measurably bound to f ⊗ x′ over the r-neighborhood Nr(xi) of a point xi in A ∈ Σ, then

((Lp(µ)f⊗x
′

fj⊗χA
)nj=1 :‖ [(

∑n
j=1 < µkj | fj |

p(Nr(xi)), x
′ >)1/p

- (< µkj | f |
p(X ∼ Gi), x′ >)1/p] ‖ x′ ‖1/p

′
‖≥ ε) ↓ ∅
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Proof

Since Gi is closed for each i, then GC = X ∼ Gi is topologically open follows from the results in [1, 16, 2].

By applying the property of non-overlapping open sets and the intersection of their interiors as noted in [6], p.
2], we have

A
⋂
Gci = A ∼ Gi 6= ∅

If r = min (r1, r2, ...rn), the results in [1, 16, 2] demonstrate that for a topologically open set Gi, there exists
an r-neighborhood Nr(xi) such that

Nr(xi) ⊂ Gi for r > 0 and for each i

By definition 2 on measurably bound products and using the results in [23], Definition 1.3] on geometrically
doubling metric spaces, we conclude that for any set Gi in X, there is r-neighborhood Nr(xi) covering Gi such
that

((Lp(µ)f⊗x
′

fj⊗χA
)nj=1 :‖ [(

∑n
j=1 < µj | fj |p(Nr(xi)), x′ >)1/p

- (< µj | f |p(Gci ), x′ >)1/p] ‖ x′ ‖1/p
′
‖≥ ε) ↓ ∅

The results discussed in [11, 12] on increasingly directed set of vector measure duality and the supremum property
taken over the r-neighborhoods covering Gi [24] ,p. 6] are applied in constructing the following inclusion

((Lp(µ)f⊗x
′

fj⊗χA
)nj=1 :‖ [(

∑n
j=1 < µj | fj |p(Nr(xi)), x′ >)1/p

- (< µj | f |p(Gci ), x′ >)1/p] ‖ x′ ‖1/p
′
‖≥ ε)

= LUBk((Lp(µ)f⊗x
′

fj⊗χA
)nj=1 :‖ [(

∑n
j=1 < µkj | fj |

p(Nr(xi)), x
′ >)1/p

- (< µkj | f |
p(Gci ), x

′ >)1/p] ‖ x′ ‖1/p
′
‖≥ ε)

= LUBk((Lp(µ)f⊗x
′

fj⊗χA
)nj=1 :‖ (

∑n
j=1 < µkj | fj |

p(Nr(xi)), x >
1/p

- (< µkj | f |
p[(A

⋃
Gi)

c)
⋃

(X ∼ Gi)], x′ >)1/p] ‖ x′ ‖1/p
′
‖≥ ε)

⊆ LUBk((Lp(µ)f⊗x
′

fj⊗χA
)nj=1 :‖ [(

∑n
j=1 < µkj | fj |

p(Nr(xi)), x
′ >)1/p

- (< µkj | f |
p[(A

⋃
Gi)

c)], x′ >)1/p

+ (< µkj | f |
p[(X ∼ Gi)], x′ >)1/p] ‖ x′ ‖1/p

′
‖≥ ε)
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Therefore

((Lp(µ)f⊗x
′

fj⊗χA
)nj=1 :‖ [(

∑n
j=1 < µkj | fj |

p(Nr(xi)), x
′ >)1/p

- (< µkj | f |
p[(X ∼ Gi)], x′ >)1/p] ‖ x′ ‖1/p

′
‖≥ ε)

⊆ ((Lp(µ)f⊗x
′

fj⊗χA
)nj=1 :‖ (

∑n
j=1 < µj | fj |p(Nr(xi)), x′ >)1/p

- (< µj | f |p(Gci ), x′ >)1/p] ‖ x′ ‖1/p
′
‖≥ ε)

The preceding discussion satisfy the monotone property in [15, 16] from which the results follows

((Lp(µ)f⊗x
′

fj⊗χA
)nj=1 :‖ [(

∑n
j=1 < µkj | fj |

p(Nr(xi)), x
′ >)1/p

- (< µkj | f |
p(X ∼ Gi), x′ >)1/p] ‖ x′ ‖1/p

′
‖≥ ε) ↓ ∅

4 Conclusion
The results obtained in this study highlight the boundedness of sequentially generated measurable products at a
point using the ε− δ criterion. The article explored the connection between topological properties of measurable
sets, measurable functions and boundedness of products of measurable functions. The research is unique in
the sense that it considers the convergence of sequentially generated measurable products in the context of
monotonically decreasing sets. This research can be extended to sections of divergence of n-dimensional products.
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