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Abstract 

 
In this article, the inverse including the determinant, and the eigenvalues of circulant matrices with entry 

Lucas numbers are formulated explicitly in a simple way so that their computations can be constructed 

efficiently. The formulation method of the determinant and inverse is simply applying the theory of 

elementary row or column operations and can be unified in one theorem. Meanwhile, for the eigenvalues 

formulation, the recently known formulation in the case of general circulant matrices is simplified by 

observing the specialty of the Lucas sequence and applying cyclic group properties of unit circles in the 

complex plane. Then, an algorithm of those formulations is constructed efficiently. From some  

implementation facts also showed that the algorithms performed very fast and was able to calculate large size 

of circulant matrices. 
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1 Introduction 
 

A circulant matrix has a good structure that the calculation of the determinants, inverse, and eigenvalues can be 

formulated explicitly and computed efficiently. This computation aspect is very important since so many areas 

of mathematical problems come from this type of matrices, such as coding theory, signal system and cybernetics 

[1]. The circulant matrix also plays an important role in cryptography. Yu [2] investigates the security of a 

cryptosystem which is based on compressed sensing. The cryptosystem encrypts a plaintext with a secret 

circulant matrix and transmits the ciphertext over a wireless channel. Hence, it also can be associated with 

computer science and engineering. 

 

Many papers that recently observed the determinant and inverses of circulant matrices whose entries are special 

integer sequences. Without intending to exclude any other papers whose similar topics to the current topic, we 

refer to some of those in the following. Bueno [3] proposed an explicit formula for the determinant and inverse 

of circulant matrices with geometric sequences. Shen et al. [4] follows to formulate the determinant and inverse 

circulant matrices with a special entry of Fibonacci and Lucas numbers, and they also gave conditions for the 

invertibility. Jiang et al. [5] continued to study the problems of those circulant matrices with the more general 

formation of k-Fibonacci and k-Lucas numbers, and this was followed by Jiang and Li [6] with changing the 

matrix structure from circulant to left circulant. Then, in the same year, the explicit formula of the determinants 

for circulant and left circulant matrices involving Tribonacci numbers were investigated by Li et al. see in [7]. 

 

Further investigation on explicit determinant and inverse matrices continued with the matrix structure of skew 

circulant, but now and the entry of Tribonacci was performed by Jiang and Hong in [8]. Then, a computational 

approach using a symbolic algorithm for computing the determinant and inverse of general bordered tridiagonal 

matrices presented by Jia and Li in [9]. Radicic [10] followed the investigation on k-circulant matrices with 

geometric sequence, while Bozkurt and Tam [11] were interested in r-circulant matrices associated with a more 

general number sequence. Most recently, similar problems can be found in [12-17]. 

 

In this paper, we formulate the determinant, inverse, and eigenvalues of circulant matrices with entry of Lucas 

numbers. The formulation method is based on elementary row or column operations which are directed to reach 

a fast computation. Our main result in the eigenvalues formulation, the case of general circulant matrices is 

simplified by considering the specialty of the Lucas sequence and exploiting the cyclic group properties of the 

unit circle in the complex plane. The following is the outline of this article. 

 

We review the circulant matrix notion of the general case in Section 2, and also discuss its previous results 

associated with the eigenvalues, determinant, and inverse; then reviewing the Lucas sequence and connected it 

to the definition of the circulant matrix. In Section 3, we present a theorem containing a simple formulation of 

the determinant and inverse of the defined matrix. Section 4 proposes a new theorem containing a simplified 

formulation for the eigenvalues of the matrix. Section 5 presents algorithms of those results and discusses the 

efficiency. We close this paper with a concluding remark in Section 6. 

 

2 Preliminaries 
 

In the first subsection, we discuss the notion of a general circulant matrix and its previous results connected to 

the problem of formulating the determinant, inverse, and eigenvalues. In the next subsection, we review the 

notion of Lucas numbers, and then we discuss some of the properties associated with the next section. 

 

2.1 General circulant matrix 
 

For any sequence of numbers 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛−2, 𝑎𝑛−1, the 𝑛 × 𝑛  circulant matrix A denoted as 𝐴 =
Circ(𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛−2, 𝑎𝑛−1), is defined by 
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𝐴 =

(

 
 

𝑎0 𝑎1 … 𝑎𝑛−2 𝑎𝑛−1
𝑎𝑛−1 𝑎0 𝑎1 ⋯ 𝑎𝑛−2
⋮ ⋮ ⋱ ⋮ ⋮
𝑎2 𝑎3 ⋯ 𝑎0 𝑎1
𝑎1 𝑎2 ⋯ 𝑎𝑛−1 𝑎0 )

 
 
. 

 

Let 𝜆𝑘 be the eigenvalues of A, and 𝑣𝑘 be the corresponding eigenvectors, for 𝑘 = 0, 1, 2,⋯ , 𝑛 − 1. Then, 𝜆𝑘  

and 𝑣𝑘  are well-known formulated (see for examples in [18-20]. 

 

𝜆𝑘 =∑𝑎𝑗𝛼
𝑗𝑘

𝑛−1

𝑗=0

 and 𝑣𝑘 = (1, 𝛼
𝑘, 𝛼2𝑘,⋯ , 𝛼(𝑛−2)𝑘, 𝛼(𝑛−1)𝑘),   

 

(1) 

 

where 𝛼 = 𝑒
2𝜋𝑖

𝑛 = cos (
2𝜋

𝑛
) + 𝑖 sin (

2𝜋

𝑛
) and 𝑖 = √−1.  

 

In this matter, we have ℋ = {1, 𝛼, 𝛼2, ⋯ , 𝛼𝑛−1} which is a cyclic subgroup in the multiplication group ℂ∗ =
ℂ\{0}, 𝛼  is one of the generators of ℋ , and all the elements in ℋ  are nth roots of unity over ℂ,  and 

geometrically occupy the unit circle in the complex plane and divide the circle into n equal parts.  For 

simplification point of view, we rewrite Equation (1) as a matrix multiplication 

 

(

 
 

1 1 1 … 1
1 𝛼 𝛼2 … 𝛼(𝑛−1)

1 𝛼2 𝛼4 … 𝛼2(𝑛−1)

⋮ ⋮ ⋮ ⋱ ⋮
1 𝛼(𝑛−1) 𝛼2(𝑛−1) ⋯ 𝛼(𝑛−1)(𝑛−1))

 
 

(

 
 

𝑎0
𝑎1
𝑎2
⋮

𝑎𝑛−1)

 
 
=

(

 
 

𝜆0
𝜆1
𝜆2
⋮

𝜆𝑛−1)

 
 
. 

 

(2) 

 

We will refer to all these meanings later in the section of eigenvalues formulation. From Equation (1), 

then we have 

 

det(𝐴) =∏∑𝑎𝑗𝛼
𝑗𝑘 

𝑛−1

𝑗=0

𝑛−1

𝑘=0

 and 𝐴−1 = Circ(𝑏0, 𝑏1,⋯ , 𝑏𝑛−2, 𝑏𝑛−1), 
 

(3) 

 

where 

 

𝑏𝑗 =
1

𝑛
∑𝜆𝑘𝛼

−𝑗𝑘

𝑛−1

𝑘=0

  for 𝑗 = 0, 1,⋯ ,𝑛 − 1. 

 

In the computation perspective of calculating the eigenvalues, determinant and inverse based on 

Equation (1) and (3) are inefficient in particular when n is large enough. The reason is the need of 

involving complex number arithmetic in the computation of eigenvalues even though the entry of the 

matrix are real numbers. However, if the sequence 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛−2, 𝑎𝑛−1 has a good pattern, then we 

could get more explicit forms such that the computation can be done efficiently. In this paper, we use 

the Lucas sequence for the 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛−2, 𝑎𝑛−1.  
 

2.2 Lucas numbers 
 

In this subsection for the basic theory, we refer to [21]. When we define a second-order linear 

homogenous recurrence relation as 

𝑙𝑛 + 𝑙𝑛−1 + 𝑙𝑛−2 = 0, 𝑛 ≥ 2 

with initial condition 𝑙0 = 2,   𝑙1 = 1, then we get a sequence of Lucas numbers: 2, 1, 3, 4, 7, 11, 18, 

29,  .. and in the subsequent of this paper we call it simply as Lucas sequence. It is easy to prove that 

the solution of the relation is the explicit formula of the nth term: 
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𝑙𝑛 = (
1+ √5

2
)

𝑛

+ (
1− √5

2
)

𝑛

. 

 

The following proposition can be proved by mathematical induction, and it will be referred to in the 

proof of the eigen value formulation. 

 

Proposition 1 For any integer, 𝑛 ≥ 2 the sum of the first until the nth term in the Lucas sequences is 

formulated as 

 

𝑆𝑛 =∑𝑙𝑗 = 𝑙𝑛+2 − 3.

𝑛

𝑗=1

 

 

Furthermore 

 

𝑈𝑛 =∑(−1)𝑗−1𝑙𝑗 = {
𝑙𝑛−1 − 1 𝑖𝑓 𝑛 is odd 
−𝑙𝑛−1 − 1 𝑖𝑓 𝑛 is even.

𝑛

𝑗=1

 

 

Below is the matrix definition that will become our main object in this paper. 

 

Definition 1  For any integer 𝑛 ≥ 2, the 𝑛 × 𝑛 circulant matrix wih entry of the Lucas sequence {𝑙𝑗}𝑗=1
𝑛

 is the 

matrix  

 

𝑙𝑛 = Circ(1, 3, 4, 7,⋯ 𝑙𝑛−1, 𝑙𝑛). 
 

3 A Theorem of Inverse Formulation 
 

In this section, we refer to [22] for the basic theory. 

 

Theorem 1. For integer 𝑛 ≥ 3, let 𝐴 = 𝐿𝑛 = Circ(1, 3, 4, 7,⋯ , 𝑙𝑛−1, 𝑙𝑛) be the matrix defined in Definition 

1 and let 𝑥 = 1 − 𝑙𝑛−1 − 𝑙𝑛 , 𝑦 = 𝑙𝑛 − 2 then 

 

det(𝐴) = 𝑥𝑛−1 − 5𝑦𝑛−2 −∑ (𝑙𝑛−𝑘−1 +
𝑛−2

𝑘=1
𝑙𝑛−𝑘+1)𝑦

𝑘−1𝑥𝑛−𝑘−1. 

 

If 𝛿 = det(𝐴) ≠ 0, then 𝐴−1 =
1

𝛿
Circ(𝑧1, 𝑧2, 𝑧3, 𝑧4, ⋯ , 𝑧𝑛−1, 𝑧𝑛) where 

 

𝑧1 =
𝛿 + 5𝑦𝑛−2

𝑥
, 𝑧2 =

𝛿 + 5𝑥𝑛−2

𝑦
 and 𝑧𝑘 = 5𝑥

𝑛−𝑘𝑦𝑘−3 for 𝑘 = 3, 4,⋯ , 𝑛. 

 

Proof. We describe the following proof step by step in six steps. First, let 𝐸1 be a series of elementary row 

operations on A: by substituting the ith row with the resulting operation of the ith row is subtracted by the 
(𝑖 + 1)th and the (𝑖 + 2)th rows, for 𝑖 =  2, 3, … (𝑛 − 2); the next, by substituting the (𝑛 − 1)th row with the 

(𝑛 − 1)th row is subtracted by the nth and the first rows; and the last, by substituting the nth row with the nth 

row is subtracted by 3 times the first row.  Then we have 𝐸1(A) = 𝐴~𝐷1, that is      
 

𝐷1 =

(

 
 
 
 
 

1 3 4 7 ⋯ 𝑙𝑛−2 𝑙𝑛−1 𝑙𝑛
0 𝑥 −𝑦 0 0 ⋯ 0 0
0 0 𝑥 −𝑦 0 0 ⋯ 0
0 0 0 𝑥 −𝑦 0 ⋱ ⋮
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 0
0 0 ⋯ 0 0 𝑥 −𝑦 0
0 0 0 ⋯ 0 0 𝑥 −𝑦
0 𝑔1 𝑔2 𝑔3 ⋯ 𝑔𝑛−3 𝑔𝑛−2 1 − 3𝑙𝑛)
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Where 

 

𝑥 = 1 − 𝑙𝑛 − 𝑙𝑛−1, 𝑦 = 𝑙𝑛−2 − 2     (4) 

 

𝑔1 = −5, 𝑔2 = −5, and 𝑔𝑗 = 𝑔𝑗−2 + 𝑔𝑗−1 for 𝑗 = 3, 4,⋯ , (𝑛 − 2),   (5) 

 

We can also formulate the 𝑔𝑗 as 

 

𝑔𝑗 = 𝑙𝑗+2 − 3𝑙𝑗+1 = 𝑙𝑗 − 2(𝑙𝑗−1 + 𝑙𝑗) = −(2𝑙𝑗−1 + 𝑙𝑗) = −(𝑙𝑗−1 + 𝑙𝑗+1). (6) 

 

The next, there exists the matrix 𝐿1 = 𝐸1(𝐼𝑛) such that 𝐷1 = 𝐿1𝐴 where 

 

𝐿1 =

(

 
 
 
 
 

1 0 0 ⋯ 0 0 0 0
0 1 −1 −1 ⋯ 0 0 0
0 0 1 −1 −1 ⋯ 0 0
0 0 0 1 −1 −1 ⋯ 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 0 0 ⋯ 0 1 −1 −1
−1 0 0 0 ⋯ 0 1 −1
−3 0 0 0 0 ⋯ 0 1 )

 
 
 
 
 

. 

 

Secondly, applying K1 as a series of elementary column operations on D1 by substituting the jth column 

with the jth column is added to the result operation of the first column multiplied by (−𝑙𝑗), for 𝑗 =

2, 3,⋯ , 𝑛, then we have 𝐾1(𝐷1) = 𝐹 ~ 𝐷2 where 

 

𝐷2 =

(

 
 
 
 
 

1 0 0 0 ⋯ 0 0 0
0 𝑥 −𝑦 0 0 ⋯ 0 0
0 0 𝑥 −𝑦 0 0 ⋯ 0
0 0 0 𝑥 −𝑦 0 ⋱ ⋮
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 0
0 0 ⋯ 0 0 𝑥 −𝑦 0
0 0 0 ⋯ 0 0 𝑥 −𝑦
0 𝑔1 𝑔2 𝑔3 ⋯ 𝑔𝑛−3 𝑔𝑛−2 1 − 3𝑙𝑛)

 
 
 
 
 

 

 

and then, there exists 𝑅1  =  𝐾1(𝐼𝑛) such that 𝐷2  =  𝐿1𝐷𝑅1 where 

 

𝑅1 =

(

 
 
 
 
 

1 −3 −4 ⋯ −𝑙𝑛−3 −𝑙𝑛−2 −𝑙𝑛−1 −𝑙𝑛
0 1 0 0 ⋯ 0 0 0
0 0 1 0 0 ⋯ 0 0
0 0 0 1 0 0 ⋯ 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 0 0 ⋯ 0 1 0 0
0 0 0 0 ⋯ 0 1 0
0 0 0 0 0 ⋯ 0 1 )

 
 
 
 
 

. 

 

Thirdly, let E2 be a series of elementary row operations on D2 by substituting the ith row with the 

ith row multiplied by 1 𝑥⁄ , for 𝑖 =  2, 3,… , (𝑛 − 1). The result is 𝐸2 (𝐷2) = 𝐴 ~ 𝐷3  and 

 

𝐷3 =

(

 
 
 
 
 

1 0 0 0 ⋯ 0 0 0
0 1 −𝑞 0 0 ⋯ 0 0
0 0 1 −𝑞 0 0 ⋯ 0
0 0 0 1 −𝑞 0 ⋱ ⋮
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 0
0 0 ⋯ 0 0 1 −𝑞 0
0 0 0 ⋯ 0 0 1 −𝑞
0 𝑔1 𝑔2 𝑔3 ⋯ 𝑔𝑛−3 𝑔𝑛−2 1 − 3𝑙𝑛)
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where 𝑞 =
𝑦

𝑥
  or 

 

𝑥 =
𝑦

𝑞
 (7) 

 

and then, there exists 𝐿2 = 𝐸2(𝐿1) such that 𝐷3 = 𝐿2𝐷𝑅1 where 

 

𝐿2 =
1

𝑥

(

 
 
 
 
 

𝑥 0 0 ⋯ 0 0 0 0
0 1 −1 −1 ⋯ 0 0 0
0 0 1 −1 −1 ⋯ 0 0
0 0 0 1 −1 −1 ⋯ 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 0 0 ⋯ 0 1 −1 −1
−1 0 0 0 ⋯ 0 1 −1
−3𝑥 0 0 0 0 ⋯ 0 𝑥 )

 
 
 
 
 

. 

 

Fourthly, let K2 be a series of elementary column operations on D3 by substituting the (j + 1)th column 

with the jth column multiplied by -q and added to the (j + 1)th column, for j = 2, 3, ..., (n - 1). Then, 

𝐾2 (𝐷3) = 𝐴 ~ 𝐷4, 

 

𝐷4 =

(

 
 
 
 
 

1 0 0 0 ⋯ 0 0 0
0 1 0 0 0 ⋯ 0 0
0 0 1 0 0 0 ⋯ 0
0 0 0 1 0 0 ⋱ ⋮
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 0
0 0 ⋯ 0 0 1 0 0
0 0 0 ⋯ 0 0 1 0
0 𝑢1 𝑢2 𝑢3 ⋯ 𝑢𝑛−3 𝑢𝑛−2 𝑑)

 
 
 
 
 

   

 

where  
 

𝑢1 = 𝑔1 = −5 and 𝑢𝑗 = 𝑞𝑢𝑗−1 + 𝑔𝑗  for 𝑗 = 2, 3,⋯ , (𝑛 − 2), (8) 
 

and it is clear that we also obtain 
 

𝑑 = 𝑞𝑢𝑛−2 + 1 − 3𝑙𝑛 and det(𝐴) = 𝑥
𝑛−2𝑑. (9) 

 

In the following, we will prove the formula of det (A) by formulating 𝑢𝑛−2. From Equation (8), we 

have the sequence 
 

𝑢1 = 𝑔1,                                                                                                       
𝑢2 = 𝑞𝑢1 + 𝑔2,                                                                          
𝑢3 = 𝑞(𝑞𝑔1 + 𝑔2) + 𝑔3 = 𝑔1𝑞

2 + 𝑔2𝑞 + 𝑔3,                    
𝑢4 = 𝑞(𝑔1𝑞

2 + 𝑔2𝑞 + 𝑔3) = 𝑔1𝑞
3 + 𝑔2𝑞

2 + 𝑔3𝑞 + 𝑔4, 

⋮ 

𝑢𝑛−2 =∑ 𝑔𝑗𝑞
𝑛−2−𝑗

𝑛−2

𝑗=1
                                                                  

 

so that det(𝐴) = 𝑥𝑛−2(∑ 𝑔𝑗𝑞
𝑛−1−𝑗 + 1 − 3𝐼𝑛

𝑛−2
𝑗=1 ). Then, by applying Equation (7), we obtain that 

 

det(𝐴) = 𝑥𝑛−2 (∑𝑔𝑗 (
𝑦

𝑥
)
𝑛−1−𝑗

+ 1 − 3𝑙𝑛

𝑛−2

𝑗=1

)

= ∑𝑔𝑗 (
𝑦

𝑥
)
𝑛−1−𝑗

𝑥𝑗−1 + (1 − 3𝑙𝑛)𝑥
𝑛−2

𝑛−2

𝑗=1

= ∑𝑔𝑗 (
𝑦

𝑥
)
𝑛−1−𝑗

𝑥𝑗−1 − 𝑔𝑛−1𝑥
𝑛−2 + (1 − 3𝑙𝑛)𝑥

𝑛−2,

𝑛−1

𝑗=1
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and we apply Equation (5) and (6) to get 

 

det(𝐴) = (1 + 𝑙𝑛−2 + 𝑙𝑛 − 3𝑙𝑛)𝑥
𝑛−2 +∑𝑔𝑗𝑦

𝑛−1−𝑗𝑥𝑗−1
𝑛−1

𝑗=1

 = 𝑥𝑛−1 +∑𝑔𝑗𝑦
𝑛−1−𝑗

𝑛−1

𝑗=1

= 𝑥𝑛−1 −∑(𝑙𝑗−1 + 𝑙𝑗+1)𝑦
𝑛−1−𝑗𝑥𝑗−1

𝑛−1

𝑗=1

.

 

 

Finally, by transforming the counter variable 𝑡 =  𝑛 − 1− 𝑗 for 𝑗 from (𝑛 − 1) down to 1, then 𝑘 = 𝑡 + 1, 

here we reach our formula of det (𝐴) as 

 

det(𝐴) = 𝑥𝑛−1 −∑(𝑙𝑛−2−𝑡 + 𝑙𝑛−𝑡)𝑦
𝑡𝑥𝑛−2−𝑡

𝑛−2

𝑡=0

 = 𝑥𝑛−1 − 5𝑦𝑛−2 −∑(𝑙𝑛−𝑘−1 + 𝑙𝑛−𝑘+1)𝑦
𝑘−1𝑥𝑛−𝑘−1

𝑛−2

𝑘=1

.

 

 

From all the above steps, we also get 𝑅 = 𝐾2(𝑅1) such that 𝐷4 = 𝐿2𝐴𝑅 with 

 

𝑅 =

(

 
 
 
 

1 𝑣2 𝑣3 ⋯ 𝑣𝑛−2 𝑣𝑛−1 𝑣𝑛
0 1 𝑞 𝑞2 ⋯ 𝑞𝑛−3 𝑞𝑛−2

0 0 1 𝑞 𝑞2 ⋯ 𝑞𝑛−3

⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱
0 0 ⋯ 0 1 𝑞 𝑞2

0 0 0 ⋯ 0 1 𝑞
0 0 0 0 ⋯ 0 1 )

 
 
 
 

 

 

where 𝑣2 =−3, and for 𝑗 = 3, 4, . . . , 𝑛, 𝑣𝑗 = 𝑞𝑣𝑗−1−𝑙𝑗 . Fifthly, let 𝐸3  be a series of elementary 

row operations on 𝐷4 by substituting the nth row with ith row multiplied by −𝑢𝑖 and added to the 

nth row, for 𝑖 =  2, 3, . . . , (𝑛− 2).  The result is 𝐸3(𝐷4) = 𝐴~𝐷 which is a diagonal matrix on 

the form 𝐷 = (
𝐼𝑛 𝑂
𝑂 𝑑

), and then there exists the matrix 𝐿 = 𝐸3(𝐿2) such that 𝐷 = 𝐿𝐴𝑅 with 

 

𝐿 =
1

𝑥

(

 
 
 
 
 

𝑥 0 0 ⋯ 0 0 0 0
0 1 −1 −1 ⋯ 0 0 0
0 0 1 −1 −1 ⋯ 0 0
0 0 0 1 −1 −1 ⋯ 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 0 0 ⋯ 0 1 −1 −1
−1 0 0 0 ⋯ 0 1 −1
𝑠1 𝑠2 𝑠3 𝑠4 ⋯ 𝑠𝑛−2 𝑠𝑛−1 𝑠𝑛 )

 
 
 
 
 

, 

 

Where 

 
(𝑠1 𝑠2 ⋯ 𝑠𝑛−1 𝑠𝑛) = (0 −𝑢1 −𝑢2 ⋯ 𝑢𝑛−2 1)(𝑥𝐿2). (10) 

 

Now, we refer Equations (5)-(10) to obtain the formulations of 𝑠𝑗 for 𝑗 = 1, 2,⋯ , 𝑛 as follows: 

 

𝑠1     = 𝑢𝑛−2 − 3𝑥 =
𝑞𝑢𝑛−2−3𝑦

𝑞
=
𝑞𝑢𝑛−2+1−3𝑙𝑛+5

𝑞
=
𝑑+5

𝑞
   

𝑠2     = −𝑢1 = 5, 𝑔𝑗 = −(2𝑙𝑗−1 + 𝑙𝑗) so that  

𝑠3     = 𝑢1 − 𝑢2 = (−5) − (𝑞(−5) − 5) = 5𝑞  
𝑠4 = 𝑢1 + 𝑢2 − 𝑢3 = (−5) + (−5𝑞 − 5) − 𝑢3
 = (−5𝑞 − 10) − (𝑞(−5𝑞 − 5) − 5(2)) = 5𝑞2

   

 

 

 

 

(11) 
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𝑠5 = 𝑢2 + 𝑢3 − 𝑢4 = (−5𝑞 − 5) + (−5𝑞
2 − 5𝑞 − 10) − 𝑢4

 = (−5𝑞2 − 10𝑞 − 15) − (𝑞(−5𝑞2 − 5𝑞 − 10) − 5(3)) = 5𝑞3
  

 

And so on, follows the pattern to get inductively that 

 

𝑠𝑗 = 𝑢𝑗−3 + 𝑢𝑗−2 − 𝑢𝑗−1 = 5𝑞
𝑗−2, for 𝑗 = 2, 3, 4, 5,⋯ , 𝑛 − 1. (12) 

 

For the formulation of 𝑠𝑛 , notice that 𝑠𝑛    =     𝑢𝑛−3 + 𝑢𝑛−2 + 𝑥  or 

 
𝑠𝑛 = 𝑞(𝑢𝑛−4 + 𝑢𝑛−3) − 𝑙𝑛−2 − 𝑙𝑛 + 1 − 𝑙𝑛 − 𝑙𝑛−1
 = 𝑞(𝑢𝑛−4 + 𝑢𝑛−3 − 𝑢𝑛−2) + 𝑞𝑢𝑛−2 + 1 − 3𝑙𝑛

 

 

and we focus on using Equation (9) to obtain that 

 

𝑠𝑛 = 5𝑞
𝑛−2 + 𝑑. (13) 

 

Sixthly, since 𝐷 = 𝐿𝐴𝑅 or 𝐴−1 = (𝑅𝐷−1)𝐿, then 

 

𝐴−1 =

(

 
 
 
 
 
 
 
 

1 𝑣2 𝑣3 ⋯ 𝑣𝑛−1
𝑣𝑛
𝑑

0 1 𝑞 𝑞2 ⋯
𝑞𝑛−2

𝑑

0 0 1 𝑞 ⋱
𝑞𝑛−3

𝑑
⋮ ⋮ ⋱ ⋱ ⋱ ⋮

0 0 0 ⋯ 1
−𝑞

𝑑

0 0 0 0 ⋯
1

𝑑 )

 
 
 
 
 
 
 
 

𝐿, 

 

and since 𝐴−1 is also circulant (see Equation (3) ), then the last row of 𝐴−1 is 
1

𝑥𝑑
(𝑠1 𝑠2 ⋯ 𝑠𝑛−1 𝑠𝑛), and 

we may denote 𝐴−1 = 
1

𝑥𝑑
Circ(𝑠𝑛 𝑠1 𝑠2 ⋯ 𝑠𝑛−2 𝑠𝑛−1) and again since 𝑑 =

𝛿

𝑥𝑛−2
, then 

 

𝐴−1 = 
𝑥𝑛−2

𝛿
Circ(𝑠𝑛 𝑠1 𝑠2 ⋯ 𝑠𝑛−2 𝑠𝑛−1). 

 

For simplification, now we write 

 

𝐴−1 = 
1

𝛿
Circ(𝑧1 𝑧2 𝑧3 ⋯ 𝑧𝑛−1 𝑧𝑛), 

 

where 𝑧𝑗 can be formulated using the formula of 𝑠𝑗 and substituting back that 𝑞 =
𝑦

𝑥
 as follows.  We refer to 

Equations (7) and (11)-(14) to complete this proof that  𝑧1 = 𝑥
𝑛−3𝑠𝑛  so 

 

𝑧1 = 𝑥
𝑛−3(5𝑞𝑛−2 + 𝑑) = 𝑥𝑛−3 (5 (

𝑦

𝑥
)
𝑛−2

+
𝛿

𝑥𝑛−2
) =

𝛿 + 5𝑦𝑛−2

𝑥
 

𝑧2 = 𝑥
𝑛−3𝑠1 = 𝑥

𝑛−3 (
𝑑 + 5

𝑞
) = 𝑥𝑛−3 (

𝑥
𝛿
𝑛−2

𝑦
𝑥

) =
𝛿 + 5𝑥𝑛−2

𝑦
.         

 

and for 𝑘 = 3, 4, 5,⋯ , 𝑛, we have 

 

𝑧𝑘 = 𝑥
𝑛−3𝑠𝑘−1 = 𝑥

𝑛−3(5𝑞𝑘−3) = 5𝑥𝑛−3 (
𝑦

𝑥
)
𝑘−3

= 5𝑥𝑛−𝑘𝑦𝑘−3. 
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4 A Theorem of Eigenvalues Formulation 
 

Recall the cyclic group ℋ = {1, 𝛼, 𝛼2,⋯ , 𝛼𝑛−1} from Section 2. All n elements of ℋ geometrically 

occupy the unit circle in the complex plane and divide the circle into n equal parts, then it is very 

clear from the definition of S that for 𝑙 = 1, 2,⋯ , ⌊
𝑛

2
⌋, we have 

 

𝛼𝑙 + 𝛼𝑛−𝑙 = 𝛼𝑙 + 𝛼−𝑙 = 2cos(𝑙𝜃)  and 𝛼𝑙 − 𝛼𝑛−𝑙 = 𝛼𝑙 − 𝛼−𝑙 = 2𝑖 sin(𝑙𝜃) (15) 
 

where 𝜃 =
2𝜋

𝑛
. These equations will be used as an important part in the proof of the following theorem. 

 

Theorem 2. For integer n ≥ 3, let A = Circ(l1, l2,⋯ , ln−1, ln) be the matrix defined in Definition 

1 and for j = 0, 1, 2,⋯ , n − 1, let λj be eigenvalues of A.  If θ =
2π

n
 and m = ⌊

n−1

2
⌋, then λ0 = 2ln +

ln−1 − 3, and for k = 1, 2,⋯ ,m, we have λk = Rk + Cki and λn−k = λk̅̅ ̅ where 
 

𝑅𝑘 = 1+∑(𝑙𝑠+1 + 𝑙𝑛−𝑠+1) cos(𝑠𝑘𝜃)

𝑚

𝑠=1

  and 

𝐶𝑘 =∑(𝑙𝑠+1 + 𝑙𝑛−𝑠+1) sin(𝑠𝑘𝜃)

𝑚

𝑠=1

.                   

 

For the case of n is even, we also include λm+1 = −(ln−1+ 1) and Rk becomes 
 

𝑅𝑘 = 1+ (−1)
𝑘𝑙𝑛
2
+1
+∑(𝑙𝑠+1 + 𝑙𝑛−𝑠+1) cos(𝑠𝑘𝜃)

𝑚

𝑠=1

. 

 

Proof. In this proof, we consider the fact that ℋ is a cyclic group. Based on Equation (2) in Section 2, in the 

context of matrix A here we have 
 

(

  
 

1 1 1 ⋯ 1 1
1 𝛼 𝛼2 ⋯ 𝛼−2 𝛼−1

1 𝛼2 𝛼4 ⋯ 𝛼−4 𝛼−2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1 𝛼−2 𝛼−4 ⋯ 𝛼4 𝛼2

1 𝛼−1 𝛼−2 ⋯ 𝛼2 𝛼 )

  
 

(

 
 
 

𝑙1
𝑙1
𝑙3
⋮
𝑙𝑛−1
𝑙𝑛 )

 
 
 
=

(

 
 
 

𝜆0
𝜆1
𝜆2
⋮

𝜆𝑛−2
𝜆𝑛−1)

 
 
 

 

 

and so by Proposition 1 it is very simple that 
 

𝜆0 =∑𝑙𝑡 = 𝑙𝑛+2 − 3

𝑛

𝑡=1

= 𝑙𝑛 + 𝑙𝑛+1 − 3 = 𝑙𝑛−1 + 2𝑙𝑛 − 3 

 

and for the specific case of n is even, we also have 

𝜆𝑚+1 = 𝜆𝑛
2
=∑𝑙𝑡𝛼

𝑛
2
𝑡

𝑛

𝑡=1

=∑(−1)𝑡𝑙𝑡

𝑛

𝑡=1

= −(𝑙𝑛−1 + 1) 

 

Next, for 𝑘 = 1, 2,⋯ ,𝑚 = ⌊
𝑛−1

2
⌋, consider that 

 

𝜆𝑘 + 𝜆𝑛−𝑘 = ∑ 𝑙𝑡+1(𝛼
𝑡𝑘 + 𝛼𝑡(𝑛−𝑘))

𝑛−1

𝑡=0

= 2𝑙1 +∑ 𝑙𝑡+1(𝛼
𝑡𝑘 + 𝛼−𝑡𝑘)

𝑛−1

𝑡=1

 = 2 +∑𝑙𝑡+1(𝛼
𝑡𝑘 + 𝛼−𝑡𝑘) + ∑ 𝑙𝑡+1(𝛼

𝑡𝑘 + 𝛼−𝑡𝑘)

𝑛−1

𝑡=𝑛−𝑚

𝑚

𝑡=1

 



 
 

 

 
Guritman et al.; J. Adv. Math. Com. Sci., vol. 39, no. 4, pp. 10-23, 2024; Article no.JAMCS.114354 

 

 

 
19 

 

but for the specific case of n is even,  
 

𝜆𝑘 + 𝜆𝑛−𝑘 = 2 +∑𝑙𝑡+1(𝛼
𝑡𝑘 + 𝛼−𝑡𝑘) + ∑ 𝑙𝑡+1(𝛼

𝑡𝑘 + 𝛼−𝑡𝑘)

𝑛−1

𝑡=𝑛−𝑚

𝑚

𝑡=1

+ 2(−1)𝑘𝑙𝑛
2
+1

 

 

Transforming the counter variable:  𝑠 =  𝑡  when 𝑡 =  1, . . . ,𝑚  and 𝑠 =  𝑛 −  𝑡  when 𝑡 =  𝑛 −
 𝑚, . . . , 𝑛 −  1, we have 

 

𝜆𝑘 + 𝜆𝑛−𝑘 = 2 +∑𝑙𝑠+1(𝛼
𝑠𝑘 + 𝛼−𝑠𝑘)

𝑚

𝑠=1

+∑𝑙𝑛−𝑠+1(𝛼
(𝑛−𝑠)𝑘 + 𝛼−(𝑛−𝑠)𝑠)

𝑚

𝑠=1

= 2 +∑(𝑙𝑠+1 + 𝑙𝑛−𝑠+1)

𝑚

𝑠=1

(𝛼𝑠𝑘 + 𝛼−𝑠𝑘)

 

 

and for the case of n is even, 
 

𝜆𝑘 + 𝜆𝑛−𝑘 = 2 + 2(−1)
𝑘𝑙𝑛
2
+1
+∑(𝑙𝑠+1 + 𝑙𝑛−𝑠+1)(𝛼

𝑠𝑘 + 𝛼−𝑠𝑘)

𝑚

𝑠=1

 

 

Then, applying Equation (15), 

 

𝜆𝑘 + 𝜆𝑛−𝑘 = 2(1 +∑(𝑙𝑠+1 + 𝑙𝑛−𝑠+1) cos(𝑠𝑘𝜃)

𝑚

𝑠=1

) 
 

(16) 

 

and when n is even 

 

𝜆𝑘 + 𝜆𝑛−𝑘 = 2(1 + (−1)
𝑘𝑙𝑛
2
+1
+∑(𝑙𝑠+1 + 𝑙𝑛−𝑠+1) cos(𝑠𝑘𝜃)

𝑚

𝑠=1

) 
 

(17) 

 

Analogously, consider that 

 

𝜆𝑘 − 𝜆𝑛−𝑘 = ∑ 𝑙𝑡+1(𝛼
𝑡𝑘 − 𝛼𝑡(𝑛−𝑘))

𝑛−1

𝑡=0

=∑ 𝑙𝑡+1(𝛼
𝑡𝑘 − 𝛼−𝑡𝑘)

𝑛−1

𝑡=1

 = ∑(𝑙𝑠+1 − 𝑙𝑛−𝑠+1)(𝛼
𝑠𝑘 − 𝛼−𝑠𝑘)

𝑚

𝑠=1

 

 

Then, applying Equation (15), 
 

𝜆𝑘 − 𝜆𝑛−𝑘 = 2𝑖∑(𝑙𝑠+1 − 𝑙𝑛−𝑠+1)

𝑚

𝑠=1

sin(𝑠𝑘𝜃) 
 

(18) 

 

Finally, by adding and subtracting of Equations: (16) with (18), and when n is even of Equations: (17) with 

(18), we have 𝜆𝑘 = 𝑅𝑘 + 𝑖𝐶𝑘    and   𝜆𝑛−𝑘 = 𝑅𝑘 − 𝑖𝐶𝑘 where 
 

𝑅𝑘 = 1 +∑(𝑙𝑠+1 + 𝑙𝑛−𝑠+1) cos(𝑠𝑘𝜃)

𝑚

𝑠=1

 and 𝐶𝑘 =∑(𝑙𝑠+1 − 𝑙𝑛−𝑠+1) sin(𝑠𝑘𝜃)

𝑚

𝑠=1

  

 

and for the case of n is even, Rk becomes 

 

𝑅𝑘 = 1 + (−1)
𝑘𝑙𝑛
2
+1
+∑(𝑙𝑠+1 + 𝑙𝑛−𝑠+1) cos(𝑠𝑘𝜃)

𝑚

𝑠=1

. 
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5 Numerical Examples 
 

In this section, we present a simple illustration to figure out how to apply the formulations to compute the 

determinant dan inverse based on Theorem 1 and the eigenvalues based on Theorem 2. Then, by considering 

that illustration, we construct the algorithms. 

 

Example 1. For 𝑛 = 5, we have A = Circ(1,3,4,7,11). Then,  

 

x = 1 − 11 − 7 = −17, y = 9, 
 

and determinant is 

 
δ = (−17)4 − 5(93) − (4 + 11)(90)(−17)3 + (3 + 7)(91)(−17)2 + (1 + 4)(92)(−17)1 = 134446. 

 

For the inverse, A−1 =
1

δ
Circ(z1 , z2 , z3, z5) where 

 

z1 =
δ + 5(93)

−17
= −8123            

z3 = 5(−17)
2(90) = 1445 z5 = 5(−17)

0(92) = 405 

z2 =
δ + 5 × (−17)3

9
= 12209 

z4 = 5(−17)
1(91) = −765,  

 

For the eigenvalues, we have λ0 = 2(11) + 7 − 3 = 26, moreover we obtain λ1 = R1 + C1i, λ4 = λ1̅ and λ2 =
R2 + C2i, λ3 = λ2̅  where 

 

R1 = 1 + (3 + 11) cos
2π

5
+ (4 + 7) cos

4π

5
≈ −3,57 

 

R2 = 1 + 14 cos
4π

5
+ 11 cos

8π

5
≈ −6,93                      

 

C1 = (3 − 11) sin
2π

5
+(4 − 7) sin

4π

5
≈ −9,37   and 

 

C2 = −8 sin
4π

5
−3 sin

8π

5
≈ −1,85                                

 

Example 2. For n = 6, we have A = Circ(1,3,4,7,11,18). Then, we have 

 

λ0 = 2(18) + 11 − 3 = 44, λ3 = −(11 + 1) = −12. 
Moreover, we obtain λ1 = R1 + C1i, λ5 = λ1̅̅ ̅ and λ2 = R2 + C2i, λ4 = λ2̅̅ ̅ where 

 

R1 = 1+ 7(−1) + (3 + 18) cos
2π

6
+ (4 + 11) cos

4π

6
= −3 

R2 = 1+ 7(−1)
2 + 11 cos

4π

6
+ 15 cos

8π

6
= −10                  

C1 = (3 − 18) sin
2π

6
+ (4 − 11) sin

4π

6
≈ −19,05  and                    

C2 = −15 sin
4π

6
− 7 sin

8π

6
≈ −6,93.                                                      

 

From above illustrations, it is easy to see that in the iterative process of computing the determinant, some data 

can be stored for the next process of computing the inverse.  So, the computation process can be done in one 

function and in a parallel way to get very fast and efficient performance. 
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Algorithm 1.  

 

INPUT: L = Circ(𝑙1, 𝑙2,⋯ , 𝑙𝑛−1, 𝑙𝑛) with the entries of Lucas sequences. 

OUTPUT: 𝛿 = det (𝐿) and 𝐿−1 =
1

𝛿
Circ(𝑧1, 𝑧2,⋯ , 𝑧𝑛−1, 𝑧𝑛). 

1.  𝑥 ← 1 − 𝑙𝑛 − 𝑙𝑛−1; 𝑦 ← 𝑙𝑛−1 − 2; 
2.  𝑟 ← 𝑥𝑛−2; 𝛿 ← 𝑥𝑟; 𝑧2 ← 5𝑟; 𝑠 ← 1; 
3.  For 𝑘 = 1 to 𝑛 − 2 do 

𝑡 ← (𝑙𝑛−𝑘−1 + 𝑙𝑛−𝑘+1)𝑟𝑠;  𝛿 ← 𝛿 − 𝑡;  

𝑟 ←
𝑟

𝑥
; 𝑧𝑘+2 ← 5𝑟𝑠; 𝑠 ← 𝑠𝑦;  

         End do; 

4.  𝑢 ← 5𝑠;  𝛿 ← 𝛿 − 𝑢; 𝑧1 ←
𝛿+𝑠

𝑥
;  𝑧2 ←

𝛿+𝑧2

𝑦
; 

5. Return(𝛿, 𝐿−1); 
 

For the eigenvalues, it is also very easy to see that only ⌊
𝑛−1

2
⌋  eigenvalues are computed 

iteratively and all without any complex number arithmetic used.  So, it must be much faster than 

applying the general formula as mentioned in Section 2. 

 

Algorithm 2.  

 

INPUT: A=Circ(𝑙1, 𝑙2,⋯ , 𝑙𝑛−1, 𝑙𝑛) with the entries of Lucas sequences. 

OUTPUT: 𝜆0, 𝜆1,⋯ , 𝜆𝑛−2, 𝜆𝑛−1; the eigenvalues of A. 

1. If (𝑛 𝑚𝑜𝑑 2) = 0 then 𝜆𝑛
2
← ((−1)𝑛−1𝑓𝑛−1 + 1) endif; 

2. 𝜆0 ← (1 − 𝑓𝑛 − 𝑓𝑛−1);𝑚 ← ⌊
𝑛−1

2
⌋ ;  𝜃 ←

2𝜋

𝑛
; 

3. 𝐟𝐨𝐫 𝑘 = 1 to m do 

𝑅 ← 1; 𝐶 ← 0; 𝑆 ← 0; 𝐴 ← 𝑘𝜃;  
𝐟𝐨𝐫 𝑠 = 1 𝐭𝐨 𝑚 𝐝𝐨  

    𝑆 ← 𝑆 + 𝐴; 𝑥 ← (𝑓𝑠+1 + 𝑓𝑛−𝑠+1) cos 𝑆;  𝑅 ← 𝑅 + 𝑥; 
    𝑦 ← (𝑓𝑠+1 − 𝑓𝑛−𝑠+1) sin 𝑆; 𝐶 ← 𝐶 + 𝑦;  
End do; 

If (𝑛 𝑚𝑜𝑑 2) = 0 then 𝑅 ← (𝑅 + (−1)𝑘𝑎𝑛
2
+1) endif; 

𝜆𝑘 ← 𝑅 + 𝐶𝑖; 𝜆𝑛−𝑘 ← 𝑅 − 𝐶𝑖;  
          End do; 

4.  return(𝜆0, 𝜆1,⋯ , 𝜆𝑛−2, 𝜆𝑛−1). 
 

We have already implemented Algorithm 1 and Algorithm 2 by running in MAPLE codes. All the experiments 

were done in the same computation environment and computer specifications. We set the values of n are large 

enough, then we compared the performance Algorithm 1 and Algorithm 2 to the related algorithm built in the 

MAPLE Library via Linear Algebra package. Below we describe some facts as the results of our observations 

from the experimental aspect. 

 

1. Based on our experiments, the implementation of Algorithm 1 is able to compute the determinant and the 

inverse at the same time (in parallel) on the circulant matrices with Lucas number for 𝑛 = 1000 on average 

took only 2.90 seconds by 10 trials. Meanwhile, experiments on the MAPLE Library, we set for only 

relatively much smaller the value of 𝑛 = 100, calculating the inverse on average took 57.67 seconds by 10 

trials. 

2. Algorithm 2 is able to compute the eigenvalues on the circulant matrices with Lucas number for 𝑛 = 500 

on avagare took only 3.74 seconds by 10 trials. Meanwhile, experiments on the MAPLE Library, we set 

only for relatively smaller the value of 𝑛 = 150, calculating the eigenvalues on average took only 17.35 

seconds by 10 trials. 
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6 Conclusions 
 

The formulation for the determinant and inverse of the matrices involving Lucas sequence can be presented in 

one theorem and in a simple way, so an efficient algorithm can be constructed for its perspective computation. 

The method of deriving the formulas is simply using elementary row or column operations. For the eigenvalues, 

the previous formulation from the case of general circulant matrices can be simplified by considering the 

specialty of the Lucas numbers and using cyclic group properties, so the computation can be done efficiently 

without involving any complex number arithmetic, i.e. all complex number eigenvalues are constructed. From 

the implementation facts, algorithms derived from those formulations show much faster than the related 

algorithm built in the MAPLE Library via Linear Algebra package. 

 

The methods in this article should be applicable for any variant of circulant matrices (such as skew or more 

general r-circulant) with any specific formation of numbers (such as Fibonacci, Lucas, Pell, etc.). These would 

become the nearly future works. 

 

Acknowledgements 
 

The author would like to thank all colleagues who have supported us in completing this paper. 

 

Competing Interests 

 
Authors have declared that no competing interests exist. 

 

References 
 

[1] Yu FX, Bhaskasa A, Kumar S, Gong Y, Chong SF. On binary embedding using circulant matrices. 

Journal of Machine Learning Research. 2018;18. 

 

[2] Yu NY. Indistinguishability of compressed encryption with circulant matrices for wireless security. IEEE 

Signal Processing Letters. 2017;24(2): 181-185. 

 

[3] Bueno ACF. Right circulant matrices with geometric progression. International Journal of Applied 

Mathematical Research. 2012; 1(4): 593-603. 

 

[4] Shen SQ, Cen JM, Hao Y. On the determinants and inverses of circulant matrices with Fibonacci and 

Lucas numbers. Applied Mathematics and Computation, EIsevier, 2011:217(23): 9790-9797. 

 

[5] Jiang Z, Gong Y, Gao Y. Invertibility and explicit inverses of circulant-type matrices with k-Fibonacci 

and k-Lucas numbers. Abstract and Applied Analysis. Hindawi Publishing Corporation. 2014;Article ID 

238953.  

Available: http://dx.doi.org/10.1155/2014/238953. 

 

[6] Jiang Z, Li D. The invertibility, explicit determinants, and inverses of circulant and left circulant and 

circulant matrices involving any continuous Fibonacci and Lucas numbers. Abstract and Applied 

Analysis. Hindawi Publishing Corporation. 2014: Article ID 931451.  

Available:http://dx.doi.org/10.1155/2014/931451. 

 

[7] Li J, Jiang Z, Lu F. Determinants, norms, and the spread of circulant matrices with tribonacci and 

generalized Lucas numbers. Abstract and Applied Analysis. Hindawi Publishing Corporation. 2014: 

Article ID 381829.  

Available:http://dx.doi.org/10.1155/2014/381829. 

 

[8] Jiang X, Hong K. Explicit inverse matrices of tribonacci skew circulant type matrices. Applied 

Mathematics and Computation, Eisevier. 2015; 268: 93-102. 



 
 

 

 
Guritman et al.; J. Adv. Math. Com. Sci., vol. 39, no. 4, pp. 10-23, 2024; Article no.JAMCS.114354 

 

 

 
23 

 

 

[9] Jia J, Li S, On the inverse and determinant of general bordered tridiagonal matrices. Applied Mathematics 

and Computation, Eisevier. 2015:69(6):503-509. 

 

[10] Radicic B. On k-circulant matrices (with geometric sequence). Quaestiones Mathematicae. Taylor & 

Francis Online. 2016: 39(1): 135-144. 

 

[11] Bozkurt D, Tam TY. Determinants and inverses of r-circulant matrices associated with a number 

sequence. Linear and Multilinear Algebra, Taylor & Francis Online. 2016; 63(10): 2079-2088. 

 

[12] Bahs M, Solak S. On the g-circulant matrices. Commun. Korean Math. Soc. 2018; 33(3):695-704. 

 

[13] Radicic B. On k-circulant matrices involving the Jacobsthal numbers. Revista de la Union Matematica 

Argentina. 2019;60(2): 431-442. 

 

[14] Bueno CF. On r-circulant matrices with Horadam numbers having arithmetic indices, Notes on Number 

Theory and Discrete Mathematics. 2020; 26(2):177-197. 

 

[15] Liu Z, Chen S, Xu W, Zhang Y. The eigen-structures of real (skew) circulant matrices with some 

applications, Journal Computational and Applied Mathematics. Springer. 2019;38(178). 

 

[16] Wei Y, Zheng Y, Jiang Z, Shon S. Determinants, inverses, norms, and spreads of skew circulant matrices 

involving the product of Fibonacci and Lucas numbers, Journal Mathematics and Computer 

Sciences.2020;20:64-78. 

 

[17] Ma J, Qiu T, He C. A New Method of Matrix Decomposition to Get the Determinants and Inverses of r-

Circulant Matrices with Fibonacci and Lucas Numbers. Journal of Mathematics. Hindawi. 2021; Article 

ID 4782594.  

Available:https://doi.org/10.1155/2021/4782594. 

 

[18] Davis PJ. Circulant Matrices, Wiley, NewYork, 1979. 

 

[19] Aldrovandi R. Special matrices of mathematical physics: stochastic, circulant and Bell matrices, World 

Scientific, Singapore, 2001. 

 

[20] Aliatiningtyas N, Guritman S, Wulandari T. On the Explicit Formula for Eigenvalues, Determinant, and 

Inverse of Circulant Matrices. Jurnal Teori dan Aplikasi Matematika. 2022; 6(3).  

DOI: https://doi.org/10.31764/jtam.v6i3.8616. 

 

[21] Grimaldi RP. Discrete and combinatorial mathematics, 4th Edition, North-Holland Mathematical Library, 

Vol. 16. Addison Wesley Longman Inc., 1999, ISBN: 0-201-30424-4. 

 

[22] Lancaster P, Tismenetski M. The theory of matrices, 2nd ed., Academic Press Inc, 1985. 

__________________________________________________________________________________________ 
© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the 
Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and 

reproduction in any medium, provided the original work is properly cited. 
 

 

 
 

Peer-review history: 

The peer review history for this paper can be accessed here (Please copy paste the total link in your 

browser address bar) 

https://www.sdiarticle5.com/review-history/114354 


