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Abstract

The effects of transcription factor binding sites (TFBSs) on the activity of a cis-regulatory

element (CRE) depend on the local sequence context. In rod photoreceptors, binding sites

for the transcription factor (TF) Cone-rod homeobox (CRX) occur in both enhancers and

silencers, but the sequence context that determines whether CRX binding sites contribute to

activation or repression of transcription is not understood. To investigate the context-depen-

dent activity of CRX sites, we fit neural network-based models to the activities of synthetic

CREs composed of photoreceptor TFBSs. The models revealed that CRX binding sites con-

sistently make positive, independent contributions to CRE activity, while negative homotypic

interactions between sites cause CREs composed of multiple CRX sites to function as

silencers. The effects of negative homotypic interactions can be overcome by the presence

of other TFBSs that either interact cooperatively with CRX sites or make independent posi-

tive contributions to activity. The context-dependent activity of CRX sites is thus determined

by the balance between positive heterotypic interactions, independent contributions of

TFBSs, and negative homotypic interactions. Our findings explain observed patterns of

activity among genomic CRX-bound enhancers and silencers, and suggest that enhancers

may require diverse TFBSs to overcome negative homotypic interactions between TFBSs.

Author summary

Transcription factors control gene expression in different cell types by binding to sites in

regulatory DNA. The same transcription factor when bound at different DNA sites will

have different effects on gene expression, but how a single factor can produce divergent

effects is unclear. The photoreceptor transcription factor CRX activates expression from

regulatory DNA that harbors few copies of a CRX binding site, while it represses expres-

sion when many binding site copies are present. We modeled how the number and

arrangement of binding sites for CRX and other factors affect gene expression, using data
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from libraries of synthetic regulatory DNA elements. The model shows that individual

transcription factor binding sites increase expression on their own, but interactions

between multiple copies of the same site decrease expression. Our results generalize across

transcription factors and tissues, suggesting that this is a general principle that might help

explain differing patterns of expression across tissues. The model explains how interac-

tions between binding sites allow a single transcription factor to have contrasting effects

on gene expression in the same cell type.

Introduction

A typical mammalian transcription factor (TF) binds hundreds or thousands of cis-regulatory

elements (CREs) in the genome [1–3]. CREs that are bound by the same TF vary widely in

their activity, and can include strong enhancers, transcriptional silencers, or sequences with

weak or no cis-regulatory activity [3–20]. Such dramatic functional differences among CREs

with similar TF binding sites (TFBSs) show that local sequence context modulates the contri-

bution of a TFBS to cis-regulatory activity, yet how this occurs is not well understood. When

accounting for context dependence, proposed models of cis-regulatory grammar vary in their

emphasis on the importance of interactions between TFs, and they suggest different degrees of

flexibility in the possible functional arrangements of TFBSs [21–24]. The enhanceosome

model proposes that strict geometrical constraints determine whether CRE-bound TFs can

activate transcription. This implies that context-dependent effects of TFBSs are strongly influ-

enced by highly specific interactions between them [21–23,25]. The contrasting billboard

model proposes that active CREs are defined by the presence of a sufficient number of bound

TFs, with no strong constraints governing their arrangement [24]. The billboard model implies

that the context of a TFBS is determined primarily by additive effects of the surrounding

TFBSs, with few specific interactions between sites. Taking an intermediate position between

enhanceosome and billboard models, the TF collective model proposes that cooperative inter-

actions between TFs are important, but that these interactions do not depend on a specific

motif grammar [26]. Other models of cis-regulatory grammar propose that individual TFBSs

are weak on their own and depend on strong cooperative interactions [27], that particular

TFBSs recruit specific, required transcriptional cofactors [11], or that the balance among sites

for transcriptional activators and repressors determines whether a CRE is an enhancer or

silencer [28–30]. An effort to harmonize the range of motif flexibility observed in natural

enhancers is the dependency grammar model, which recognizes that the presence or absence

of constraint on motif identity, affinity, and arrangement likely depends on an interplay

between these features [21]. Under this model, different enhancers will vary in how strongly

their activity depends on strict rules of motif composition. However, how the proposed fea-

tures of cis-regulatory grammar work together to define the local context of a CRE remains

unclear. As a result, accurately predicting the activity of CREs or the effects of genetic variants

in TFBSs is an unsolved problem.

Local sequence context has strong effects on the function of binding sites for the retinal TF

Cone-rod homeobox (CRX) [31–33]. CRX is a paired-type K50 homeodomain TF and a criti-

cal regulator of transcription in multiple retinal cell types, where it contributes to both activa-

tion and repression of cell type-specific genes [8,31,33–42]. Using massively parallel reporter

assays (MPRAs) conducted in mouse retinal explants, we previously found that genomic CRX-

bound sequences include strong enhancers and silencers [13,18,43,44]. The activities of these

CREs, whether activating or repressing, depend on both CRX binding sites and CRX protein,
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which demonstrates that the effects of CRX sites are modulated by context [13,43]. We showed

that CRX binding sites can have opposite effects in different contexts: mutating CRX binding

sites in genomic enhancers reduces MPRA activity, while mutating CRX binding sites in geno-

mic silencers increases it [13,18,43]. While the critical role of local sequence is clear, the ways

in which context determines whether a CRX-bound region functions as an enhancer or a

silencer is not well understood. We previously identified features that partially distinguish

CRX-bound enhancers from silencers. CRX cooperatively interacts with the rod photorecep-

tor-specific leucine zipper TF NRL at some rod gene promoters, and we showed that synthetic

CREs with sites for CRX and NRL were often strongly activating [13,31,37,39,40,45–47]. How-

ever, an NRL site is not present at most CRX-bound enhancers and is thus not required for

strong activity [18]. Compared to enhancers, genomic CRX-bound silencers tend to contain

more copies of the CRX motif [13,18,43], while CRX-bound enhancers are enriched in sites

for other TFs relative to silencers [18]. To account for these observations, we hypothesized that

interactions between CRX and other co-bound TFs determine whether a sequence functions

as an enhancer or silencer. We sought to capture those interactions in a quantitative model

trained on data from synthetic CREs with defined binding sites for CRX and other photorecep-

tor TFs.

A key advantage of synthetic CREs is that their binding site composition can be systemati-

cally varied to generate informative training data for interpretable models of cis-regulatory

grammars. We previously trained statistical thermodynamic models on data from reporter

gene libraries of synthetic CREs with pre-defined TFBSs, in order to learn how interactions

between TFBSs contribute to cis-regulatory grammars in a variety of cellular systems [16,48–

51]. A major advantage of thermodynamic models is their interpretability, because their

parameters represent biophysical TF-TF and TF-DNA interactions [52–54]. However, such

models can be difficult to train successfully and often require computationally intensive cus-

tom fitting pipelines [53,55,56]. A recent general-purpose modeling framework, called

MAVE-NN, overcomes these challenges using a neural-network based approach to fit inter-

pretable genotype-phenotype maps to data from massively parallel functional assays [57]. An

important difference between MAVE-NN and recent deep learning models such as Deep-

STARR and others [58–61] is that MAVE-NN explicitly models the relationship between

sequence and activity separately from features of the experimental measurement, such as satu-

ration, detection limits, and noise, rather than attempting to model all features of an MPRA

dataset in a monolithic architecture trained end-to-end. This enables MAVE-NN models to

learn interpretable parameters that correspond straightforwardly to additive contributions and

interactions between sequence features such as TFBSs. MAVE-NN is therefore well-suited to

model datasets from synthetic CREs composed of pre-defined TFBSs

We used MAVE-NN to train models on data from MPRA libraries of photoreceptor-spe-

cific, synthetic CREs assayed in live retinal explants. We find that the effects of CRX sites are

explained by a model that includes positive, additive contributions of individual TFBSs, nega-

tive homotypic interactions between sites for the same TFs, and positive heterotypic interac-

tions between sites for different TFs. The model explains the observations that CRX sites

produce context-dependent activation and repression, and that the addition of an NRL site

converts silencers to enhancers. The model also accounts for our finding that CRX-bound

enhancers have sites for a diverse set of TFs, while CRX-bound silencers lack this TFBS diver-

sity. More generally, our results suggest that context-dependent activity of binding sites for

transcriptional activators can be explained by the balance between the negative effects of inter-

actions between sites for the same TF, the positive effects of individual TFBSs, and heterotypic

cooperativity between sites.
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Results

Positive heterotypic and negative homotypic interactions explain the

effects of CRX and NRL sites on CRE activity in photoreceptors

We previously reported that both genomic and synthetic CREs with many binding sites for

CRX tend to act as silencers, while CREs with fewer CRX sites tend to act as enhancers in a ret-

inal explant MPRA [13,18]. Our prior results from a reporter library of 1,299 synthetic CREs

showed that sequences composed of only CRX and NRL binding sites exhibit activity that

ranges from strong activation to repression [13]. These CREs were tested by MPRA in mouse

retinal explants, which preserve all retinal cell types and cell type-specific TFs that comprise

the native context in which CRX is active. Sequences included up to four sites in either the for-

ward or reverse orientation. TFBSs included high, medium, and low affinity versions of CRX

sites and the consensus site for NRL (Fig 1A). CREs were cloned upstream of either the murine

Rho or Hsp68 basal promoter. The library included all 584 possible combinations of one, two,

and three TFBSs, and 715 sequences randomly sampled from all possible combinations of four

sites. Sequential addition of CRX sites upstream of a basal promoter led first to increased acti-

vation and then to repression below basal levels when three or four CRX sites were present

(Fig 1A and 1B). Repressive CREs with four CRX sites could be converted to strongly activat-

ing sequences by replacing one CRX site with a site for NRL. Synthetic sequences composed of

multiple CRX sites and one NRL site were more active than equal length CREs composed of

only CRX sites (Fig 1B) or only NRL sites (S1A Fig). We found that genomic CRX-bound

sequences followed a similar pattern [13]. Thus, our previous experiments with systematically

varied synthetic CREs show that a sequence context composed of only two types of TFBSs

strongly modulates the effects of CRX binding sites. However, it is unclear what kinds of inter-

actions among CRX and NRL sites could account for such context-dependent activity.

To discover interactions among CRX and NRL sites that might explain context-dependent

activity, we trained a model on the synthetic CRE dataset using MAVE-NN, a recently pub-

lished neural network framework that is designed specifically to model data obtained from

massively parallel functional assays [57]. A strength of MAVE-NN is that it deconvolves

sequence-function relationships from the confounding effects of the measurement process,

and thus for some model architectures parameters can be straightforwardly interpreted as

additive and interaction effects of TFBSs. A key assumption of MAVE-NN is that each CRE

Fig 1. Synthetic CREs sites reveal context-dependent effects of CRX and NRL sites. (A) Design of synthetic CRE

MPRA library reported in [13]. Combinations of CRX and NRL sites (up to four TFBSs) were cloned adjacent to either

a Rho or a Hsp68 basal promoter. TFBSs could be in either forward or reverse orientation. (B) MPRA activity (y-axis)

of CREs composed only of high affinity CRX sites (blue) is consistently lower than that of CREs with high affinity CRX

sites and one NRL site (orange), relative to the Rho basal promoter. Sequential addition of high affinity CRX first

activates, then represses the Rho basal promoter. Plot shows a subset of the data reported in [13].

https://doi.org/10.1371/journal.pcbi.1011802.g001
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sequence has a well-defined latent phenotype, representing the intrinsic activity of the CRE

that is indirectly captured by the experimental assay. The mapping from DNA sequence to

latent phenotype is the relationship we seek to understand, but this relationship cannot be

directly inferred from MPRA measurements due to non-linearities and noise in the measure-

ment process. Therefore MAVE-NN simultaneously models (1) the mapping between DNA

sequence and latent phenotype (called the “genotype-phenotype map”), and (2) the nonlinear

relationship between the latent phenotype and the measured MPRA readout. To model the

effects of the measurement process, MAVE-NN non-linearly maps the inferred latent pheno-

type to a prediction of the most probable measurement value. A skewed-t noise model is used

to describe likely deviations from the most probable value. The parameters of the genotype-

phenotype map can then be straightforwardly interpreted as additive and interaction effects

between elements of the DNA sequence. MAVE-NN quantifies the performance of the models

using an information theoretic measure called predictive information [57,62]. Predictive infor-

mation is the mutual information between the inferred latent phenotype and the MPRA mea-

surement, and it represents how well the model captures the relationship between a reporter

gene’s inferred intrinsic activity and its MPRA output.

We trained MAVE-NN models with different architectures to predict MPRA activities

from sequence alone. We reasoned that due to the small number of TFBSs included in the syn-

thetic CREs and the uniform spacing between them, additive models with or without interac-

tion terms would capture most of the effects of CRX and NRL sites on reporter activity. We

used predictive information to compare the performance of four different model architectures:

(1) an additive model lacking interactions between TFBSs, (2) a nearest-neighbor model that

only allows interactions between neighboring TFBSs, (3) a pairwise interaction model allowing

interactions between all pairs of TFBSs regardless of spacing, and (4) a ‘black box’ multilayer

perceptron model that makes no prior assumptions about the interactions between TFBSs. To

train the models, the measurements from the Rho and Hsp68 libraries were combined into one

dataset, which was then randomly split among training (80%), validation (10%), and test

(10%) sets. The expression from the Hsp68 basal promoter was taken as the baseline level,

which enabled us to specifically model the effect of the Rho promoter. All performance metrics

were computed from the test set. Model parameters for analysis were taken from the best per-

forming model out of multiple random initializations (see Methods).

Of the three model architectures that included additive and interaction terms, we found

that the pairwise interaction model achieved the best overall performance, by both predictive

information and Pearson correlation (Figs 2A and S2A). This model provided 1.8 bits of pre-

dictive information, roughly equivalent to an accurate three-way classification of CREs by

activity. The predictive information of the pairwise model (1.82 bits) is approximately half that

of the multilayer perceptron “black box” model (3.00 bits). The disparity in predictive informa-

tion between the pairwise and black box models suggests that additional higher order interac-

tions between TFBSs likely account for much of the unexplained activity of the synthetic

CREs. However, this unexplained activity likely consists of small discrepancies between

sequences with similar activities, because the pairwise model captured a substantial fraction of

the variation in reporter activity (Figs 2B and 2C, R2 = 0.889). To understand how additive

and interaction effects of TFBSs might explain the context-dependent activity of CRX sites, we

examined the parameters of the pairwise model. We estimated the parameter uncertainties

using MAVE-NNs built-in functionality (S2B Fig, n = 20).

We found that the additive contributions of all TFBSs and the Rho promoter, averaged over

all four possible positions in the synthetic CREs, were positive with the exception of the

medium affinity CRX site in reverse orientation (Fig 2D). These positive effects are consistent

with the roles of CRX and NRL as transcriptional activators. The average additive contribution
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of CRX sites increases with site affinity, consistent with the additive contributions being driven

by CRX binding. High affinity CRX sites have a stronger positive, additive effect than NRL

sites, suggesting CRX is a stronger activator (Fig 2D). The Rho promoter had the strongest

additive contribution, likely due to the presence of an NRL site and one high, one medium,

and one low affinity CRX site [31,63]. The additive terms of the model reflect the expected

effects of simple transcriptional activators whose probability of binding to a CRE is determined

by the number and affinity of binding sites. However, these positive, additive terms alone do

not account for the context-dependent effects of CRX binding sites observed in the data

shown in Figs 1B and S1A.

Examining the interaction terms of the model, we observed a pattern of positive, hetero-

typic cooperativity between CRX and NRL sites, and negative homotypic interactions between

binding sites for the same TF (Fig 2D). Negative homotypic interactions are strongest between

NRL sites and between high affinity CRX sites, and they decrease with CRX site affinity, con-

sistent with these interactions being determined by CRX binding. CRX sites also show a

strong, affinity-dependent negative interaction with the Rho basal promoter, which likely

reflects negative interactions with the promoter CRX sites. Negative homotypic interactions

were especially strong between adjacent sites but can be observed at all distances in the

Fig 2. A model of CRX and NRL-driven cis-regulatory activity in wild-type retina. (A) The performance of different

model architectures (measured as predictive information) fit to MPRA measurements of the CRX-NRL library in wild-

type retina. Error bars indicate standard error. (B) The observed activity (y-axis) of test set sequences in wild-type

retina compared to the latent phenotype (x-axis) inferred by the pairwise model. The non-linearity is the model

mapping from latent phenotype to observed activity and intended to capture non-linear effects of the MPRA

measurement process. (C) The observed activity (y-axis) of test set sequences in wild-type retina compared to the

activity predicted by the pairwise model (x-axis). (D) Model parameters for additive and pairwise contributions of

CRX and NRL sites and the Rho promoter to activity in wild-type retina, averaged across the four positions in synthetic

CREs. For pairwise interactions, rows indicate the 5’ site and columns indicate the 3’ site. Forward and reverse

orientation of the TFBS is indicated by (f) and (r). (E) Model parameters for additive and pairwise contributions of

CRX and NRL sites to activity in Crx-/- retina, averaged across positions and spacings.

https://doi.org/10.1371/journal.pcbi.1011802.g002

PLOS COMPUTATIONAL BIOLOGY Context-dependent activity of transcription factor binding sites

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011802 January 16, 2024 6 / 25

https://doi.org/10.1371/journal.pcbi.1011802.g002
https://doi.org/10.1371/journal.pcbi.1011802


synthetic CREs (S2C Fig). Positive interactions between CRX and NRL sites also occur at all

distances and depend on binding site affinity. The reverse orientation medium affinity CRX

site was an outlier among CRX sites, exhibiting a slightly negative additive effect and positive

interactions with all other TFBSs when averaged over CRE position (Fig 2D). Examining all

pairwise parameters of the model shows that this trend is driven by a strong interaction

between reverse medium affinity CRX sites with the adjacent 5’ site. The unusual effect of this

site was robust across multiple independently trained models (S2D Fig). It may reflect compet-

itive binding by one of the other homeodomain TFs expressed in the retina, which may have a

strong effect when bound immediately 3’ of CRX or NRL [40]. Overall, the modeling results

suggest that activating and inhibiting interactions between CRX and NRL are the primary

determinants of the activity of CREs with binding sites for these two TFs. Because these inter-

actions occur across all distances and not just at neighboring sites, the effects are likely due to

multivalent interactions that involve co-factors and not only direct protein-protein contacts

between CRX and NRL.

Taken together, the parameters of the pairwise interaction model reveal a cis-regulatory

grammar that accounts for the observed context-dependent activity of CRX and NRL sites.

Consistent with the known roles of CRX and NRL as transcriptional activators, sites for these

TFs consistently make positive, independent contributions to activity. However, negative

homotypic interactions reduce activation or lead to repression when multiple sites for the

same TF are placed together. The repressive effect of negative homotypic interactions can be

overcome by the strong heterotypic interactions between CRX and NRL. An important feature

of this cis-regulatory grammar is that additive effects and interactions scale differently with the

number of TFBSs. The independent, additive effects increase linearly with the number of

TFBSs, while the interaction effects increase with the square of the number of TFBSs. These

differences in scaling have a strong impact on CREs with multiple sites and explain why the

replacement of a single binding site can convert a silencer to an enhancer (Fig 1B).

Positive heterotypic interactions require CRX protein

We previously reported that many genomic and synthetic CREs with CRX binding sites either

retain or gain activity in Crx-/- retina, despite the loss of CRX protein [13]. Activity in Crx-/-

retina still requires intact CRX sites, indicating that another TF, likely the CRX ortholog

OTX2, acts at these sites when CRX is absent. To examine how additive and pairwise interac-

tions among TFBSs change in the absence of CRX, we trained a pairwise interaction model on

prior data from the synthetic CRE library tested in Crx-/- retina. This library included only the

Rho basal promoter. The Crx-/- model performed similarly to that trained on data from wild-

type retina (2.21 bits of predictive information, R2 = 0.900 for predicted versus observed activ-

ity, S2E-S2J Fig). In this model, additive effects of all TFBSs remained positive (Fig 2E), indi-

cating that these CREs continue to be bound by transcriptional activators in Crx-/- retina.

Unlike the model for wild-type retina, the additive contributions of CRX sites did not show a

strong dependence on affinity. Negative homotypic interactions remain in Crx-/- retina,

though they are attenuated for CRX sites. The altered effects of negative homotypic interac-

tions in the Crx-/- model are evident in the MPRA data. The repressive effect of CRX sites is

much weaker, while the homotypic effects of NRL sites are similar to those seen in wild-type

retinas (S1B and S1C Fig, compare with Figs 1B and S1A). Notably, the positive interaction

between CRX and NRL sites was absent, indicating that the interaction between these two sites

depends specifically on CRX and NRL, and that other TFs that bind these sites in Crx-/- retina

do not interact. Despite the loss of positive cooperativity between CRX and NRL sites, the

model suggests that synthetic CREs in Crx-/- retina maintain or increase their activity due to
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stronger additive contributions of lower affinity binding sites and a modest attenuation of neg-

ative homotypic interactions between CRX sites. Taken as a whole, the model suggests that

cooperative interactions depend on the specific identities of the TFs involved, while the posi-

tive additive and negative homotypic effects hold more generally among TFs, though with

varying effect sizes.

Additional retinal TFs contribute to CRE activity

CRX and NRL are critical for establishing rod photoreceptor identity, and together they drive

high expression of a number of key rod photoreceptor genes [35,39,45,47,64]. However, a

cooperative interaction between CRX and NRL is not sufficient to fully explain the context-

dependent effects of CRX sites in enhancers, because most CRX-bound enhancers do not con-

tain a copy of the NRL motif [18,43]. To investigate how other TFBSs contribute to the activity

of CREs with CRX sites, we designed a new library of 6,600 synthetic CREs. The library

included TFBSs for CRX, NRL, and sites from three other motif families that occur in CRX-

bound enhancers: NEUROD1, RORB, and motifs representing SP4 or MAZ [42,65–67]. These

TFs are known to play roles in photoreceptor development and they are enriched at CRX-

bound sites and accessible chromatin in rod photoreceptors [39,40,44]. We previously found

that motifs for these TFs were enriched in CRX-bound enhancers relative to CRX-bound

silencers [18], suggesting that their presence favors activation over repression. Therefore,

unlike the CRX-NRL library, we expected most synthetic CREs in the new library to act as

enhancers rather than silencers. The purpose of this library was to discover whether other

TFBSs interact cooperatively with CRX sites, or whether they contribute independently to

enhancer activity. Because the new library included more TFBSs than the CRX-NRL library,

we could not exhaustively explore all possible combinations of TFBSs. We therefore fixed the

lengths of the CREs at five sites and only tested TFBSs in the forward orientation. The NRL

sites in this library differed from the consensus NRL site included in the CRX-NRL library.

We selected high and medium affinity NRL sites that co-occur with NEUROD1, RORB, or

MAZ sites in genomic enhancers [18]. Given these constraints, we designed synthetic CREs by

systematically varying the TFBSs composition across the library. Each CRE included either

two or three CRX sites and one or two sites for two additional TFs (Fig 3A). Synthetic CREs

were cloned upstream of the Rho minimal promoter and tested by MPRA with three replicate

transfections in explanted retinas (mean R2 between replicates = 0.950, S3A Fig). We used the

data to train different models and again found that the pairwise interaction model performed

better than the additive or nearest-neighbor models. No additional performance was gained

from the black box model (S3B and S3C Fig). The pairwise model captured most of the vari-

ance in CRE activity (Figs 3B and S3C, R2 between predicted and observed expression = 0.985).

We estimated parameter uncertainties using MAVE-NNs built-in functionality (n = 20,

S3E Fig).

Examining the average additive effects of TFBSs in the pairwise interaction model, we

found that higher affinity sites for NRL, NEUROD1, RORB, and MAZ contributed positively

to activity, while lower affinity sites had weaker positive effects or negative effects on activity

(Fig 3C). High affinity sites for NEUROD1 and RORB made especially strong additive contri-

butions to activity. In contrast to the models above, the additive contributions of CRX sites in

this model were negative. This is likely due to the design of the library, which only includes

CREs with two or three CRX sites, making it difficult to deconvolve additive effects of individ-

ual CRX sites from the effects of negative homotypic interactions between CRX sites. The

strong dependence of additive contributions on the sites’ affinity for their cognate TFs is con-

sistent with the effects arising from TF binding and occupancy. The interaction terms of the
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model exhibit a mixture of moderate positive and negative effects that depend on the affinity

and order of the TFBSs (Figs 3C and S3F).

To focus on interactions between other TFs and CRX, we examined the distribution of posi-

tion-specific interactions of TFBSs with high affinity CRX sites within CREs (Fig 3D). While

interactions varied somewhat with position, there were persistent effects for different TFBSs.

As in the previous model, high affinity CRX sites exhibited strong negative homotypic interac-

tions that attenuated as binding site affinity decreased. The strongest effects included

Fig 3. A model of cis-regulatory activity driven by diverse TFBSs in wild-type mouse retina. (A) Design of MPRA library of synthetic CREs with additional

lineage-specific TFBSs. CREs contained five sites placed adjacent to the Rho basal promoter. Each CRE contained either three CRX sites and two sites for other

TFs (3-1-1) or two CRX sites, two sites for another TF, and one site for a third TF (2-2-1). (B) Observed activity (y-axis) of test set sequences compared to the

latent phenotype (x-axis) predicted by the pairwise model. (C) Model parameters representing additive and pairwise contributions of TFBSs averaged across

positions. (D) Distribution of position-specific interactions with high-affinity CRX binding sites, broken down by partner TF. (E) MPRA activity of CREs with

two (left) or three (right) CRX sites, grouped by TF identity. Each CRE contains sites for CRX and two other TFs. Activity is measured relative to the Rho basal

promoter and basal activity is indicated by the dashed line.

https://doi.org/10.1371/journal.pcbi.1011802.g003
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interactions with high affinity NRL sites, but only when those sites were adjacent to CRX (Figs

3D and S3F). The contrast with the CRX-NRL model (S2C Fig) could be due to differences in

CRE structures between the two libraries or to differences in the NRL motif sequence (see

Methods). Binding sites for RORB showed the most consistent positive interactions with CRX

sites. The inferred parameters of medium affinity sites for NEUROD1, NRL, and MAZ some-

times differed from those of high affinity sites (Fig 3C). Medium affinity values were often

lower than high affinity values, suggesting that this is a consequence of reduced TF occupancy.

However, we cannot rule out the possibility that TFs from the same class with slightly different

specificities may compete for binding to lower affinity sites.

Because each CRE in the library contained at least two other TFBSs in addition to CRX

sites, we expected most CREs to act as enhancers rather than silencers, since these TFBSs are

specifically enriched in genomic enhancers relative to silencers [18]. The MPRA results were

consistent with our expectation (Fig 3E). We also found that the interaction effects inferred by

the model corresponded with the observed activities. The model inferred that RORB sites

interacted positively with CRX at most positions (Fig 3D), and CREs with RORB sites were

consistently the most active in the library (Fig 3E). CREs without RORB were less active,

though still above basal levels. Notably, both high affinity RORB and NEUROD1 sites are

inferred by the model to have strong additive effects, but only RORB sites interact positively

with CRX (Fig 3C). These results are consistent with a model in which effects of negative

homotypic interactions between CRX sites can be overcome in two ways: (1) positive hetero-

typic interactions (CRX with RORB or a subset of NRL sites), and (2) independent, additive

effects from TFBSs that don’t strongly interact with CRX (MAZ, most NRL sites, and NEU-

ROD1). In this model, CRE activity results from a quantitative balance of these effects. Sup-

porting this hypothesis, CREs with only two CRX sites (Fig 3E, left panel) are more active than

CREs with three CRX sites (Fig 3E, right panel). In both cases, CREs with RORB sites are more

active than CREs lacking them. This suggests that positive heterotypic interactions balance

negative homotypic interactions more effectively than the additive contributions of non-inter-

acting TFs.

Positive additive effects and negative homotypic interactions generalize to

a second cell type

We asked whether the cis-regulatory grammar in other cell types included negative homotypic

interactions balanced by positive heterotypic and independent effects. We trained pairwise

interaction models on published MPRA data from a library of 4,966 synthetic CREs composed

of binding sites for twelve liver-specific TFs, tested in HepG2 cells and mouse liver [68]. CREs

were composed of homotypic or heterotypic arrangements of up to twelve consensus binding

sites placed into two different neutral sequence templates.

Averaging measurements across replicates and splitting the data into training, validation,

and test sets led to poor model performance (< 1 bit of predictive information). As an alterna-

tive approach, we treated each of the replicates as a separate set of measurements, and split the

combined dataset composed of measurements for each combination of replicate and sequence

randomly into training, validation, and test sets. We were able to fit well-performing models

(predictive information > 1 bit, Pearson R 0.87–0.92) for both the in vivo mouse liver data

(S4A and S4B Fig) and HepG2 cell data (S5A and S5B Fig). Estimates of parameter uncertain-

ties suggest that parameters for the different TFs are reliably distinguished from each other

(S4C and S5C Figs)

We examined the additive and pairwise interaction terms of the models averaged across

CRE positions. The inferred interactions of mouse liver and HepG2 models were similar,
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despite significant differences between the in vivo and in vitro cellular contexts of the MPRA

datasets (S4D-S4F and S5D-S5F Figs). Notably, most TFBSs exhibit negative homotypic inter-

actions, with sites for HNF1A showing the strongest effect (seen along the heatmap diagonal

of S4D and S5D Figs, see also S4F and S5F Figs). The negative homotypic interaction between

HNF1A sites is consistent with observation in the MPRA data that clusters of HNF1A sites

quickly reach saturation, showing little gain in activity when the number of sites is increased

from four to eight (see Fig 2A in reference [68]). The additive effects of most TFs were positive,

though often only weakly positive (S4E and S5E Figs). Notably the sites with the strongest

additive effects, HNF1A and XBP1, also exhibited the strongest negative homotypic interac-

tions. This may indicate that negative homotypic interactions are mediated via the transcrip-

tional effector domains of these TFs. More generally, the pattern of positive additive

contributions and negative homotypic interactions inferred by the model are consistent with

the experimental observation that heterotypic clusters of TFBSs drive stronger expression than

homotypic clusters in this MPRA library (see Fig 3 in reference [68]). Together, these results

suggest that the pattern of positive additive contributions and negative homotypic interactions

may be a recurring feature of transcriptional activators across cell types and species.

Balance between positive and negative interactions can explain context-

dependent effects of binding sites for transcriptional activators

Our models suggest that sites for transcriptional activators like CRX and NRL can show con-

text dependent activity that results from a quantitative balance between negative homotypic

interactions, positive heterotypic interactions, and positive, independent effects of individual

TFBSs. These effects could lead to context-dependent silencing and activation without the

need for specific repressor TFBSs. The results presented above suggest that some transcrip-

tional activators self-inhibit when present at higher occupancy on a CRE. The negative effects

of self-inhibition can be overcome in two ways, via positive cooperativity with a different TF,

or by the non-cooperative action of a diverse collection of TFs. Under this model, the TFBS

composition at enhancers and silencers shifts the balance between these effects in favor of

either activation or repression. At enhancers, positive cooperativity and the independent con-

tributions of diverse activator TFBSs outweigh the effects of negative homotypic interactions,

while at silencers negative homotypic interactions predominate.

To illustrate this hypothesized cis-regulatory grammar, we implemented a simplified model

that expresses CRE activity as the sum between positive and negative contributions of activator

TFBSs. This model has no fit parameters and is intended to explore the effects of positive het-

erotypic interactions and non-cooperative, additive effects. It thus ignores order and orienta-

tion effects, which are clearly still relevant, as seen in parameters of the MAVE-NN models

(S2C, S2J, and S3F Figs). While there is a significant proportion of variability in CRE activity

that cannot be explained by binding site composition alone (Fig 1B), the non-monotonic rela-

tionship we observe between the number of CRX sites and CRE activity (Fig 1B), which this

model recapitulates, is the largest contributor to CRE activity. Binding site composition is thus

the primary factor distinguishing strong enhancers from silencers composed of CRX and NRL

sites, as measured in our assay.

In the simplified model, we assume that CRE activity is the sum of (1) positive, additive

contributions from sites for transcriptional activators, (2) positive cooperativity between sites

for different TFs, and (3) negative interactions between sites for the same TF. For CREs com-

posed only of sites for two different TFs, as in Fig 1, this sum is

A ¼ axxþ ayyþ bxyxy �
gxxðx � 1Þ þ gyyðy � 1Þ

2
ð1Þ
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where A is activity of a CRE, x is the number of sites for the first TF, y is the number of sites for

the second TF, and α, β, γ are weights reflecting the relative strength of each contribution to

activity. The first two terms represent the additive contribution of each TFBS, the third term

represents positive cooperativity between all pairs of sites for different TFBSs, and the final

term represents negative interactions between all pairs of sites for the same TF.

To illustrate how heterotypic interactions balance negative homotypic interactions, we cal-

culated the expected activities of all possible CREs composed of CRX and NRL sites, up to a

total of four sites (Fig 4A). We did not fit any parameters, and instead made the simplifying

assumption that the relative strengths of the different terms in Eq 1 are similar by setting all

weights equal to 1. The activities simulated with the model accurately recapitulate the patterns

of expression observed in the CRX-NRL library. Starting with the basal promoter alone

Fig 4. Simplified balance model of context-dependent effects of binding sites for transcriptional activators. (A) Simulated CRE activities calculated by Eq 1

for sequences with up to four TFBSs for CRX or NRL. Stepwise addition of sites for a single TF first increase then decrease activity. The first two columns show

predicted expression of CREs with only CRX sites or with CRX sites plus one NRL site. Compare with the measured values in Fig 1B. (B) Model of CREs with

five TFBSs shows how TF diversity reduces negative homotypic interactions and increases CRE activity. As CRX sites are replaced with sites for different TFs,

TF diversity increases (x-axis) and the number of negative homotypic interactions decreases (orange crosses) and the overall CRE activity increases (blue

squares). The total additive contribution of TFBSs (green circles) is equal to the total number of TFBSs and remains constant. (C) Simulated CRE activities

calculated by Eq 1 (left panel) recapitulate trends in MPRA activity of genomic CREs (right panel). Increasing numbers of CRX sites first increase then decrease

activity, but the presence of TFBSs for NRL, NEUROD1, RORB, or MAZ (‘Other TFBSs’) increases both predicted and measured CRE activity. Dashed lines

indicate basal activity.

https://doi.org/10.1371/journal.pcbi.1011802.g004
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(Fig 4A, indicated by zero), a stepwise addition of sites for a single TF leads first to an increase

and then a decrease in activity (leftmost column or top row in Fig 4A, compare with data Figs

1B and S1A). The highest activities are obtained from CREs with combinations of sites from

both TFs. In this simplified model, a CRE with four CRX sites is repressive. Replacing one of

those sites with an NRL site converts the CRE from a silencer to an enhancer, an effect also

observed in the data (compare Figs 4A and 1B). As a further test of the simplified model, we

used Eq 1 to calculate predicted activities for the entire CRX-NRL library. Comparing these

predictions with the measured activities, we obtained a Spearman correlation of 0.76. In the

Crx-/- dataset, this correlation reduced to 0.18 due to the loss of homotypic interactions

between CRX sites. For the longer, more complex synthetic CREs composed of liver TFBSs

(Figs S4 and S5 and reference [68]), the simple model predicts the rank order of CRE activity

less well (HepG2 Spearman correlation = 0.43, Mouse Spearman correlation = 0.53). This is

likely due to a larger influence of spacing, order, and orientation in longer synthetic CREs.

While our model relies on simplifying assumptions that do not fully hold in vivo, it successfully

recapitulates major trends in the data.

To illustrate the second mechanism of balancing negative homotypic interactions, via inde-

pendent positive effects of diverse TFBSs, we implemented the simple model without coopera-

tive interactions. The intuition is that, for a CRE composed of a given number of sites, greater

TFBS diversity reduces the total number of negative homotypic interactions present. Thus,

TFBS diversity leads to activation even in the absence of strong cooperativity. In this regime,

the independent positive effects of each TFBS predominate, as our MAVE-NN model suggests

for CREs with NEUROD1 and MAZ sites (Fig 3C and 3D). To capture this mechanism with

our simplified model, we assumed that (1) bound TF activators always make positive, indepen-

dent contributions to activity and (2) all TFs engage in negative homotypic interactions. We

calculated the sums of positive and negative effects for CREs with five total TFBSs, but differ-

ent numbers of CRX sites. In these simulated CREs, the total additive contribution is constant

and equal to the total number of TFBSs (Fig 4B, blue circles). As the TFBS diversity increases,

the total number of negative homotypic interactions is reduced (Fig 4B, orange crosses). A

CRE with five CRX sites is therefore highly repressive, while replacing some CRX sites with

different TFBSs increases the activity of the CRE (Fig 4B, green squares). This simplified

model demonstrates how strong activity can be achieved by the independent effects of diverse

TFBSs, even in the absence of cooperative interactions. This model suggests an explanation of

our prior observation that strong enhancers have more diverse TFBSs than silencers [18].

We tested the ability of the simple interaction model to explain patterns of activity among

genomic CREs. We used Eq 1 to simulate the activities of CREs with up to 6 CRX binding sites

and up to 3 sites for non-CRX TFs (Fig 4C, left panel). As with the simpler simulation (Fig

4A), the model predicts that increasing the number of CRX sites eventually leads to repression,

which is counteracted by the presence of non-CRX TFBSs. We then compared the activity pat-

tern of the simulated CREs to the activities of genomic CRX-bound CREs that we previously

assayed by MPRA in retinal explants (Fig 4C, right panel) [18]. The simulated data recapitu-

lated the major trends in the MPRA data, showing that a simple model of positive and negative

interactions captures important factors that determine the activity of genomic CREs.

Discussion

Because the effects of a TFBS often strongly depend on local sequence, the activity of cis-regu-

latory DNA is not a simple function of its TFBS composition. To accurately predict the activi-

ties of cis-regulatory sequences and the effects of genetic variants that occur within them, we

need models of cis-regulatory grammar that accurately account for the influence of sequence

PLOS COMPUTATIONAL BIOLOGY Context-dependent activity of transcription factor binding sites

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011802 January 16, 2024 13 / 25

https://doi.org/10.1371/journal.pcbi.1011802


context. The contribution of a TFBS to the activity of a CRE can vary due to post-translational

modifications of TFs [69,70], the presence of other co-bound factors [5,6,9,11,12,19,29,71–74],

and binding by different TFs with similar sequence specificities [10,75,76]. Our results suggest

that context dependence can also be determined by the overall balance between the indepen-

dent and interaction effects of individual sites for transcriptional activators. At the core of this

model is a distinction between additive, independent effects of individual TF molecules and

effects of interactions between molecules. In the case of CRX, the independent and interaction

effects influence cis-regulatory activity in opposite directions, with CRX molecules indepen-

dently contributing to activation while engaging in repressive homotypic interactions with one

another. The independent, activating effects scale linearly with the number of binding sites,

while the number of repressive homotypic interactions scales with the square of binding site

number. As the number of binding sites in a CRE increases, negative homotypic interactions

grow faster than the activating effects of individual binding sites. As a result, sequences with

many CRX sites are likely to act as silencers, a pattern that we observe with both synthetic

CREs and genomic CRX-bound sequences [13,18].

In this model, there are two ways in which other TFs influence whether a CRX-bound CRE

will activate or repress transcription. First, a TF like NRL may form positive cooperative inter-

actions with CRX. Because positive interactions also scale with the square of the number of

binding sites, the presence of even one or two sites for a cooperating TF can shift the balance

towards activation (Fig 4A). Second, multiple independent, additive contributions from other

TFs can outweigh negative homotypic effects, even in the absence of positive cooperativity (Fig

4B). Taken together, these two means of countering negative homotypic interactions imply

that a more diverse set of TFBSs within a CRE will minimize negative homotypic interactions

and lead to stronger enhancer activity.

Our model is supported by previous observations that we made of genomic CRX-bound

CREs. We previously reported that genes near sites that are co-bound by both CRX and NRL

are more highly expressed than genes near regions bound by CRX alone [13]. Homotypic clus-

ters of CRX sites in genomic sequences are often repressive, and CRX-bound silencers tend to

have more CRX sites than CRX-bound enhancers. When CRX sites in silencers are abolished,

repressive activity is lost [13,18,43]. Similar to the results with synthetic CREs (Fig 1B), geno-

mic CREs show a quantitative correlation between the number of CRX sites and the tendency

to be repressive, which supports our model of negative homotypic interactions (Fig 4C) [13].

The model presented here also suggests an explanation for our prior observation that CRX-

bound enhancers often have more diverse TFBSs than CRX-bound silencers [18]. Genomic

sequences that act as silencers often contain clusters of multiple CRX sites and few sites for

other TFs, while genomic enhancers tend to contain sites for a variety of photoreceptor TFs

[18]. We previously reported that a simple measure of TFBS diversity could partially classify

enhancers from silencers [18]. Our MAVE-NN models suggest an explanation for this phe-

nomenon: enhancers have more diverse TFBSs because diversity allows the additive contribu-

tions of TFBSs to outweigh negative homotypic interactions. This contrasts with low-diversity

silencers, which our model suggests are dominated by negative homotypic interactions. TFBS

diversity is a feature of enhancers in other cell types, where a similar balance between positive

additive effects and negative homotypic interactions may occur [68,77]. Because the weights

we used to interpret the models trained on the CRX-NRL datasets are automatically adjusted

to assign an activity of 0 to the Hsp68 promoter without any added CRX or NRL binding sites,

we are confident that the signs of the additive and interacting terms in these models do in fact

reflect a distinction between activation and repression. However, we do not have such a base-

line in the other datasets with the result that we cannot definitively ascribe the effects of the TF

binding sites in that library to activation or repression.
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A key prediction of our model is that negative homotypic interactions strongly influence

the context-dependent effects of binding sites for transcriptional activators. The existence of

such interactions in photoreceptors is supported by data from both synthetic CREs and geno-

mic sequences. Sequential addition of CRX or NRL binding sites upstream of the Rho basal

promoter first increases, then decreases transcription, sometimes below basal levels (Figs 1B

and S1) [13]. Genomic CRX-bound sequences that act as silencers when measured by MPRA

have more copies of the CRX motif than sequences that act as enhancers [13,18,43]. We have

shown that this silencing activity depends on both CRX motifs and CRX protein [13]. Similar

negative homotypic effects have been reported for several TFs, including liver-specific factors

[68], yeast Gcn4 [78], pluripotency TFs [16,51], and Sp3 [79]. These findings suggest some TFs

may self-inhibit or recruit repressors when present at high CRE occupancy [20,80,81]. A clear

example of such a mechanism is the homeodomain TF WUSCHEL, which activates transcrip-

tion as a monomer at low concentration but forms repressive dimers at higher concentration

[82,83]. Such effects may be common among homeodomain TFs, which are enriched in tran-

scriptional effector domains, including the CRX effector domain, that exhibit the ability to

both activate and repress [84]. Our model of context dependency suggests that the balance

between positive effects and negative homotypic interactions can account for the dual activities

of some TFs, without the need for dedicated repressors.

Homotypic clusters of TFBSs are a common feature of eukaryotic CREs and their func-

tional effects vary [85–88]. In Drosophila, homotypic clusters of Zelda but not Bicoid binding

sites drive expression in developing embryos, showing that TF-specific properties determine

the effect of homotypic clusters [89]. Similarly, homotypic clusters of yeast TFBSs can have

positive or negative effects, depending on the identity of the TF [90]. In a recent MPRA study

of binding sites for eighteen liver-associated TF, CRE activity increased with the copy number

of homotypic TFBSs for eight TFs, while activity decreased for six TFs [91]. TFBS orientation

affected the impact of homotypic clusters, showing that the repressive effects of homotypic

interactions can depend on how TFBSs are configured. TFBS affinity also matters: homotypic

clusters of low-affinity binding sites can produce specific TF binding at functional levels,

thereby achieving discrimination among TFs with similar binding specificities [92,93]. In our

model of CREs with CRX binding sites, TFBSs orientation generally has a minor impact on

homotypic negative interactions, while affinity has a strong effect, with the highest affinity

sites producing the strongest homotypic interactions (Fig 2D). Based on our results and the

studies cited above, negative homotypic interactions may be common among many classes of

TFs, but the impact of these negative interactions on CRE activity clearly depend on specific

properties of TFs and TFBSs.

There are several potential mechanisms that could cause the negative homotypic interac-

tions inferred by our model. CRX may preferentially interact with other TFs at low or medium

CRE occupancy, while at high occupancy CRX may form repressive homodimers, as has been

observed for at least one homeodomain TF [82,83]. High local occupancy may also lead to

cooperative recruitment of co-repressors known to interact with CRX [94–96]. An alternative

model is ‘TF sharing’, which occurs when multiple binding sites in the same CRE compete for

a limited local pool of TFs. Thermodynamic modeling shows that under these conditions, an

additional TFBS can reduce CRE activity [78]. Kinetic mechanisms could also potentially

account for repressive effects of multiple TF activators. Some combinations of bound TFs and

co-factors may affect the kinetics of specific steps of transcription initiation in ways that reduce

basal levels of transcription [97] or lead to negative kinetic synergy [98].

Our results in Crx-/- retina suggest that the repressive effects of homotypic clusters of CRX

sites may be cell type-specific. We observed that some CREs with homotypic clusters of CRX

sites act as silencers in wild-type retina, but convert to enhancers in Crx-/- retina [13,99]. In
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both genetic contexts, CRX binding sites are causal. Abolishing the homotypic clusters of CRX

sites leads to loss of repression in wild-type retina and loss of activation in Crx-/- retina. This

indicates that some homotypic clusters of CRX sites are pleiotropic, acting repressively when

bound by CRX, but activating transcription when bound by another TF. That TF is likely

OTX2, an ortholog of CRX with nearly identical binding specificity, and which is co-expressed

in photoreceptors and bipolar cells [100]. OTX2 may bind homotypic clusters of ‘CRX’ sites in

the absence of CRX (Crx-/- retina) or when CRX levels are low (bipolar cells). Our results sug-

gest a mechanism by which homotypic clusters of CRX sites could have pleiotropic, cell type-

specific functions: In photoreceptors, these clusters are bound by CRX and are repressive,

while in bipolar cells, the same clusters may be bound by OTX2 and become activating. The

MAVE-NN model indicates that, at least in Crx-/- retina, this conversion is due to a shift in the

balance between negative homotypic interactions and additive contributions. Negative homo-

typic interactions between TFBSs persist in the absence of CRX, but these are outweighed by

stronger additive contributions (Fig 2E). Our experimental results and MAVE-NN models

show that the effects of local sequence context on TFBS activity can change when different TFs

bind the same sites in different cellular environments.

While our results suggest that the balance between negative homotypic interactions and

positive heterotypic and independent effects play an important role, more complex factors also

play a role in the CRX-directed cis-regulatory grammar. Our pairwise interaction models show

that spacing, orientation, and binding site sequence affect CRE activity in complicated ways

that are not captured by our simple model (S2C, S2J, and S3F Figs). However, negative homo-

typic interactions may be a common feature of certain classes of transcriptional activators, and

such interactions may explain why many TFs frequently play dual roles as activators and

repressors.

Methods

Ethics statement

Animal procedures were performed in accordance with the Washington University in

St. Louis Institutional Animal Care and Use Committee under approved protocol #D16-

00245.

Model fitting

For previously published data, we used processed data taken directly from published supple-

mental data files. For the CRX + NRL library (n = 1,299), binding site arrangements and

MPRA activities were extracted from Database S3 of [13]. For the liver TF library (n = 4,966),

data was taken from Supplementary Table 4 of [68]. For the library with CRX, NEUROD1,

NRL, RORB, and MAZ sites (CDNRM library, n = 6,600), the MPRA experiment was per-

formed as described below. Data files are described below under Data availability. To encode

arrangements of TFBSs as input sequences for MAVE-NN, we used single letters to represent

each type of binding site. To create input sequences of uniform length for the CRX + NRL

library, dummy binding sites labeled “O” were prepended to each arrangement to render all

CREs four sites long, and an additional letter indicating the basal promoter (Rho or Hsp68)

was then appended to the end. Because the binding sites in the library of reference [68] did not

occur at consistent locations, the sequences were segmented into 9 bp bins. If the 5’ end of a

binding site fell within a bin, a letter encoding the specific TF it binds was included in the cor-

responding location in the binding site sequence. Otherwise, a letter encoding the background

sequence (B for the more active, b for the less active) was added as a spacer. Models were

trained using mave-nn package version 1.01 until convergence on the processed data. Training
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histories are shown in S6A-S6C Fig. The hyperparameters are given in Table 1. They were cho-

sen by manually adjusting the MAVE-NN defaults to obtain the best fit to the validation set.

The models were specified using the Skewed-T GE noise model with a heteroskedasticity

order of 2. We used the consensus gauge with basal Hsp68 as the consensus sequence to obtain

parameters from the models trained on CRX-NRL data in wild-type retina, and the uniform

gauge for the remaining models. To ensure consistent training outcomes, we trained each

model from multiple random initializations (25 for the CRX + NRL library in wild-type retina,

20 for the library in Crx–/- retina, 50 for the CDNRM library, and 20 for the liver TF library),

with the numbers chosen to achieve maximum performance and reproducibility. We picked

the best-performing model of each type for further evaluation. Model performance was evalu-

ated by cross-validation with an 80-10-10 percent training-validation-test set split. The mea-

surements were split randomly between sets and the same split was used for all random

initializations. To estimate parameter uncertainty, we used MAVE-NN’s built-in bootstrap

function [57]. The function works as follows: beginning with a model trained on the original

data, MAVE-NN simulates n datasets, on which new models are trained. Parameter uncertain-

ties are then calculated from the n models trained on the simulated datasets. The datasets are

generated by simulating a measurement for each CRE in the original dataset. CRE sequences

in the simulated datasets are thereby kept fixed, with only the measurements treated as sto-

chastic. This approach avoids the potential issue of parameter non-identifiability in models

trained on simulated datasets lacking a substantial subset of the original sequences. We used

the best-performing pairwise model for each dataset to generate 20 simulated datasets using

this procedure.

Simulating CRE activity with a simplified model

We set all constants in Eq 1 to one and used it to calculate activity of simulated CREs com-

posed of different numbers of binding sites. Genomic CREs shown in Fig 4C were taken from

reference [18]. The number of CRX and non-CRX binding sites in each genomic CREs was

taken from the predicted occupancy calculations of reference [18].

CDNRM library design

We designed a library of 6600 synthetic CREs composed of combinations of binding sites for

CRX, NRL, NEUROD1, RORB, and MAZ. The library was designed to vary TFBS diversity

around CRX sites. It contained all possible arrangements of either 3 sites for CRX and 1 site

each for two other TFs (3-1-1 sequences); or 2 sites for CRX, 2 sites for a second TF, and 1 site

for a third TF (2-2-1 sequences). CRX sites in a CRE were either all high affinity or a mixture

of affinities. TFBS orientation was held constant. High, medium and low affinity CRX sites

were those used in the CRX + NRL library [13]. To ensure that we picked motif sequences that

are functional in at least one context, we picked high and medium affinity NRL, NEUROD1,

RORB, and MAZ sites from genomic strong enhancers that lose some activity when the corre-

sponding motif is deleted [18]. The high and medium affinity NRL sites in the CDNRM library

differ from the consensus site in the CRX + NRL library. They were chosen because they co-

Table 1. Hyperparameters used to fit models.

Learning rate 0.001

Number of Epochs 1000

Batch size 200

Early stopping patience 30

https://doi.org/10.1371/journal.pcbi.1011802.t001
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occur in genomic enhancers with other TFBSs tested in the CDNRM library. Binding site

sequences were padded to make all motifs 12 bp, then a constant buffer sequence was added

(AGCTAC<motif>GT) to create a 20 bp “building block” that maintains helical spacing

when sites were combined, similar to our procedure for prior libraries of synthetic CREs

[13,16,51]. The 12 bp motifs used with the core motif underlined, are: high affinity CRX,

TGCTAATCCCAC; medium affinity CRX, TGCTAAGCCAAC; low affinity CRX,

TGCTGATTCAAC; high affinity NRL: AATTTGCTGACC; medium affinity NRL,

GGCCTGCTGACC; high affinity NEUROD1, CAACAGATGGTA; medium affinity Neu-

roD1, CGGCAGGTGGTA; high affinity RORB, AATTAGGTCACT; medium affinity RORB,

ATCTGGGTCAGT; high affinity MAZ, GGGGGAGGGGGG; medium affinity MAZ,

GCGGGCGGGGGG.

MPRA library cloning

Synthetic CREs were each represented in the library with 3 unique barcodes. As standards, the

library included 20 genomic sequences taken from [18] that span the dynamic range of the

MPRA and 150 scrambled sequences as negative controls. The Rho basal promoter was tagged

with 90 barcodes to ensure precise measurement of basal levels. Barcoded CREs were synthe-

sized as two sub-libraries on a single chip using custom oligonucleotide synthesis from Agilent

Technologies. The oligonucleotide libraries were cloned as previously described [18]. Briefly,

we amplified oligos using either primer pairs MO563 (GTAGCGTCTGTCCGTGAATT) and

MO564 (CTGTAGTAGTAGTTGGCGGC) or RZFP3 (TCTAGACTGCGGCTCGAATT) and

RZFP4 (AGATCTAATGCATACGCGGC), and cloned them into the vector pJK03 (AddGene

#173,490). The rod-specific Rho promoter, the DsRed reporter gene, and a multiplexing bar-

code (mBC) was cloned between the synthetic sequence and the cBC. One sub-library was

assigned mBC TAGTAACGG, the other was assigned CCTACTAGT. The final plasmid librar-

ies were pooled at equimolar concentrations.

Retinal explant electroporation

Electroporations into retinal explants into P0 CD-1 mice and RNA extractions were performed

as described previously [13,18,43,63]. We performed three replicate electroporations. cDNA

and the input plasmid pool was sequenced on the Illumina NextSeq platform. We obtained an

average sequencing depth of>675 reads per barcode.

MPRA data processing

All sequencing reads were processed regardless of quality score. Sequencing reads were filtered

to retain only perfect barcode matches. After filtering we retained 95% of sequencing reads.

Barcodes with fewer than 50 reads in the plasmid pool were considered missing and removed.

Barcode read counts were normalized by total sample reads to compute reads per million for

each barcode. MPRA activity scores for each replicate were calculated by dividing RNA by

DNA values, averaging across barcodes for each CRE, then normalizing to the activity of the

basal promoter [18]. Replicates were averaged and the log2 transformed values were used for

model training.

Supporting information

S1 Fig. Increasing NRL sites reduces MPRA activity in synthetic CREs. Synthetic CREs

composed only of NRL sites show an increase, then a decrease in activity relative to the Rho
basal promoter as the number of sites is increased. Plot shows a subset of the data reported in
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[13].

(TIF)

S2 Fig. A model of CRX and NRL-driven cis-regulatory activity in Crx-/- retina. (A) The

performance of different model architectures measured by Pearson correlation coefficients,

wild-type retina. (B) Estimates of model parameter uncertainties for additive (left) and pair-

wise interaction (right) parameters, generated by the built-in MAVE-NN function to estimate

uncertainties. Interaction parameters are ordered by rank for visualization. (C) Model parame-

ters for position-specific pairwise contributions of CRX and NRL sites in wild-type retina. For-

ward and reverse orientation of binding sites is indicated by capital or lower case letter. CRX

sites are either high (C or c), medium (M or m), or low (L or l) affinity. NRL sites are labeled N

or n and the Rho promoter is labeled R. There are no model parameters for Hsp68 (H, used as

the overall basal sequence) or the placeholder site _ used to equalize the lengths of input

sequences. See methods for details. (D) Anomalous activity of reverse medium affinity CRX

site, compared to the forward site. Additive parameters shown for independently trained pair-

wise models initialized from different random seeds (n = 8). (E, F) Performance of different

model architectures fit to MPRA measurements of the CRX-NRL library in Crx-/- retina. (G)

Estimates of model parameter uncertainties for additive (left) and pairwise interaction (right)

parameters in Crx-/- retina. (H) Observed activity (y-axis) of test set sequences vs the latent

phenotype inferred by the pairwise model of Crx-/- retina. (I) Observed activity (y-axis) of test

set sequences vs predicted activity of the pairwise model of Crx-/- retina. (J) Position-specific

pairwise contributions of CRX and NRL sites to activity in Crx-/- retina.

(TIF)

S3 Fig. A model of cis-regulatory activity driven by diverse TF binding sites in wild-type

retina. (A) Reproducibility of MPRA measurements across three replicates. (B,C) Perfor-

mance of modes fit to measurements of the MPRA library of CREs composed of five TFBSs,

expressed in terms of predictive information and Pearson correlation. (D) Observed activity

(y-axis) of test set sequences compared to the activity predicted by the pairwise model (x-axis).

(E) Estimates of model parameter uncertainties for additive (left) and pairwise interaction

(right) parameters. Interaction parameters are ordered by rank for visualization. (F) Position-

specific pairwise contributions of diverse TF binding sites. Capital and lowercase letters repre-

sent high and medium affinity sites for CRX (C), NEUROD1 (D), NRL (N), RORB (R), and

MAZ (M). Low affinity CRX sites are represented by x. Dashed boxes indicate strong coopera-

tive interactions of high affinity NRL sites with CRX sites.

(TIF)

S4 Fig. A model of cis-regulatory activity driven by diverse TFBSs in mouse liver. (A)

Observed activity (y-axis) of test set sequences compared to the latent phenotype (x-axis) pre-

dicted by the pairwise model. (B) Observed activity (y-axis) of test set sequences compared to

the activity predicted by the pairwise model (x-axis). (C) Mean homotypic interaction contri-

bution of each TF plotted against mean additive contribution. Error bars are standard devia-

tions across 20 simulated replicates generated by MAVE-NN’s built-in parameter uncertainty

estimation function. (D) Model parameters representing pairwise contributions of TFBSs aver-

aged across positions. (E) Distributions over simulated replicates of mean additive contribu-

tion from each TF averaged across positions. (F) Distributions over simulated replicates of

mean homotypic interaction contribution from each TF averaged across pairs of positions.

(TIF)

S5 Fig. A model of cis-regulatory activity driven by diverse TFBSs in HepG2 cells. (A)

Observed activity (y-axis) of test set sequences compared to the latent phenotype (x-axis)
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predicted by the pairwise model. (B) Observed activity (y-axis) of test set sequences compared

to the activity predicted by the pairwise model (x-axis). (C) Mean homotypic interaction con-

tribution of each TF plotted against mean additive contribution. Error bars are standard devia-

tions across 20 simulated replicates. (D) Model parameters representing pairwise

contributions of TFBSs averaged across positions. (E) Distributions over simulated replicates

of mean additive contribution from each TF averaged across positions. (F) Distributions over

simulated replicates of mean homotypic interaction contribution from each TF averaged

across pairs of positions.

(TIF)

S6 Fig. Training history of pairwise models. Training and validation set loss by epoch for

MAVE-NN pairwise interaction models for (A) CRX-NRL library in wild type retina, (B)

CRX-NRL library in Crx-/- retina, and (C) CDNRM library in wild-type retina.

(TIF)

Author Contributions

Conceptualization: Kaiser J. Loell, Ryan Z. Friedman, Barak A. Cohen, Michael A. White.

Formal analysis: Kaiser J. Loell, Michael A. White.

Funding acquisition: Barak A. Cohen, Michael A. White.

Investigation: Kaiser J. Loell, Ryan Z. Friedman, Connie A. Myers, Joseph C. Corbo, Barak A.

Cohen.

Methodology: Kaiser J. Loell, Ryan Z. Friedman, Joseph C. Corbo.

Project administration: Barak A. Cohen, Michael A. White.

Supervision: Barak A. Cohen, Michael A. White.

Visualization: Kaiser J. Loell, Michael A. White.

Writing – original draft: Kaiser J. Loell, Michael A. White.

Writing – review & editing: Ryan Z. Friedman, Joseph C. Corbo, Barak A. Cohen, Michael A.

White.

References
1. Partridge EC, Chhetri SB, Prokop JW, Ramaker RC, Jansen CS, Goh S-T, et al. Occupancy maps of

208 chromatin-associated proteins in one human cell type. Nature. 2020; 583: 720–728. https://doi.

org/10.1038/s41586-020-2023-4 PMID: 32728244

2. Vierstra J, Lazar J, Sandstrom R, Halow J, Lee K, Bates D, et al. Global reference mapping of human

transcription factor footprints. Nature. 2020; 583: 729–736. https://doi.org/10.1038/s41586-020-2528-

x PMID: 32728250

3. ENCODE Project Consortium Moore JE, Purcaro MJ Pratt HE, Epstein CB, Shoresh N, et al.

Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature. 2020; 583:

699–710. https://doi.org/10.1038/s41586-020-2493-4 PMID: 32728249

4. Jiang J, Cai H, Zhou Q, Levine M. Conversion of a dorsal-dependent silencer into an enhancer: evi-

dence for dorsal corepressors. EMBO J. 1993; 12: 3201–3209. https://doi.org/10.1002/j.1460-2075.

1993.tb05989.x PMID: 8344257

5. Alexandre C, Vincent J-P. Requirements for transcriptional repression and activation by Engrailed in

Drosophila embryos. Development. 2003; 130: 729–739. https://doi.org/10.1242/dev.00286 PMID:

12506003

6. Grass JA, Boyer ME, Pal S, Wu J, Weiss MJ, Bresnick EH. GATA-1-dependent transcriptional repres-

sion of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proc

PLOS COMPUTATIONAL BIOLOGY Context-dependent activity of transcription factor binding sites

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011802 January 16, 2024 20 / 25

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011802.s006
https://doi.org/10.1038/s41586-020-2023-4
https://doi.org/10.1038/s41586-020-2023-4
http://www.ncbi.nlm.nih.gov/pubmed/32728244
https://doi.org/10.1038/s41586-020-2528-x
https://doi.org/10.1038/s41586-020-2528-x
http://www.ncbi.nlm.nih.gov/pubmed/32728250
https://doi.org/10.1038/s41586-020-2493-4
http://www.ncbi.nlm.nih.gov/pubmed/32728249
https://doi.org/10.1002/j.1460-2075.1993.tb05989.x
https://doi.org/10.1002/j.1460-2075.1993.tb05989.x
http://www.ncbi.nlm.nih.gov/pubmed/8344257
https://doi.org/10.1242/dev.00286
http://www.ncbi.nlm.nih.gov/pubmed/12506003
https://doi.org/10.1371/journal.pcbi.1011802


Natl Acad Sci U S A. 2003; 100: 8811–8816. https://doi.org/10.1073/pnas.1432147100 PMID:

12857954

7. Iype T, Taylor DG, Ziesmann SM, Garmey JC, Watada H, Mirmira RG. The transcriptional repressor

Nkx6.1 also functions as a deoxyribonucleic acid context-dependent transcriptional activator during

pancreatic beta-cell differentiation: evidence for feedback activation of the nkx6.1 gene by Nkx6.1. Mol

Endocrinol. 2004; 18: 1363–1375. https://doi.org/10.1210/me.2004-0006 PMID: 15056733

8. Peng G-H, Ahmad O, Ahmad F, Liu J, Chen S. The photoreceptor-specific nuclear receptor Nr2e3

interacts with Crx and exerts opposing effects on the transcription of rod versus cone genes. Hum Mol

Genet. 2005; 14: 747–764. https://doi.org/10.1093/hmg/ddi070 PMID: 15689355

9. Martı́nez-Montañés F, Rienzo A, Poveda-Huertes D, Pascual-Ahuir A, Proft M. Activator and repres-

sor functions of the Mot3 transcription factor in the osmostress response of Saccharomyces cerevi-

siae. Eukaryot Cell. 2013; 12: 636–647. https://doi.org/10.1128/EC.00037-13 PMID: 23435728

10. Rister J, Razzaq A, Boodram P, Desai N, Tsanis C, Chen H, et al. Single-base pair differences in a

shared motif determine differential Rhodopsin expression. Science. 2015; 350: 1258–1261. https://

doi.org/10.1126/science.aab3417 PMID: 26785491

11. Stampfel G, Kazmar T, Frank O, Wienerroither S, Reiter F, Stark A. Transcriptional regulators form

diverse groups with context-dependent regulatory functions. Nature. 2015; 528: 147–151. https://doi.

org/10.1038/nature15545 PMID: 26550828

12. Rachmin I, Amsalem E, Golomb E, Beeri R, Gilon D, Fang P, et al. FHL2 switches MITF from activator

to repressor of Erbin expression during cardiac hypertrophy. Int J Cardiol. 2015; 195: 85–94. https://

doi.org/10.1016/j.ijcard.2015.05.108 PMID: 26025865

13. White MA, Kwasnieski JC, Myers CA, Shen SQ, Corbo JC, Cohen BA. A Simple Grammar Defines

Activating and Repressing cis-Regulatory Elements in Photoreceptors. Cell Rep. 2016; 17: 1247–

1254.

14. Grossman SR, Zhang X, Wang L, Engreitz J, Melnikov A, Rogov P, et al. Systematic dissection of

genomic features determining transcription factor binding and enhancer function. Proc Natl Acad Sci

U S A. 2017; 114: E1291–E1300. https://doi.org/10.1073/pnas.1621150114 PMID: 28137873

15. Carleton JB, Berrett KC, Gertz J. Multiplex Enhancer Interference Reveals Collaborative Control of

Gene Regulation by Estrogen Receptor α-Bound Enhancers. Cell Syst. 2017; 5: 333–344.e5.

16. King DM, Hong CKY, Shepherdson JL, Granas DM, Maricque BB, Cohen BA. Synthetic and genomic

regulatory elements reveal aspects of cis-regulatory grammar in mouse embryonic stem cells. Elife.

2020;9. https://doi.org/10.7554/eLife.41279 PMID: 32043966

17. Huang Z, Liang N, Goñi S, Damdimopoulos A, Wang C, Ballaire R, et al. The corepressors GPS2 and

SMRT control enhancer and silencer remodeling via eRNA transcription during inflammatory activation

of macrophages. Mol Cell. 2021; 81: 953–968.e9. https://doi.org/10.1016/j.molcel.2020.12.040 PMID:

33503407

18. Friedman RZ, Granas DM, Myers CA, Corbo JC, Cohen BA, White MA. Information content differenti-

ates enhancers from silencers in mouse photoreceptors. Elife. 2021; 10. https://doi.org/10.7554/eLife.

67403 PMID: 34486522

19. Loker R, Sanner JE, Mann RS. Cell-type-specific Hox regulatory strategies orchestrate tissue identity.

Curr Biol. 2021; 31: 4246–4255.e4. https://doi.org/10.1016/j.cub.2021.07.030 PMID: 34358443

20. Tokuhiro S, Satou Y. Cis-regulatory code for determining the action of Foxd as both an activator and a

repressor in ascidian embryos. Dev Biol. 2021; 476: 11–17. https://doi.org/10.1016/j.ydbio.2021.03.

010 PMID: 33753082

21. Jindal GA, Farley EK. Enhancer grammar in development, evolution, and disease: dependencies and

interplay. Dev Cell. 2021; 56: 575–587. https://doi.org/10.1016/j.devcel.2021.02.016 PMID: 33689769

22. Long HK, Prescott SL, Wysocka J. Ever-Changing Landscapes: Transcriptional Enhancers in Devel-

opment and Evolution. Cell. 2016; 167: 1170–1187. https://doi.org/10.1016/j.cell.2016.09.018 PMID:

27863239

23. Spitz F, Furlong EEM. Transcription factors: from enhancer binding to developmental control. Nat Rev

Genet. 2012; 13: 613–626. https://doi.org/10.1038/nrg3207 PMID: 22868264

24. Arnosti DN, Kulkarni MM. Transcriptional enhancers: Intelligent enhanceosomes or flexible billboards?

J Cell Biochem. 2005; 94: 890–898. https://doi.org/10.1002/jcb.20352 PMID: 15696541

25. Thanos D, Maniatis T. Virus induction of human IFN beta gene expression requires the assembly of an

enhanceosome. Cell. 1995; 83: 1091–1100. https://doi.org/10.1016/0092-8674(95)90136-1 PMID:

8548797

26. Junion G, Spivakov M, Girardot C, Braun M, Gustafson EH, Birney E, et al. A transcription factor col-

lective defines cardiac cell fate and reflects lineage history. Cell. 2012; 148: 473–486. https://doi.org/

10.1016/j.cell.2012.01.030 PMID: 22304916

PLOS COMPUTATIONAL BIOLOGY Context-dependent activity of transcription factor binding sites

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011802 January 16, 2024 21 / 25

https://doi.org/10.1073/pnas.1432147100
http://www.ncbi.nlm.nih.gov/pubmed/12857954
https://doi.org/10.1210/me.2004-0006
http://www.ncbi.nlm.nih.gov/pubmed/15056733
https://doi.org/10.1093/hmg/ddi070
http://www.ncbi.nlm.nih.gov/pubmed/15689355
https://doi.org/10.1128/EC.00037-13
http://www.ncbi.nlm.nih.gov/pubmed/23435728
https://doi.org/10.1126/science.aab3417
https://doi.org/10.1126/science.aab3417
http://www.ncbi.nlm.nih.gov/pubmed/26785491
https://doi.org/10.1038/nature15545
https://doi.org/10.1038/nature15545
http://www.ncbi.nlm.nih.gov/pubmed/26550828
https://doi.org/10.1016/j.ijcard.2015.05.108
https://doi.org/10.1016/j.ijcard.2015.05.108
http://www.ncbi.nlm.nih.gov/pubmed/26025865
https://doi.org/10.1073/pnas.1621150114
http://www.ncbi.nlm.nih.gov/pubmed/28137873
https://doi.org/10.7554/eLife.41279
http://www.ncbi.nlm.nih.gov/pubmed/32043966
https://doi.org/10.1016/j.molcel.2020.12.040
http://www.ncbi.nlm.nih.gov/pubmed/33503407
https://doi.org/10.7554/eLife.67403
https://doi.org/10.7554/eLife.67403
http://www.ncbi.nlm.nih.gov/pubmed/34486522
https://doi.org/10.1016/j.cub.2021.07.030
http://www.ncbi.nlm.nih.gov/pubmed/34358443
https://doi.org/10.1016/j.ydbio.2021.03.010
https://doi.org/10.1016/j.ydbio.2021.03.010
http://www.ncbi.nlm.nih.gov/pubmed/33753082
https://doi.org/10.1016/j.devcel.2021.02.016
http://www.ncbi.nlm.nih.gov/pubmed/33689769
https://doi.org/10.1016/j.cell.2016.09.018
http://www.ncbi.nlm.nih.gov/pubmed/27863239
https://doi.org/10.1038/nrg3207
http://www.ncbi.nlm.nih.gov/pubmed/22868264
https://doi.org/10.1002/jcb.20352
http://www.ncbi.nlm.nih.gov/pubmed/15696541
https://doi.org/10.1016/0092-8674%2895%2990136-1
http://www.ncbi.nlm.nih.gov/pubmed/8548797
https://doi.org/10.1016/j.cell.2012.01.030
https://doi.org/10.1016/j.cell.2012.01.030
http://www.ncbi.nlm.nih.gov/pubmed/22304916
https://doi.org/10.1371/journal.pcbi.1011802


27. Barolo S, Posakony JW. Three habits of highly effective signaling pathways: principles of transcrip-

tional control by developmental cell signaling. Genes Dev. 2002; 16: 1167–1181. https://doi.org/10.

1101/gad.976502 PMID: 12023297

28. Pang B, Snyder MP. Systematic identification of silencers in human cells. Nat Genet. 2020; 52: 254–

263. https://doi.org/10.1038/s41588-020-0578-5 PMID: 32094911

29. Pang B, van Weerd JH, Hamoen FL, Snyder MP. Identification of non-coding silencer elements and

their regulation of gene expression. Nat Rev Mol Cell Biol. 2022. https://doi.org/10.1038/s41580-022-

00549-9 PMID: 36344659

30. Segert JA, Gisselbrecht SS, Bulyk ML. Transcriptional Silencers: Driving Gene Expression with the

Brakes On. Trends Genet. 2021; 37: 514–527. https://doi.org/10.1016/j.tig.2021.02.002 PMID:

33712326

31. Corbo JC, Lawrence KA, Karlstetter M, Myers CA, Abdelaziz M, Dirkes W, et al. CRX ChIP-seq

reveals the cis-regulatory architecture of mouse photoreceptors. Genome Res. 2010; 20: 1512–1525.

https://doi.org/10.1101/gr.109405.110 PMID: 20693478

32. Hughes AEO, Enright JM, Myers CA, Shen SQ, Corbo JC. Cell Type-Specific Epigenomic Analysis

Reveals a Uniquely Closed Chromatin Architecture in Mouse Rod Photoreceptors. Sci Rep. 2017; 7:

43184. https://doi.org/10.1038/srep43184 PMID: 28256534

33. Murphy DP, Hughes AE, Lawrence KA, Myers CA, Corbo JC. Cis-regulatory basis of sister cell type

divergence in the vertebrate retina. Elife. 2019;8. https://doi.org/10.7554/eLife.48216 PMID:

31633482

34. Furukawa T, Morrow EM, Cepko CL. Crx, a novel otx-like homeobox gene, shows photoreceptor-spe-

cific expression and regulates photoreceptor differentiation. Cell. 1997; 91: 531–541. https://doi.org/

10.1016/s0092-8674(00)80439-0 PMID: 9390562

35. Chen S, Wang QL, Nie Z, Sun H, Lennon G, Copeland NG, et al. Crx, a novel Otx-like paired-homeo-

domain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron. 1997; 19:

1017–1030. https://doi.org/10.1016/s0896-6273(00)80394-3 PMID: 9390516

36. Freund CL, Gregory-Evans CY, Furukawa T, Papaioannou M, Looser J, Ploder L, et al. Cone-rod dys-

trophy due to mutations in a novel photoreceptor-specific homeobox gene (CRX) essential for mainte-

nance of the photoreceptor. Cell. 1997; 91: 543–553. https://doi.org/10.1016/s0092-8674(00)80440-7

PMID: 9390563

37. Cheng H, Khanna H, Oh ECT, Hicks D, Mitton KP, Swaroop A. Photoreceptor-specific nuclear recep-

tor NR2E3 functions as a transcriptional activator in rod photoreceptors. Hum Mol Genet. 2004; 13:

1563–1575. https://doi.org/10.1093/hmg/ddh173 PMID: 15190009

38. Srinivas M, Ng L, Liu H, Jia L, Forrest D. Activation of the blue opsin gene in cone photoreceptor devel-

opment by retinoid-related orphan receptor beta. Mol Endocrinol. 2006; 20: 1728–1741. https://doi.

org/10.1210/me.2005-0505 PMID: 16574740

39. Hsiau TH-C, Diaconu C, Myers CA, Lee J, Cepko CL, Corbo JC. The cis-regulatory logic of the mam-

malian photoreceptor transcriptional network. PLoS One. 2007; 2: e643. https://doi.org/10.1371/

journal.pone.0000643 PMID: 17653270

40. Hennig AK, Peng G-H, Chen S. Regulation of photoreceptor gene expression by Crx-associated tran-

scription factor network. Brain Res. 2008; 1192: 114–133. https://doi.org/10.1016/j.brainres.2007.06.

036 PMID: 17662965

41. Montana CL, Lawrence KA, Williams NL, Tran NM, Peng G-H, Chen S, et al. Transcriptional regulation

of neural retina leucine zipper (Nrl), a photoreceptor cell fate determinant. J Biol Chem. 2011; 286:

36921–36931. https://doi.org/10.1074/jbc.M111.279026 PMID: 21865162

42. Cherry TJ, Yang MG, Harmin DA, Tao P, Timms AE, Bauwens M, et al. Mapping the cis-regulatory

architecture of the human retina reveals noncoding genetic variation in disease. Proc Natl Acad Sci U

S A. 2020; 117: 9001–9012. https://doi.org/10.1073/pnas.1922501117 PMID: 32265282

43. White MA, Myers CA, Corbo JC, Cohen BA. Massively parallel in vivo enhancer assay reveals that

highly local features determine the cis-regulatory function of ChIP-seq peaks. Proc Natl Acad Sci U S

A. 2013; 110: 11952–11957. https://doi.org/10.1073/pnas.1307449110 PMID: 23818646

44. Hughes AEO, Myers CA, Corbo JC. A massively parallel reporter assay reveals context-dependent

activity of homeodomain binding sites in vivo. Genome Res. 2018; 28: 1520–1531. https://doi.org/10.

1101/gr.231886.117 PMID: 30158147

45. Mitton KP, Swain PK, Chen S, Xu S, Zack DJ, Swaroop A. The leucine zipper of NRL interacts with the

CRX homeodomain. A possible mechanism of transcriptional synergy in rhodopsin regulation. J Biol

Chem. 2000; 275: 29794–29799. https://doi.org/10.1074/jbc.M003658200 PMID: 10887186

PLOS COMPUTATIONAL BIOLOGY Context-dependent activity of transcription factor binding sites

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011802 January 16, 2024 22 / 25

https://doi.org/10.1101/gad.976502
https://doi.org/10.1101/gad.976502
http://www.ncbi.nlm.nih.gov/pubmed/12023297
https://doi.org/10.1038/s41588-020-0578-5
http://www.ncbi.nlm.nih.gov/pubmed/32094911
https://doi.org/10.1038/s41580-022-00549-9
https://doi.org/10.1038/s41580-022-00549-9
http://www.ncbi.nlm.nih.gov/pubmed/36344659
https://doi.org/10.1016/j.tig.2021.02.002
http://www.ncbi.nlm.nih.gov/pubmed/33712326
https://doi.org/10.1101/gr.109405.110
http://www.ncbi.nlm.nih.gov/pubmed/20693478
https://doi.org/10.1038/srep43184
http://www.ncbi.nlm.nih.gov/pubmed/28256534
https://doi.org/10.7554/eLife.48216
http://www.ncbi.nlm.nih.gov/pubmed/31633482
https://doi.org/10.1016/s0092-8674%2800%2980439-0
https://doi.org/10.1016/s0092-8674%2800%2980439-0
http://www.ncbi.nlm.nih.gov/pubmed/9390562
https://doi.org/10.1016/s0896-6273%2800%2980394-3
http://www.ncbi.nlm.nih.gov/pubmed/9390516
https://doi.org/10.1016/s0092-8674%2800%2980440-7
http://www.ncbi.nlm.nih.gov/pubmed/9390563
https://doi.org/10.1093/hmg/ddh173
http://www.ncbi.nlm.nih.gov/pubmed/15190009
https://doi.org/10.1210/me.2005-0505
https://doi.org/10.1210/me.2005-0505
http://www.ncbi.nlm.nih.gov/pubmed/16574740
https://doi.org/10.1371/journal.pone.0000643
https://doi.org/10.1371/journal.pone.0000643
http://www.ncbi.nlm.nih.gov/pubmed/17653270
https://doi.org/10.1016/j.brainres.2007.06.036
https://doi.org/10.1016/j.brainres.2007.06.036
http://www.ncbi.nlm.nih.gov/pubmed/17662965
https://doi.org/10.1074/jbc.M111.279026
http://www.ncbi.nlm.nih.gov/pubmed/21865162
https://doi.org/10.1073/pnas.1922501117
http://www.ncbi.nlm.nih.gov/pubmed/32265282
https://doi.org/10.1073/pnas.1307449110
http://www.ncbi.nlm.nih.gov/pubmed/23818646
https://doi.org/10.1101/gr.231886.117
https://doi.org/10.1101/gr.231886.117
http://www.ncbi.nlm.nih.gov/pubmed/30158147
https://doi.org/10.1074/jbc.M003658200
http://www.ncbi.nlm.nih.gov/pubmed/10887186
https://doi.org/10.1371/journal.pcbi.1011802


46. Peng G-H, Chen S. Chromatin immunoprecipitation identifies photoreceptor transcription factor tar-

gets in mouse models of retinal degeneration: new findings and challenges. Vis Neurosci. 2005; 22:

575–586. https://doi.org/10.1017/S0952523805225063 PMID: 16332268

47. Hao H, Kim DS, Klocke B, Johnson KR, Cui K, Gotoh N, et al. Transcriptional regulation of rod photore-

ceptor homeostasis revealed by in vivo NRL targetome analysis. PLoS Genet. 2012; 8: e1002649.

https://doi.org/10.1371/journal.pgen.1002649 PMID: 22511886

48. Gertz J, Siggia ED, Cohen BA. Analysis of combinatorial cis-regulation in synthetic and genomic pro-

moters. Nature. 2009; 457: 215–218. https://doi.org/10.1038/nature07521 PMID: 19029883

49. Mogno I, Kwasnieski JC, Cohen BA. Massively parallel synthetic promoter assays reveal the in vivo

effects of binding site variants. Genome Res. 2013; 23: 1908–1915. https://doi.org/10.1101/gr.

157891.113 PMID: 23921661

50. Zeigler RD, Cohen BA. Discrimination between thermodynamic models of cis-regulation using tran-

scription factor occupancy data. Nucleic Acids Res. 2014; 42: 2224–2234. https://doi.org/10.1093/nar/

gkt1230 PMID: 24288374

51. Fiore C, Cohen BA. Interactions between pluripotency factors specify cis-regulation in embryonic stem

cells. Genome Res. 2016; 26: 778–786. https://doi.org/10.1101/gr.200733.115 PMID: 27197208

52. Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, Kondev J, et al. Transcriptional regulation by the

numbers: models. Curr Opin Genet Dev. 2005; 15: 116–124. https://doi.org/10.1016/j.gde.2005.02.

007 PMID: 15797194

53. Kinney JB, Murugan A, Callan CG Jr, Cox EC. Using deep sequencing to characterize the biophysical

mechanism of a transcriptional regulatory sequence. Proc Natl Acad Sci U S A. 2010; 107: 9158–

9163. https://doi.org/10.1073/pnas.1004290107 PMID: 20439748

54. Sherman MS, Cohen BA. Thermodynamic state ensemble models of cis-regulation. PLoS Comput

Biol. 2012; 8: e1002407. https://doi.org/10.1371/journal.pcbi.1002407 PMID: 22479169

55. Belliveau NM, Barnes SL, Ireland WT, Jones DL, Sweredoski MJ, Moradian A, et al. Systematic

approach for dissecting the molecular mechanisms of transcriptional regulation in bacteria. Proc Natl

Acad Sci U S A. 2018; 115: E4796–E4805. https://doi.org/10.1073/pnas.1722055115 PMID:

29728462

56. Barnes SL, Belliveau NM, Ireland WT, Kinney JB, Phillips R. Mapping DNA sequence to transcription

factor binding energy in vivo. PLoS Comput Biol. 2019; 15: e1006226. https://doi.org/10.1371/journal.

pcbi.1006226 PMID: 30716072

57. Tareen A, Kooshkbaghi M, Posfai A, Ireland WT, McCandlish DM, Kinney JB. MAVE-NN: learning

genotype-phenotype maps from multiplex assays of variant effect. Genome Biol. 2022; 23: 98. https://

doi.org/10.1186/s13059-022-02661-7 PMID: 35428271

58. de Almeida BP, Reiter F, Pagani M, Stark A. DeepSTARR predicts enhancer activity from DNA

sequence and enables the de novo design of synthetic enhancers. Nat Genet. 2022; 54: 613–624.

https://doi.org/10.1038/s41588-022-01048-5 PMID: 35551305

59. Movva R, Greenside P, Marinov GK, Nair S, Shrikumar A, Kundaje A. Deciphering regulatory DNA

sequences and noncoding genetic variants using neural network models of massively parallel reporter

assays. PLoS One. 2019; 14: e0218073. https://doi.org/10.1371/journal.pone.0218073 PMID:

31206543
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69. Méthot N, Basler K. Hedgehog controls limb development by regulating the activities of distinct tran-

scriptional activator and repressor forms of Cubitus interruptus. Cell. 1999; 96: 819–831. https://doi.

org/10.1016/s0092-8674(00)80592-9 PMID: 10102270

70. Parker DS, White MA, Ramos AI, Cohen BA, Barolo S. The cis-regulatory logic of Hedgehog gradient

responses: key roles for gli binding affinity, competition, and cooperativity. Sci Signal. 2011; 4: ra38.

https://doi.org/10.1126/scisignal.2002077 PMID: 21653228

71. Tsai A, Muthusamy AK, Alves MR, Lavis LD, Singer RH, Stern DL, et al. Nuclear microenvironments

modulate transcription from low-affinity enhancers. Elife. 2017; 6. https://doi.org/10.7554/eLife.28975

PMID: 29095143

72. Peng Y, Jahroudi N. The NFY transcription factor functions as a repressor and activator of the von Will-

ebrand factor promoter. Blood. 2002; 99: 2408–2417. https://doi.org/10.1182/blood.v99.7.2408 PMID:

11895773

73. Pompeani AJ, Irgon JJ, Berger MF, Bulyk ML, Wingreen NS, Bassler BL. The Vibrio harveyi master

quorum-sensing regulator, LuxR, a TetR-type protein is both an activator and a repressor: DNA recog-

nition and binding specificity at target promoters. Mol Microbiol. 2008; 70: 76–88. https://doi.org/10.

1111/j.1365-2958.2008.06389.x PMID: 18681939
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457.

81. Zuo P, StanojevićD, Colgan J, Han K, Levine M, Manley JL. Activation and repression of transcription
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