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Abstract

Background

Epidemiological studies report associations of diverse cardiometabolic conditions including

obesity with COVID-19 illness, but causality has not been established. We sought to evalu-

ate the associations of 17 cardiometabolic traits with COVID-19 susceptibility and severity

using 2-sample Mendelian randomization (MR) analyses.

Methods and findings

We selected genetic variants associated with each exposure, including body mass index

(BMI), at p < 5 × 10−8 from genome-wide association studies (GWASs). We then calculated

inverse-variance-weighted averages of variant-specific estimates using summary statistics

for susceptibility and severity from the COVID-19 Host Genetics Initiative GWAS meta-anal-

yses of population-based cohorts and hospital registries comprising individuals with self-

reported or genetically inferred European ancestry. Susceptibility was defined as testing

positive for COVID-19 and severity was defined as hospitalization with COVID-19 versus

population controls (anyone not a case in contributing cohorts). We repeated the analysis

for BMI with effect estimates from the UK Biobank and performed pairwise multivariable MR

to estimate the direct effects and indirect effects of BMI through obesity-related cardiometa-

bolic diseases. Using p < 0.05/34 tests = 0.0015 to declare statistical significance, we found

a nonsignificant association of genetically higher BMI with testing positive for COVID-19

(14,134 COVID-19 cases/1,284,876 controls, p = 0.002; UK Biobank: odds ratio 1.06 [95%

CI 1.02, 1.10] per kg/m2; p = 0.004]) and a statistically significant association with higher risk

of COVID-19 hospitalization (6,406 hospitalized COVID-19 cases/902,088 controls, p = 4.3
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× 10−5; UK Biobank: odds ratio 1.14 [95% CI 1.07, 1.21] per kg/m2, p = 2.1 × 10−5). The

implied direct effect of BMI was abolished upon conditioning on the effect on type 2 diabetes,

coronary artery disease, stroke, and chronic kidney disease. No other cardiometabolic

exposures tested were associated with a higher risk of poorer COVID-19 outcomes. Small

study samples and weak genetic instruments could have limited the detection of modest

associations, and pleiotropy may have biased effect estimates away from the null.

Conclusions

In this study, we found genetic evidence to support higher BMI as a causal risk factor for

COVID-19 susceptibility and severity. These results raise the possibility that obesity could

amplify COVID-19 disease burden independently or through its cardiometabolic conse-

quences and suggest that targeting obesity may be a strategy to reduce the risk of severe

COVID-19 outcomes.

Author summary

Why was this study done?

• Diverse cardiometabolic risk factors have been described in the literature to be associ-

ated with COVID-19 illness, but causality has not been established.

• Preventive strategies targeting cardiometabolic risk factors that are both causal and

modifiable may reduce the risk of COVID-19 illness, whereas interventions targeting

risk factors that are only correlated with the outcome may not.

What did the researchers do and find?

• We used 2-sample Mendelian randomization analyses to test whether 17 cardiometa-

bolic diseases and traits had a causal relationship with risk of COVID-19 illness.

• We found that higher body mass index was the only cardiometabolic risk factor among

those we studied that was associated with a higher risk of hospitalization for COVID-19

compared to the general population.

• Obesity-related cardiometabolic diseases—type 2 diabetes, chronic kidney disease,

stroke, and coronary heart disease—may be mediators of the relationship between body

mass index and higher risk of hospitalization for COVID-19.

What do these findings mean?

• Our results suggest that people with a higher body mass index have a higher risk for hos-

pitalization for COVID-19.

• If other cardiometabolic risk factors have causal associations with COVID-19 illness,

their effects are likely modest.
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• We provide genetic evidence supporting body mass index as a causal risk factor for

COVID-19 severity, raising the possibility that obesity could have amplified the

COVID-19 pandemic, directly or through obesity-related cardiometabolic diseases.

Introduction

There is high heterogeneity in both susceptibility to and severity of SARS-CoV-2 infection,

with clinical severity [1,2] ranging from asymptomatic infection to life-threatening respiratory

failure and death [3]. Epidemiological studies using both retrospective and prospective cohorts

of different sizes and from multiple countries have reported evidence that underlying cardio-

metabolic conditions [4–29] may be associated with an increased risk of severe COVID-19 ill-

ness (i.e., hospitalization, intubation, mechanical ventilation, or death [30]). Coronary artery

disease [4,25,29], chronic kidney disease [5–9,28], obesity [10–14], and type 2 diabetes [6,15–

18] have strong and consistent evidence for association with COVID-19 severity [30]. There is

less compelling evidence for cerebrovascular disease [19–26] (i.e., stroke) and hypertension

[4,24–27] leading to severe manifestations of COVID-19. Additional evidence suggests that

cardiometabolic traits may be associated with disease susceptibility [31]; however, without uni-

versal testing, this correlation is difficult to prove.

While early reports are crucial to inform clinical decision making and public health policy

during a pandemic of a new pathogen, correlative observational data can be plagued by resid-

ual confounding. Thus, there remain inherent challenges in inferring causal impact from these

epidemiological studies. Mendelian randomization (MR) is an analytic approach that uses

human genetic variation known to influence modifiable exposures to examine their causal

effect on disease [32]. MR is especially useful for disentangling causal pathways of phenotypi-

cally clustered risk factors that are difficult to randomize or prone to measurement error. By

identifying causal relationships between cardiometabolic risk factors and COVID-19 suscepti-

bility or severity, we may be able to mitigate their impact on disease risk and avoid spurious

conclusions that lead to misinformation or incite unnecessary anxiety.

We hypothesize that only some cardiometabolic conditions have a causal relationship with

COVID-19 illness or its disease course. Thus, we sought to evaluate the associations of 17 car-

diometabolic exposures with COVID-19 susceptibility and severity using 2-sample MR analy-

ses. MR effects were estimated from genome-wide association study (GWAS) summary

statistics of these cardiometabolic diseases and related traits and COVID-19-related outcomes

from the COVID-19 Host Genetics Initiative (https://www.covid19hg.org/) [33].

Methods

We selected 17 cardiometabolic traits and diseases that cluster clinically with metabolic syn-

drome, obesity, diabetes, and their complications: type 1 diabetes [34], type 2 diabetes [35],

hemoglobin A1c [36], fasting glucose adjusted for body mass index (BMI) [36], fasting insulin

adjusted for BMI [36], BMI [37], waist–hip ratio adjusted for BMI [38], low-density lipopro-

tein cholesterol [39], high-density lipoprotein cholesterol [39], triglycerides [39], systolic blood

pressure [40], diastolic blood pressure [40], creatinine-based estimated glomerular filtration

rate (eGFR) [41], chronic kidney disease [41], coronary artery disease [42], any stroke [43],

and C-reactive protein (CRP) [44], a nonspecific biomarker of inflammation that can be ele-

vated in people with high cardiometabolic risk. As our study was conducted to narrowly test
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an a priori hypothesis, we did not have a prespecified analysis plan. This study is reported

according to the Strengthening the REporting of Genetic Association Studies (STREGA; S1

STREGA Checklist).

Candidate instrument selection for cardiometabolic diseases and traits

We extracted association summary statistics from published large-scale GWAS meta-analyses

to generate sets of genetic instruments for each of these exposures. We used genetic variants

associated with these exposures at genome-wide significance (p< 5 × 10−8) and excluded

those that were not represented in the COVID-19 outcome GWAS datasets. Using the

LD_clumping function, we pruned the list of candidate instruments for linkage disequilibrium

(LD; r2 > 0.01) and discarded variants that were within 1-Mb distance from other candidate

instruments with a stronger association. Analyses were performed using the R package Two-

SampleMR v.4.0 [45,46].

COVID-19 Host Genetics Initiative GWAS meta-analysis for susceptibility

and severity

The COVID-19 Host Genetics Initiative is an international genetics collaboration that aims to

uncover the genetic determinants of outcomes related to COVID-19 susceptibility and severity

[33]. To accomplish this, investigators from around the world assembled individual-level clini-

cal and genetic data and performed individual GWASs. All cohorts imputed genotypes to Hap-

lotype Reference Consortium [47], 1000 Genomes [48] or TOPMed [49] reference panels.

Each contributing cohort defined ancestry by self-report or genetic data and performed single-

variant association testing adjusting for age, age2, sex, age × sex, genetic ancestry principal

components, and other study-specific covariates. Summary statistics were shared via a cloud-

based computing platform for centralized meta-analysis. An allele frequency filter of 0.0001

and an INFO filter of 0.6 was applied to each study prior to meta-analysis with inverse-vari-

ance weighting (IVW). Summary statistics from the fourth round of GWAS meta-analysis,

shared publicly on October 20, 2020, were used to test the 17 sets of genetic instruments

against COVID-19 outcomes assembled by the COVID-19 Host Genetics Initiative. A total of

22 cohorts had contributed to the GWASs of COVID-19 outcomes used in our primary analy-

ses. Cohorts contributing the largest number of cases (>1,000) included the UK Biobank,

deCODE, FinnGen, Million Veteran Program, Ancestry, COVID19-Host(a)ge, and GenO-

MICC. Participants were mostly healthy volunteers or people seeking medical care within a

healthcare system. To our knowledge, none of the participants were recruited via random

sampling.

For our 2 primary analyses, we restricted analysis to individuals of European ancestry only,

and selected the COVID-19 outcomes with the largest number of cases. Susceptibility was

defined as testing positive for COVID-19 by reverse transcription quantitative polymerase

chain reaction (RT-qPCR), serological testing, or clinician diagnosis by chart review or ICD

coding (N = 14,134) versus population controls (N = 1,284,876), which included any person

who was not a case (i.e., people who tested negative, were never tested, or had an unknown

testing status. Severity was defined as hospitalization of patients with COVID-19 by RT-qPCR,

serological testing, or clinician diagnosis (N = 6,406) versus population controls (N = 902,088).

As controls were not selected based on testing results, specific characteristics, or testing status,

they were likely to be representative of the general population.

To determine whether statistically significant results from the primary analyses were consis-

tent across different definitions for COVID-19 susceptibility, severity, and control groups, we

performed secondary MR analyses of the 5 remaining outcomes that were made available by
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the COVID-19 Host Genetics Initiative without restriction by ancestry. For susceptibility,

these outcomes were (1) COVID-19 positive by RT-qPCR, serological testing, or clinician

diagnosis (N = 24,057) versus COVID-19 negative by RT-qPCR, serological testing, or self-

report (N = 218,062) and (2) predicted COVID-19 based on symptoms or COVID-19 positive

by self-report (N = 3,204) versus no predicted COVID-19 based on symptoms or no COVID-

19 by self-report (N = 35,728) using a model developed by Menni et al. [50]. For severity, these

outcomes were (1) critical respiratory illness, defined by death, intubation, continuous positive

airway pressure (CPAP), bilevel positive airway pressure (BiPAP), continuous negative exter-

nal pressure (CNP), or very high flow positive end expiratory pressure oxygen in patients with

COVID-19 by RT-qPCR, serological testing, or clinician diagnosis (N = 4,933) versus popula-

tion controls (N = 1,398,672); (2) critical respiratory illness (N = 269) versus no hospitalization

for COVID-19 within 21 days of testing positive for COVID-19 (N = 688); and (3) hospitaliza-

tion (N = 2,430) versus no hospitalization (N = 8,478) among people with COVID-19.

MR analysis of COVID-19 susceptibility and severity

To estimate the association of each exposure with each outcome, we performed 2-sample MR

analyses using the random-effects IVW method, whereby genetic variant–outcome coefficients

were modeled as a function of genetic variant–exposure coefficients weighted by the inverse of

the squared genetic variant–outcome standard errors [51]. The use of random effects provides

a concise estimation and considers potential heterogeneity among estimates from individual

variants [52]. We used p< 0.05/17 exposures/2 outcomes = 0.0015 to declare statistical signifi-

cance, with the understanding that this threshold may be conservative as exposures are clini-

cally correlated. We reported MR effect estimates as odds ratios for the outcome per log-odds

of binary exposures or unit change of continuous exposures. For BMI, we repeated the analysis

using untransformed variables from UK Biobank (http://www.nealelab.is/uk-biobank) to

report MR effect estimates per unit change of raw BMI.

Accounting for pleiotropy

An assumption of MR is that instruments do not influence the outcome independently of the

risk factor of interest, i.e., non-mediated pleiotropy. We tested this assumption in a series of

sensitivity analyses. We used the weighted median estimator (WME) [53], which requires

�50% of the contribution to the MR estimate to be from valid instruments; if so, its MR esti-

mate is stable. We then used the MR-Egger regression [54], whereby a linear regression of vari-

ant–outcome on variant–exposure coefficients was performed without constraining the

intercept to the origin. The slope of the regression line provides the corrected MR estimate

even when none of the instruments are valid [54]. Next, we used the mode-based estimate,

which is consistent when the largest number of similar single-variant MR estimates are derived

from valid instruments even when the majority are invalid [55]. If all MR models produced

similar MR estimates despite making different assumptions on the validity of instruments, we

would be more confident of the robustness of our results [56]. In other sensitivity analyses, we

applied MR pleiotropy residual sum and outlier (MR-PRESSO) [57] and leave-one-out analy-

sis to determine whether outliers may be biasing the overall MR estimate.

To estimate direct and indirect effects of BMI via obesity-related cardiometabolic diseases

(coronary artery disease, stroke, chronic kidney disease, and type 2 diabetes), we performed

pairwise multivariable MR wherein we conditioned upon the effects of these exposures with

BMI one at a time. Using GWASs with full summary statistics, we extracted the summary sta-

tistics of all the variants that had reached genome-wide significance in at least 1 of these expo-

sures. As adding variants that are not associated with BMI for the purpose of jointly predicting

PLOS MEDICINE Cardiometabolic risk factor for COVID-19

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1003553 March 4, 2021 5 / 17

http://www.nealelab.is/uk-biobank
https://doi.org/10.1371/journal.pmed.1003553


multiple exposures in multivariable MR may weaken the instrument, we calculated the Q sta-

tistic to test for weak instruments using methods by Sanderson et al. [58], and confirmed that

the instruments had sufficient strength to predict each trait. We aligned the variants to the ref-

erence allele, excluding the palindromic variants with alternate allele frequency between 0.4

and 0.6 using the harmonize_data function. Using the function mv_multiple, we fitted these 4

cardiometabolic diseases with BMI one at a time. We considered results significant when p =
0.05/4/2 = 0.006 as we tested 4 pairs of exposures for 2 outcomes.

Results

Selection of genetic instruments for exposures

We obtained genetic instruments for the 17 exposures for MR analyses after excluding variants

that were in LD (r2 > 0.01) and in proximity (1 Mb) to other candidate instruments with

stronger p-values. Genetic instruments explained 0.2% to 5.3% of the variance or liability of

each exposure (Table 1). Contributing studies included in these exposure GWAS meta-analy-

ses were predominantly of individuals of European ancestry.

MR effect of each cardiometabolic exposure on COVID-19 susceptibility

and severity

Of the 17 cardiometabolic exposures, only BMI was found to be associated with COVID-19

severity after accounting for multiple testing (p< 0.0015; Fig 1). We found a nonsignificant

association of genetically higher BMI with a higher risk of testing positive for COVID-19 after

correcting for multiple testing (p = 0.002), and a significant association with a higher risk of

COVID-19 hospitalization (p = 4.3 × 10−5), compared to population controls using random-

effects IVW (Fig 1).

Out the 1,984 genetic instruments used for the 17 cardiometabolic exposures, 8 had an F-

statistic < 10; none of them had been used for BMI (Table A in S1 Tables). Excluding the few

variants with F-statistic < 10 and using a LD clumping threshold of r2 < 0.001 did not materi-

ally change the results for the any of the cardiometabolic risk factors (Fig A in S1 Figs). For

both outcomes, we identified no heterogeneity of effects (p = 0.06; p = 0.25) or outlying genetic

variants by the leave-one-out analysis or MR-PRESSO (Figs B–G in S1 Figs). To obtain inter-

pretable effect estimates, we repeated the analysis using beta estimates of raw BMI from UK

Biobank [59] and found consistent results: an odds ratio of 1.06 per kg/m2 increase in BMI

(95% CI 1.02, 1.10; p = 0.004) for testing positive with COVID-19, and an odds ratio of 1.14

per kg/m2 increase in BMI (95% CI 1.07, 1.21; p = 2.1 × 10−5) for COVID-19 hospitalization.

Point estimates from the MR-Egger, WME, and weighted mode analyses, were in the same

direction as those from the IVW analysis (Fig 2). The MR-Egger intercept p was 0.25 and 0.13

for susceptibility and severity, respectively, indicating the absence of directional pleiotropy.

MR of 5 other COVID-19 outcomes in secondary analyses

Genetically higher BMI was associated with a higher risk of critical respiratory illness versus

population controls (p = 7.7 × 10−4) and of testing positive for COVID-19 versus testing nega-

tive for COVID-19 (p = 0.03). We found a nonsignificant association of CRP with hospitaliza-

tion versus no hospitalization among people with COVID-19 (p = 0.002). The associations of

other cardiometabolic exposures with these 5 COVID-19 outcomes were null (Figs H–Q in S1

Figs). As studies have reported an association between critical illness in COVID-19 and hyper-

coagulability [60], we tested the association of venous thromboembolism with all 7 COVID-19
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outcomes using 41 genetic instruments extracted from a GWAS of venous thromboembolism

in people of mostly European ancestry [61]. All associations were null (Fig R in S1 Figs).

Multivariable MR analysis with BMI

The implied direct effects of BMI on the 2 COVID-19 outcomes were abolished upon condi-

tioning on the genetic effects of each of the 4 obesity-related cardiometabolic diseases—coro-

nary artery disease, stroke, chronic kidney disease, and type 2 diabetes (BMI, p> 0.0125;

Table 2). In the multivariable model with both BMI and chronic kidney disease, we observed

an association between the risk of chronic kidney disease and the risk of COVID-19

Table 1. Candidate genetic instruments of cardiometabolic diseases and traits.

Exposure Adjusted for

BMI

PMID or

reference

Sample size, N Ancestry of

participants

Candidate genetic

instruments, N
Genetic instruments

used in analysis, N
Estimated variance

explained (%)

Type 1 diabetes No 25751624 6,808 cases/12,835

controls

European 75 50 3.2

Type 2 diabetes No 30297969 898,130 (9% cases) European 243 226 3.1

Hemoglobin A1c No Chen et al.

[36]

Up to 281,416 70% European 216 105 2.2

Fasting glucose Yes Chen et al.

[36]

Up to 281,416 70% European 179 91 1.6

Fasting insulin Yes Chen et al.

[36]

Up to 281,416 70% European 96 61 1.0

BMI No 25673413 Up to 339,224 Mostly European 75 72 1.7

Waist–hip ratio Yes 25673412 Up to 224,459 Mostly European 53 43 0.8

C-reactive protein No 31900758 Up to 418,642 European 439 437 5.3

Low-density

lipoprotein

No 24097068 Up to 188,577 European 65 63 1.9

High-density

lipoprotein

No 24097068 Up to 188,577 European 54 53 1.8

Triglycerides No 24097068 Up to 188,577 European 39 38 1.3

Systolic blood

pressure

No 30224653 >1,000,000 European 185 181 1.5

Diastolic blood

pressure

No 30224653 >1,000,000 European 190 183 1.5

Creatinine-based

eGFR

No 31152163 >1,000,000 Mostly European 547 280 3.3

Chronic kidney

disease

No 31152163 64,164 cases/

561,055 controls

Mostly European 23 21 0.6

Coronary artery

disease

No 28714975 10,801 cases/

137,914 controls

Mostly European 50 50 0.9

Any stroke No 29531354 67,162 cases/

454,450 controls

Mostly European 23 16 0.22

The number of candidate genetic instruments refers to the number of variants that were associated with the exposures at genome-wide significance (p< 5 × 10−8) in

GWASs. The number of genetic instruments used in the analysis refers to the number of variants that were used in the Mendelian randomization analysis after

excluding those that were not represented in the COVID-19 GWAS, or were in linkage disequilibrium or within 1-Mb distance from other candidate instruments with a

stronger association. We used the sex-combined summary statistics for BMI and waist–hip ratio adjusted for BMI. All other exposures were adjusted for sex. Where

indicated, we used summary statistics adjusted for BMI. We elected to use effect estimates from European-specific GWASs or from multi-ancestry GWASs where the

bulk of the data were provided by participants of European descent. Sample sizes were the maximum number indicated in the published source. Estimated variance

explained by genetic instruments was the sum of estimated variance explained by each variant calculated from reported p-values, sample sizes, and proportion of cases

and controls using the TwoSampleMR R functions get_r_from_lor() and get_r_from_pn().

BMI, body mass index; eGFR, estimated glomerular filtration rate; GWAS, genome-wide association study; PMID, PubMed identifier.

https://doi.org/10.1371/journal.pmed.1003553.t001
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hospitalization (odds ratio 1.25 [95% CI 1.08, 1.42] per log-odds, p = 0.01), though this associa-

tion was not statistically significant after accounting for multiple testing.

To test whether adiposity measures were associated with COVID-19 outcomes, we per-

formed univariable MR analyses for waist–hip ratio, hip circumference, and waist circumfer-

ence with and without adjustment for BMI. Waist–hip ratio with and without adjustment for

BMI was not associated with COVID-19 outcomes. Waist circumference and hip circumfer-

ence were both nominally associated with testing positive for COVID-19 versus population

controls, but not with adjustment for BMI. These results suggest that these adiposity traits

were not associated with COVID-19 outcomes independently of BMI (Fig S in S1 Figs).

Discussion

Cardiometabolic diseases have been identified to be risk factors for COVID-19 illness [30].

Since risk factors may be only correlated, and not causally related, with outcomes of interest, it

is paramount to assess causality to inform preventive strategies. Using the 2-sample MR IVW

method, we found that genetically higher BMI was the only risk factor for COVID-19 severity

among the 17 cardiometabolic diseases and traits tested, whereby the odds of hospitalization

with COVID-19 was 14% higher per kg/m2 increase in BMI. The association of genetically

higher BMI with higher COVID-19 susceptibility did not meet our significance threshold of p
< 0.0015. While our MR findings were consistent with the multiple epidemiological studies

that have reported an association between obesity and COVID-19 illness [10–14], we note that

results using other MR methods that are robust to violations of instrumental variable assump-

tions were null, suggesting that our primary results may be biased by pleiotropy. To disentan-

gle implied direct and indirect effects of BMI, we used a multivariable MR analysis to adjust

Fig 1. Forest plot Mendelian randomization (MR) effect estimates and 95% confidence intervals for each exposure and the 2 main outcomes analyzed. MR

estimates are reported as odds ratios (ORs) per unit of the exposure: hemoglobin A1c, percent unit; fasting glucose, mg/dl; fasting insulin, natural log; body mass

index (BMI), inverse normally transformed residuals; waist–hip-ratio, inverse normally transformed residuals; C-reactive protein, rank-based inverse normally

transformed; low-density lipoprotein, standardized; high-density lipoprotein, standardized; triglycerides, standardized; systolic and diastolic blood pressure, mm

Hg; estimated glomerular filtration rate (eGFR), ml/min/1.73 m2; type 1 diabetes, type 2 diabetes, coronary artery disease, chronic kidney disease, and any stroke,

log-odds.

https://doi.org/10.1371/journal.pmed.1003553.g001
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for the genetic effect on obesity-related cardiometabolic diseases. We showed that the implied

direct effect of BMI was eliminated upon conditioning on each of the obesity-related condi-

tions chronic kidney disease, stroke, coronary artery disease, and type 2 diabetes one at a time.

These results suggest that the association of BMI may be mediated through its cardiometabolic

consequences.

Previous MR studies have reported BMI as a risk factor for COVID-19-related outcomes.

Genetically higher BMI was associated with a higher risk of developing sepsis, respiratory fail-

ure, and hospitalization with COVID-19 in UK Biobank and the HUNT study [62]. Another

MR investigation showed that the association of BMI with COVID-19 outcomes persisted

Fig 2. Sensitivity analyses using other Mendelian randomization (MR) methods and results using UK Biobank effect estimates. MR estimates are reported

as odds ratios (ORs) per unit increase in body mass index (BMI). Locke et al. [37]: inverse normally transformed residuals; UK Biobank: kg/m2.

https://doi.org/10.1371/journal.pmed.1003553.g002
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upon conditioning on waist circumference, trunk fat ratio, cardiovascular disease, and type 2

diabetes. It is noteworthy that the type 2 diabetes GWAS used in that analysis was smaller than

the one used in our study, which may explain why attenuation of the BMI effect on COVID-19

outcomes in their multivariable MR was not observed [63]. Further, our MR study used a

larger and more recently released GWAS of COVID-19 outcomes. In a MR study on the asso-

ciation of physical activity and BMI with COVID-19 outcomes using UK Biobank data, BMI

was not found to be associated with COVID-19 (odds ratio 1.37 [95% CI 0.90–2.09] per kg/m2,

p = 0.14) [64], though the confidence interval reported in this study was wider, likely due to its

smaller sample size compared to our study.

Apart from BMI, the associations for other cardiometabolic exposures were null. If any of

these exposures had a causal role in COVID-19 susceptibility or severity, their effects were

likely too small to be detected with our current sample sizes and significance threshold of

alpha = 0.0015. Using genetic instruments that explain 1% to 10% of the exposure, our study

can detect odds ratios per SD of the exposure ranging from 1.13 to 1.51 (Table B in S1 Tables).

Observational correlations of cardiometabolic conditions with COVID-19 outcomes may be

partly due to clinical clustering with obesity. It is noteworthy that correlational risk factors can

still have clinical utility in identifying at-risk patients even if causality is refuted. However, if

preventive efforts only target correlated, but not causal, risk factors, disease risk may not be

reduced. As the risks for the cardiometabolic diseases tested vary with age, it is possible that a

younger person with a high genetic burden for a disease may not have experienced a disease

event that modifies COVID-19 severity. In this scenario, the absence of a significant associa-

tion does not necessarily imply that having a personal history of the disease has no effect on

COVID-19 risk. This is less of a concern for continuous traits such as BMI, in which geneti-

cally driven contributions are less dependent on age. Genetic instruments associated with mul-

tiple cardiometabolic risk factors may explain why obesity-related cardiometabolic diseases

were able to attenuate BMI effects in multivariable MR despite not being associated with

COVID-19 outcomes themselves. Future work in well-powered GWASs is needed to examine

genetic loci with pleiotropic effects on cardiometabolic risk factors and COVID-19 outcomes

to better delineate causal pathways between BMI and COVID-19.

Our study had limitations. The variances explained in the exposures by genetic instruments

were modest, though well within the ranges that are typical for complex traits. The use of weak

genetic instruments could have limited our ability to detect subtle causal associations and does

Table 2. Direct effect of BMI and other obesity-related cardiometabolic diseases on COVID-19 susceptibility (testing positive) and severity (hospitalization) versus

population controls in pairwise multivariate Mendelian randomization.

Model Exposure Outcome

Susceptibility

OR (95% CI), p-value

Severity

OR (95% CI), p-value

BMI + T2D BMI 1.00 (0.97, 1.03), 0.92 1.01 (0.95, 1.06), 0.82

T2D 1.02 (0.98, 1.06), 0.29 1.05 (0.97, 1.12), 0.22

BMI + CKD BMI 1.01 (0.97, 1.04), 0.65 0.99 (0.93, 1.05), 0.66

CKD 1.06 (0.96, 1.15), 0.28 1.25 (1.08, 1.42), 0.01

BMI + CAD BMI 1.02 (0.98, 1.05), 0.36 1.03 (0.97, 1.10), 0.30

CAD 1.04 (0.97, 1.11), 0.31 1.02 (0.90, 1.15), 0.72

BMI + stroke BMI 1.01 (0.97, 1.04), 0.75 0.98 (0.92, 1.04), 0.57

Stroke 1.03 (0.88, 1.18), 0.71 1.08 (0.83, 1.33), 0.54

As we used p = 0.05/4/2 = 0.006 to declare statistical significance, none of the associations were statistically significant.

BMI, body mass index; CAD, coronary artery disease; CKD, chronic kidney disease; OR, odds ratio; T2D, type 2 diabetes.

https://doi.org/10.1371/journal.pmed.1003553.t002
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not exclude the possibility of modest effects. It is also possible that, with larger sample sizes,

the association of other cardiometabolic exposures with COVID-19 outcomes could become

significant, and confidence intervals would narrow around true estimates. Our analysis did

not factor nonlinear exposure–outcome relationships or test for threshold effects at BMI cut-

points. Nevertheless, as obesity is commonly defined as a BMI� 30 kg/m2, it is reasonable to

conclude that the risk associated with obese individuals is higher than that for average-weight

individuals. We recognize that collider or selection bias could distort associations [65,66]. As

genetic analyses could only be performed on participants who had been nonrandomly selected

for genotyping in biobanks, patient registries, hospitals, or population studies, a spurious asso-

ciation between factors that promote entry into genetic studies and COVID-19 hospitalization

could occur. Nevertheless, we observe a consistent direction of effect for BMI on COVID-19

across nested samples using various case/control definitions for susceptibility and severity. We

also acknowledge that bias towards the null could occur if some people with underlying medi-

cal conditions were more likely than the general population to make concerted efforts to lower

their own personal risk of viral exposure in response to public health messaging, were more

likely to be tested for COVID-19 and receive a negative test result, or were more likely to gain

entry into genetic studies. The causal estimates by MR-Egger regression were not as compel-

ling, suggesting that horizontal pleiotropy or other confounding factors could have biased the

estimates. Yet, MR-Egger is a less efficient estimator than the other methods [53] and is gener-

ally considered as only one of several sensitivity analyses used to evaluate the plausibility of

findings. As UK Biobank had contributed to several of the exposure GWASs as well as the out-

come GWASs, MR estimates from 2-sample MR could be biased toward observational effect

estimates due to participant overlap [67]. Nevertheless, the BMI GWAS by Locke et al. [37] did

not include UK Biobank data, and so the association of BMI with COVID-19 outcomes is

unlikely to be biased due to overlapping samples. In our primary analyses we chose to use con-

trols that were broadly defined as not being a case. Without universal testing, the control

group, albeit representative of the general population, could have been contaminated with peo-

ple who had contracted COVID-19, particularly those with only mild or no viral symptoms

(asymptomatic), which would have biased estimates towards the null. Nonetheless, our results

were consistent when using controls that were narrowly defined as people who tested negative

for COVID-19.

Our secondary analyses showed that genetically higher BMI was associated with a higher

risk of critical respiratory illness versus population controls. Obesity could contribute to the

risk of acute respiratory distress syndrome, the main cause of mortality from COVID-19

[68,69]. We did not include critical respiratory illness in our primary analysis because sample

sizes were small. Future studies with larger samples are needed to clarify whether the implied

causal relationship between BMI and COVID-19 extends to critical respiratory illness. As sex-

stratified effect estimates were not provided by the COVID-19 Host Genetics Initiative, we

were unable to determine whether BMI effects differed by sex. Contributing cohorts to the

COVID-19 Host Genetics Initiative were mostly of European ancestry. Well-powered studies

in people of non-European ancestral origins are critically needed as ethnic and racial minori-

ties in the US are disproportionately affected by the pandemic [5,8,24,70–72]. We recognize

that the primary social drivers of viral exposure and spread (i.e., crowding within households,

wealth and education gaps, working in essential jobs that render social distancing challenging,

language barriers, and poor access to healthcare) are likely correlated with, or are themselves,

determinants of obesity [73,74]. Future investigations are required to determine whether

addressing these upstream social factors mitigates the impact of obesity on COVID-19

outcomes.
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Our study provides genetic evidence that supports or refutes causality for a plethora of car-

diometabolic conditions, which can inform preventive strategies aimed at modifying risk of

COVID-19 illness and deployment of vaccines to high-risk groups.

Among the 17 cardiometabolic exposures tested, only evidence supporting BMI as a causal

risk factor for COVID-19 susceptibility and severity was found, consistent with multiple epide-

miological studies that have reported an association between obesity and COVID-19 illness.

These findings raise the possibility that obesity may have amplified the disease burden of the

COVID-19 pandemic either directly or through its metabolic consequences. To the extent that

obesity is a modifiable risk factor with a strong environmental component, preventive mea-

sures to control the spread of the virus that may promote weight gain (e.g., limitation of access

to open spaces for exercise) should be viewed with caution. While any short-term change in

weight would be unlikely to influence COVID-19 susceptibility or severity, we highlight the

benefits of weight maintenance that extend beyond prevention of obesity-related cardiometa-

bolic conditions to reducing the risk of infection during the pandemic when physical activity

may be curtailed. Future research is required to understand the mechanisms through which

obesity is associated with a risk of poor health outcomes or mortality, and whether obesity-

related conditions are along the causal pathway. Our study has shown how large-scale geno-

type–phenotype summary data rapidly assembled during a pandemic and made freely accessi-

ble to the research community can accelerate research with immediate and direct application

to clinical practice and public health messaging.
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