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Abstract: Autism spectrum disorder (ASD) has become one of the most well-known disorders en-
countered since early childhood among people. Nowadays, the main concerns are its high prevalence
and the lack of proper therapeutic interventions. In this way, the necessity of using animal models
that can mimic some of the spectrum symptoms, besides deepening the mechanisms of occurrence, is
undeniable. Oxytocin (OT) is often mentioned and linked to producing social domain improvements.
The goal of the present study was to determine if different time exposures to OT can trigger distinct
behavioral responses in zebrafish, potentially offering insights into autism therapy. To accomplish
this goal, zebrafish were exposed to the same dose of OT (33.2 ng/mL OT) for one week but with
different time frames, such as: continuous exposure for seven days, fifteen minutes per day for seven
days, and every two days for the same amount of time. The behavior of the fish was recorded using
the EthoVision XT 11.5 software, and each trial lasted four minutes. Specific parameters for locomo-
tor activity and aggressive behavior were measured. Overall, zebrafish exposure to OT generated
several improvements in locomotor activity and aggressive behavior. Moreover, the differences in the
exposure period indicated that time is an important factor, showing that continuous exposure to OT
was linked with better performance than exposure to the hormone every two days. At the same time,
the most variable results were observed in the case of fish exposed every day to OT. Exposure to OT
could lead to certain improvements in zebrafish behavior that can be time-sensitive. Nevertheless,
further work is needed in order to investigate the mechanisms of action of OT in an ASD context.

Keywords: oxytocin; autism spectrum disorder; aggressive behavior

1. Introduction

Today, autism spectrum disorder (ASD), which is defined as a complex neurodevel-
opmental condition, is estimated to be closer to 2% of the world population regarding
the rate of diagnosis [1]. Moreover, 1 in 44 children is diagnosed based on three levels
of severity specific to ASD classification, with a higher prevalence among boys (a sex
ratio of one girl per four boys) [1–4]. According to the last edition of the Diagnostic and
Statistical Manual of Mental Disorders (DSM-V, 2013), there are two criteria that are eval-
uated in order to diagnose ASD: persistent deficits in social communication and social
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interaction and restricted, repetitive patterns of behavior, interests, or activities [2]. Even
if it is well known that ASD is mainly caused by genetic mutations, in recent years, the
environmental implications have been highlighted [5–7]. Due to its multifactorial character
and its complexity, ASD requires a high level of attention from authorities, citizens, and
medical specialists. Furthermore, research in this field of ASD was made using animal
models that were capable of developing and sustaining certain autistic traits usually seen in
humans [8–11]. For instance, zebrafish (Danio rerio) is a popular animal model that has been
used almost in every domain of medical research due to its suitability [12–14]. Since its first
use in the 1970s by George Streisinger, zebrafish has contributed to the present knowledge,
mostly because of the advantages it possesses such as a transparent embryo stage, external
fertilization, rapid development, high fecundity, easy genetic manipulation, and a fully
sequenced genome, among others [15,16]. There are numerous reports that describe the
involvement of zebrafish in ASD modeling for mechanisms and therapeutic intervention
studies [10,17]. Zebrafish have a high repertoire of behaviors that are extensively studied,
especially those that are strongly connected to the disorder. In ASD cases, sociability is
the main criteria for developing an adequate animal model. In this way, zebrafish, known
for its sociable character, presents varied social behaviors (shoaling and schooling) that
are exhibited in its group or when it is involved in a new group formation [18–20]. For
the present study, it was chosen to analyze the level of aggression that could be displayed
during or after exposure. This type of behavior has been studied in zebrafish through
numerous experimental tests [21–23]. Furthermore, aggression is often reported in ASD
cases by parents and medical specialists, and consequently, this behavior has a negative
impact on the quality of life of people with autism [24]. It was also outlined that boys are
more predisposed to manifest a certain form of aggression [3,25].

Despite the fact that ASD does not yet have a cure, there are different strategies to
ameliorate the symptoms of autism, including pharmacological and nonpharmacological
ones. The lack of treatment has made it almost impossible to improve these symptoms,
which can be achieved by taking adjustable amounts of antipsychotics, antidepressants,
or other types of drugs. For example, the use of risperidone and aripiprazole (dopamin-
ergic agonists) proved effective in treating impulsivity and aggression [17]. In addition,
for the social symptoms of ASD, the use of oxytocin (OT) was linked to being a good
intervention. Produced in the hypothalamus and released by the pituitary gland in the
bloodstream, OT is a neuropeptide hormone that is implicated in social cognition, social
behaviors, and fear conditioning [26–28]. Synthetized primarily in the neurons of hy-
pothalamus, OT has receptors all over the brain [26]. It was proved that administration of
OT can lead to significant improvements in memory of people diagnosed with Asperger
syndrome (which is an old type of ASD classification) by helping them to reduce repetitive
behaviors, remember human faces, distinguish emotions, or even make speech intonation
modifications [29,30]. Studies using the “Childhood Autism Rating Scale” found that
plasma OT levels are lower in children with ASD compared to those with typical develop-
mental processes. In a physiological condition, OT actions are reflected in bond formation
by facilitating it or in the process of making new social connections that lead to a more
rewarding feeling [31]. In addition, OT is linked to the childbirth process by stimulating
uterine contractions and lactation after childbirth [32]. While OT increases in a physiologi-
cal state, it was demonstrated that this hormone presents lower levels in the mothers of
neurotypical children [33]. Although OT can be used to relieve ASD symptoms, it is not
administered as a therapeutic tool. The lack of research trials and the questionable data
that was already published highlight the necessity of further investigations for its positive
potential. According to a recent review, the level of OT in blood serum tends to be lower
in children with autism [34]. Approaches for using OT on people with ASD started to be
explored in multiple clinical studies. Intranasal administration of OT was chosen to be
the easiest and the most efficient way due to the capacity of neuropeptides to cross the
blood–brain barrier and, consequently, facilitate the path to the brain structures [35–37].
The administration of 0.4 IU (International Units)/kg/dose for three months contributed to
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significant improvements in the behavior of children with ASD and adolescents [38]. Simi-
lar data were published after six weeks of treatment with 24 IU that was associated with
behavioral therapies [39]. The most recent study offered by Guastella et al. that explored
the efficacy, tolerability, and safety of intranasally-administered OT reported certain effects
in young children with autism [40]. Although OT is frequently linked with social domain,
it can influence other brain processes such as memory, fear, adaptive behavior, or anxiety.
A recent study from 2023 concluded that a single dose of OT (24 IU) can manipulate the
acquisition of intrusive memories in healthy young females exposed to an analogue trauma,
but not the consolidation of these memories [41]. The amygdala, the center of emotions,
involved in the acquisition, storage, expression and extinction of fear memories is also
modulated by OT [42,43]. It was proved that OT is capable of reducing amygdala activity
by increasing social interactions and reducing anxiety and fear levels in humans [44,45]. In
rodent models, OT has been associated with improvements in long-lasting spatial memory,
hippocampal synaptic plasticity, and contextual fear memory after administering different
hormone doses [46–48].

Despite mentioning the beneficial impact of OT, there are several reported issues
regarding the standardization or even in respect to the validation of OT measurements
through different methodologies. For instance, measuring the OT levels in human plasma,
saliva, urine, or in cerebrospinal liquid requires a lot of attention from specialists, taking
into account the diversity of assay techniques for quantifying OT [49]. Moreover, according
to Quintana et al., the small sample sizes, the absence of theories that elaborate on more
than OT’s role in social domain, and the inconsistent use of pre-registration are some of
the factors that contributes to the lack of OT reproducibility in experimental research [50].
Besides this, it is important to consider other aspects of OT measurement in peripheral
fluids, such as biological clearance or temporal resolution, performing a correlation with
OT brain concentrations, the potential of OT to bind to other matrix components, and the
possibility of interferants during the process of measurement [51]. Given these particular
“criteria”, animal models have been used to study the effects of different substances on the
OT receptors in humans. Both rodents and fish were involved in replicating OT-influenced
social behaviors within ASD symptomology because of the neuropeptide existence. Long
conserved across evolution, OT has many replacements: isotocin in fish or mesotocin in
reptiles and birds [52]. In zebrafish, the orthologue of OT is linked to increased social
behavior and reduced fear of predators [53,54]. According to Gemmer et al. [55], OT
participates in the process of development and maintenance of zebrafish sociability. This
fact was proven when the two OT receptors (Oxtr and Oxtrl) knocked-out in fish exhibited
impaired social behavior. Moreover, a protective effect of OT was observed when zebrafish
embryos were exposed to valproic acid, given as an inductor for ASD. An amount of
50 µM OT was the most appropriate concentration that determined this effect, which was
correlated with increased expression of shank3a, shank3b, and OT receptor genes [56].

On the other hand, aggression, as antisocial behavior, was mentioned multiple times
in ASD cases as a way to express emotions [24,57,58]. For instance, enhanced aggression
forms against an intruder is a common pattern of maternal behavior that is specific to all
females from the animal kingdom [59–61]. In 2015, Bosch et al. concluded that the release
of OT is more critical for maternal behavior regulation than the differences observed in
brain OT receptors in a rat model [62]. Similar results were reported in 2014 by Sabihi
et al. after a maternal defense test, which explored the brain areas involved in female rats
aggression displayed in postpartum days [63]. Evidence showed that OT is capable of
adjusting zebrafish aggression in different stress conditions by the presence of OT axons in
various brain areas linked to anxiety and aggression [64].

Therefore, the present study intended to investigate the effect of OT on zebrafish
locomotor activity and aggressive behavior. Continuous exposure for fifteen minutes every
day and fifteen minutes every two days at the same dose (33.2 ng/mL) was selected to
evaluate the OT impact on zebrafish.
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2. Materials and Methods
2.1. Animals

Animals were purchased and accommodated in the facility for a period of three weeks.
For this study, a total of 150 zebrafish (Danio rerio, WT AB, 6–7 months, sex ratio 1:1)
were used. Fish were subjected to 14:10 h light–dark at a constant temperature of 26
± 0.5 ◦C. The water from housing and experimental tanks was changed daily to avoid
the accumulation of organic products, along with the quality parameters (a pH of 7.5, a
dissolved oxygen index of 7.20 mg/L, conductivity of 551 µS/cm, and ammonia of 0.05
mg/L) [65,66]. Fish were fed twice a day with the special formula of TetraMin flakes. This
study followed the requirements set by the Commission of the European Union and the Di-
rective of the European Parliament of the 22 September 2010 Council [67,68]. Consequently,
this study was approved by the Ethics Commission of the Faculty of Biology with full
No. 1272/19.05.2023.

2.2. Chemicals

Oxytocin was purchased in liquid form from the Pasteur company (Filipesti, Romania).
The dose of OT was determined by studying the existing literature and set at 33.2 ng/mL [56,69].
The compound was directly dissolved in the medium by adding a certain amount of OT to the
system water. The water was changed daily, and OT was added where that was the case.

2.3. Behavioral Test Procedure

Before exposure to OT, zebrafish were randomly divided and acclimated in experi-
mental tanks for 1 week. Then, four groups were established: control and three groups
with different time exposure to OT as continuous (CON_OT), fifteen minutes (15M_OT),
and every two days (2D_OT) exposure for an experimental period of seven days (Figure 1).
The control group was established to assure that all the behavioral changes were caused by
OT exposure and no other factors (environmental factors, for instance). Also, this group
simulated OT exposure every day by changing the medium in order to be replaced with
a fresh one. The same method was applied for the group with continuous exposure to
OT. Each group had 10 animals. Except for the fish with continuous exposure, the other
two groups were transferred to another tank and exposed in a similar manner to the pre-
vious group to OT for fifteen minutes every day or every two days. To record the initial
behavior before exposure to OT, locomotor activity and aggression tests were conducted.
After this phase, fish were exposed to OT according to the protocol and tested on the third,
fifth, and last day of the experiment. At the end of the study, the fish were sacrificed by
immersion in iced water, according to the procedures of the European Union [67].
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Figure 1. The exposure protocol to oxytocin and testing diagram. Fish were exposed to three different
time frames for oxytocin: continuous (CON_OT group), fifteen minutes every day (15M_OT group),
and fifteen minutes every two days (2D_OT group). Also, a control group was added (the CTRL group).
The behavioral testing was scheduled for D_0, known to be the initial behavioral evaluation, and the
third, fifth, and seventh days for compound effect quantification. D stands for day and T for testing.
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2.3.1. The Locomotor Activity Test

The locomotor activity test was assayed using the cross maze provided by Noldus
Company that accompanied the EthoVision XT 11.5 software (Wageningen, Netherlands).
The cross maze was transformed into a T-maze and divided into three arms as left, right,
and center. A start point was established in the center arm, while the decision point was
selected to be at the arms intersection (Figure 2). This test was performed in order to
observe the changes that occurred in the zebrafish locomotion parameters. For this aim,
several parameters were chosen, such as the total distance traveled, average swimming
velocity, time spent inactive, clockwise and counter clockwise rotations, angular velocity,
meander, and turn angle. Each trial consisted of a four minute recording that was further
analyzed in real time through the behavioral software.
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Figure 2. The representation of locomotor activity test performed during the study to assess the
changes that occurred after oxytocin exposure.

2.3.2. The Aggression Test

To analyze the intensity of the aggression behavior of the zebrafish treated with OT,
an aggression test was performed. For this test, the same experimental maze was used
but adapted in order to measure the targeted behavior. To trigger the specific behavior,
a mirror was added to the left arm as stimulus (Figure 3). The existing literature often
mentions the use of a mirror as a tool to observe the zebrafish’s aggression, due to the
fact that the fish is not able to recognize its reflection in the mirror and therefore treats it
as a possible opponent [22,23]. The time spent by the fish in the arms of the maze was
measured, especially the time spent in the left arm in the area dedicated to the mirror. This
behavior was recorded for a period of four minutes using the EthoVision XT 11.5 software.
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2.4. Quantification of Behavior and Statistical Analysis

All the behavioral data were analyzed by the Shapiro–Wilk test to check the normality
of data distribution. When this assumption was satisfied, a one-way analysis of variance
(ANOVA) followed by the Tukey’s test evaluated the differences recorded between the vari-
ables. The p value was set at 0.05, and all the values below it indicated statistical significance.
All results were presented as mean ± standard error of the mean (SEM). Data processing
and sorting have been achieved through the Excel spreadsheets from the Microsoft Office
Professional Plus 2018 package (Microsoft Corporation, Redmond, WA, USA). The statistical
processing and graphical representation of the results were carried out using the OriginPro
11.5 software, 2021 (OriginLab Corporation, Northampton, MA, USA).

3. Results
3.1. Oxytocin Has Time-Dependent Effects on Zebrafish Locomotion

The first parameter measured for locomotor activity was the total distance traveled by
the fish during the trials. There were no significant changes in this parameter values for CTRL
and the group exposed continuously to OT (p = 0.31 and p = 0.19 ANOVA, Tukey’s test). In
contrast, the group exposed to 15 min every day showed an increase in the distance traveled
in the third day compared to the initial behavior (1552.2 ± 63.1 cm vs. 1359.7 ± 26.7 cm,
p = 0.03 ANOVA, Tukey’s test) (Figure 4). While the fish exposed every day for fifteen
min to OT returned to similar activity as that seen in the pretreatment stage, the fish that
received the hormone every two days exhibited a decrease in the distance traveled: D_3
(1351.1 ± 75.1 cm), D_5 (1437.8 ± 69.2 cm), and D_7 (1390.1 ± 47.7 cm), compared to the
initial data: 1601.8 ± 118.1 cm (p > 0.05 ANOVA). No significant changes were noted for the
average velocity parameter of the zebrafish groups (p > 0.05 ANOVA) (Figure 5).
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D stands for day and OT for oxytocin, gray line: control (CTRL), red line: continuous exposure
to OT (CON_OT), blue line: fifteen min exposure every day (15M_OT), green line: fifteen min expo-
sure every two days (2D_OT). The data are expressed as mean ± SEM (n = 10); p > 0.05 ANOVA and
compared to the results from D_0 that were set as the initial behavior of each experimental group.

In regard to the time spent moving, the fish did not present any important modifi-
cations after exposure to OT (p > 0.05 ANOVA). As can be seen from Figure 6, the most
inactive group was the control that simulated exposure to OT, while the OT groups exhib-
ited different trends. For instance, 15 min of daily exposure led to a short time decrease
in the inactivity time (7.2 ± 0.4 s, p = 0.07 ANOVA, Tukey’s test) when comparing the
initial behavior (8.7 ± 0.4 s) with the other two testing days: D_5: 9.3 ± 0.3 s (p = 0.005
ANOVA, Tukey’s test) and D_7: 9 ± 0.4 s (p = 0.02 ANOVA, Tukey’s test). On the other
hand, the last group that received OT every two days did not display any significant effect
of the compound, being less inactive for the majority of time except for D_3 (7.9 ± 0.8 s,
p = 0.56 ANOVA, Tukey’s test) vs. initial behavior (6.1 ± 1.03 s) (Figure 6).
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Figure 6. The inactive time of the experimental groups during the locomotor activity test. D stands for
day and OT for oxytocin, gray line: control (CTRL), red line: continuous exposure to OT (CON_OT),
blue line: fifteen min exposure every day (15M_OT), green line: fifteen min exposure every two days
(2D_OT). The data are expressed as mean ± SEM (n = 10); p > 0.05 ANOVA and compared to the
results from D_0 that were set as the initial behavior of each experimental group.
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Clockwise rotations (right-hand) were generally similar to the initial behavior for the
control fish and for the group exposed continuously to OT (p = 0.57, respectively, p = 0.86
ANOVA). Although no important effects were observed for the CON_OT group, 15M_OT
exhibited a lower number of rotations in all the experimental days (D_3: 7.6 ± 0.7, p = 0.001
ANOVA, Tukey’s test; D_5: 9.6 ± 0.9, p = 0.02 ANOVA, Tukey’s test; D_7: 8 ± 0.7 p = 0.002
ANOVA, Tukey’s test), when compared to the initial behavior (15.2 ± 2.1) (Figure 7). Regarding
the last group rotations, this parameter recorded a significant value for D_3 (15 ± 1.5, p = 0.03
ANOVA, Tukey’s test) vs. CTRL (8.2 ± 1.6), with no more changes until the end of the study.
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Figure 7. The number of clockwise rotations made by the experimental groups during the locomotor
activity test. D stands for day and OT for oxytocin, gray line: control (CTRL), red line: continuous
exposure to OT (CON_OT), blue line: fifteen min exposure every day (15M_OT), green line: fifteen
min exposure every two days (2D_OT). The data are expressed as mean ± SEM (n = 10); * p < 0.05,
** p < 0.01 ANOVA, Tukey is significant compared to the results from D_0 that were set as the initial
behavior of each experimental group.

When the counter clockwise rotations (left-hand) were measured, the CTRL, CON_OT,
and 2D_OT presented a similar activity to the right-hand rotations (p = 0.98, p = 0.32,
respectively, p = 0.45 ANOVA). The number of rotations for the 15M_OT group decreased
significantly when compared to the initial behavior (15.8 ± 1.8) vs. D_3: 6.2 ± 0.6,
p = 0.0001 ANOVA, Tukey’s test; D_5: 6.4 ± 0.8, p = 0.0001 ANOVA, Tukey’s test; D_7:
5.4 ± 0.49, p = 0.0001 ANOVA, Tukey’s test) (Figure 8).

Brain Sci. 2024, 14, x FOR PEER REVIEW 9 of 20 
 

= 0.0001 ANOVA, Tukey’s test; D_5: 6.4 ± 0.8, p = 0.0001 ANOVA, Tukey’s test; D_7: 5.4 ± 
0.49, p = 0.0001 ANOVA, Tukey’s test) (Figure 8). 

 
Figure 8. The number of counter clockwise rotations made by the experimental groups during the 
locomotor activity test. D stands for day and OT for oxytocin, gray line: control (CTRL), red line: 
continuous exposure to OT (CON_OT), blue line: fifteen min exposure every day (15M_OT), green 
line: fifteen min exposure every two days (2D_OT_). The data are expressed as mean ± SEM (n = 
10); **** p < 0.001 ANOVA, Tukey is significant compared to the results from D_0 that were set as 
the initial behavior of each experimental group. 

The meander parameter, an indicator of swimming pattern, did not reveal important 
OT effects on zebrafish. As is shown in Figure 9, the CTRL and CON_OT groups had an 
almost linear trend with no observable activity alternations (p = 0.23 and p = 0.47 
ANOVA). Significantly more changes occurred for the 15M_OT fish that express a de-
crease in D_3 (439.5 ± 25.9°/cm, p = 0.0001 ANOVA, Tukey’s test), followed by D_5 (579.5 ± 
11.7°/cm, p = 0.02 ANOVA, Tukey’s test) in comparison to D_0 (675.1 ± 35.9°/cm) (Figure 
9). An opposite activity was presented by the 2D_OT fish that recorded a high peak in 
D_3 (630.2 ± 53.5°/cm, p = 0.03 ANOVA, Tukey’s test) vs. D_0 (445.9 ± 59.6°/cm). In the 
end, the fish returned to their normal state, as shown by the natural behavior in D_0 
(Figure 9). 

 
Figure 9. The meander parameter of the experimental groups during the locomotor activity test. D 
stands for day and OT for oxytocin, gray line: control (CTRL), red line: continuous exposure to OT 
(CON_OT), blue line: fifteen min exposure every day (15M_OT), green line: fifteen min exposure 
every two days (2D_OT). The data are expressed as mean ± SEM (n = 10); * p < 0.05 and **** p < 0.01 
ANOVA, Tukey is significant compared to the results from D_0 that were set as the initial behavior 
of each experimental group. 

Figure 8. The number of counter clockwise rotations made by the experimental groups during
the locomotor activity test. D stands for day and OT for oxytocin, gray line: control (CTRL), red
line: continuous exposure to OT (CON_OT), blue line: fifteen min exposure every day (15M_OT),
green line: fifteen min exposure every two days (2D_OT_). The data are expressed as mean ± SEM
(n = 10); **** p < 0.001 ANOVA, Tukey is significant compared to the results from D_0 that were set as
the initial behavior of each experimental group.
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The meander parameter, an indicator of swimming pattern, did not reveal important
OT effects on zebrafish. As is shown in Figure 9, the CTRL and CON_OT groups had an
almost linear trend with no observable activity alternations (p = 0.23 and p = 0.47 ANOVA).
Significantly more changes occurred for the 15M_OT fish that express a decrease in D_3
(439.5 ± 25.9◦/cm, p = 0.0001 ANOVA, Tukey’s test), followed by D_5 (579.5 ± 11.7◦/cm,
p = 0.02 ANOVA, Tukey’s test) in comparison to D_0 (675.1 ± 35.9◦/cm) (Figure 9). An oppo-
site activity was presented by the 2D_OT fish that recorded a high peak in D_3
(630.2 ± 53.5◦/cm, p = 0.03 ANOVA, Tukey’s test) vs. D_0 (445.9 ± 59.6◦/cm). In the end, the
fish returned to their normal state, as shown by the natural behavior in D_0 (Figure 9).
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Figure 9. The meander parameter of the experimental groups during the locomotor activity test.
D stands for day and OT for oxytocin, gray line: control (CTRL), red line: continuous exposure to OT
(CON_OT), blue line: fifteen min exposure every day (15M_OT), green line: fifteen min exposure
every two days (2D_OT). The data are expressed as mean ± SEM (n = 10); * p < 0.05 and **** p < 0.01
ANOVA, Tukey is significant compared to the results from D_0 that were set as the initial behavior of
each experimental group.

A significant effect triggered by the OT in the group exposed daily for 15 min was
recorded for the turn angle parameter. Compared to the initial behavior (22.6 ± 1.35 ◦), the rate
of turn decreased for all the experimental days as follows: D_3 (11.8 ± 0.7◦, p = 0.0001 ANOVA,
Tukey’s test), D_5 (15.5 ± 0.5◦, p = 0.0001 ANOVA, Tukey’s test), and D_7 (15.02 ± 0.7◦,
p = 0.0001 ANOVA, Tukey’s test) (Figure 10). In contrast, the 2D_OT group exhibited an
increase in turning rate on D_3 (20.2 ± 1.1◦, p = 0.0001 ANOVA, Tukey’s test) compared to
D_0 (14.1 ± 0.35◦) and the activity on the other experimental days (Figure 10). There were no
changes for the CTRL and CON_OT groups (p = 0.95 and p = 0.63 ANOVA).



Brain Sci. 2024, 14, 203 10 of 19

Brain Sci. 2024, 14, x FOR PEER REVIEW 10 of 20 
 

A significant effect triggered by the OT in the group exposed daily for 15 min was 
recorded for the turn angle parameter. Compared to the initial behavior (22.6 ± 1.35 °), the 
rate of turn decreased for all the experimental days as follows: D_3 (11.8 ± 0.7°, p = 0.0001 
ANOVA, Tukey’s test), D_5 (15.5 ± 0.5°, p = 0.0001 ANOVA, Tukey’s test), and D_7 (15.02 ± 
0.7°, p = 0.0001 ANOVA, Tukey’s test) (Figure 10). In contrast, the 2D_OT group exhibited 
an increase in turning rate on D_3 (20.2 ± 1.1°, p = 0.0001 ANOVA, Tukey’s test) compared 
to D_0 (14.1 ± 0.35°) and the activity on the other experimental days (Figure 10). There 
were no changes for the CTRL and CON_OT groups (p = 0.95 and p = 0.63 ANOVA). 

 
Figure 10. The turn angle parameter of the experimental groups during the locomotor activity test. 
D stands for day and OT for oxytocin, gray line: control (CTRL), red line: continuous exposure to 
OT (CON_OT), blue line: fifteen min exposure every day (15M_OT), green line: fifteen min expo-
sure every two days (2D_OT). The data are expressed as mean ± SEM (n = 10); **** p < 0.01 ANOVA, 
Tukey is significant compared to the results from D_0 that were set as the initial behavior of each 
experimental group. 

Finally, to complete the swimming pattern of the fish, angular velocity was also 
measured. Similar to the previous parameter, the activity of the fish exposed daily for 15 
min indicated a reduction in the angular velocity values as compared to D_0 (1358.4 ± 
81.3°/s) for D_3 (713.9 ± 45.1°/s, p = 0.0001 ANOVA, Tukey’s test), D_5 (930.8 ± 30.2°/s, p = 
0.0001 ANOVA, Tukey’s test), and D_7 (901.7 ± 47.1°/s, p = 0.0001 ANOVA, Tukey’s test) 
(Figure 11). The group exposed to OT every two days had, for the majority of the time, 
similar activity to that of D_0 (843.2 ± 21.3°/s), except for the third day (1214 ± 68.7°/s, p = 
0.0001 ANOVA, Tukey’s test), which recorded an important increase, as can be seen in 
Figure 11. 

 
Figure 11. The angular velocity of the experimental groups during the locomotor activity test. D 
stands for day and OT for oxytocin, gray line: control (CTRL), red line: continuous exposure to OT 

Figure 10. The turn angle parameter of the experimental groups during the locomotor activity test.
D stands for day and OT for oxytocin, gray line: control (CTRL), red line: continuous exposure to OT
(CON_OT), blue line: fifteen min exposure every day (15M_OT), green line: fifteen min exposure
every two days (2D_OT). The data are expressed as mean ± SEM (n = 10); **** p < 0.01 ANOVA,
Tukey is significant compared to the results from D_0 that were set as the initial behavior of each
experimental group.

Finally, to complete the swimming pattern of the fish, angular velocity was also measured.
Similar to the previous parameter, the activity of the fish exposed daily for 15 min indicated
a reduction in the angular velocity values as compared to D_0 (1358.4 ± 81.3◦/s) for D_3
(713.9 ± 45.1◦/s, p = 0.0001 ANOVA, Tukey’s test), D_5 (930.8 ± 30.2◦/s, p = 0.0001 ANOVA,
Tukey’s test), and D_7 (901.7 ± 47.1◦/s, p = 0.0001 ANOVA, Tukey’s test) (Figure 11). The
group exposed to OT every two days had, for the majority of the time, similar activity to that
of D_0 (843.2 ± 21.3◦/s), except for the third day (1214 ± 68.7◦/s, p = 0.0001 ANOVA, Tukey’s
test), which recorded an important increase, as can be seen in Figure 11.
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Figure 11. The angular velocity of the experimental groups during the locomotor activity test. D
stands for day and OT for oxytocin, gray line: control (CTRL), red line: continuous exposure to OT
(CON_OT), blue line: fifteen min exposure every day (15M_OT), green line: fifteen min exposure
every two days (2D_OT). The data are expressed as mean ± SEM (n = 10); **** p < 0.01 ANOVA,
Tukey is significant compared to the results from D_0 that were set as the initial behavior of each
experimental group.
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3.2. Oxytocin Triggers Aggressiveness in Zebrafish

In addition to the locomotor activity observations, the experimental groups were
subjected to the aggression test, which evaluated the intensity of this behavior among the
fish (Figure 12).
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Figure 12. The time spent in the maze areas of the experimental groups, control (CTRL), continuous
exposure to OT (CON_OT), fifteen min exposure every day (15M_OT), and fifteen min exposure
every two days (2D_OT), during the aggression test by heatmap representations. D stands for day
and OT for oxytocin. D_0 was considered as initial behavior.

In line with this, the time spent in the left arm was quantified, and its graphical
representation is shown in Figure 13. It seems that OT had decreased the time spent
in the left arm of the 15M_OT (32.1 ± 4.9 s, p = 0.01 ANOVA, Tukey’s test) and 2D_OT
(16.8 ± 5.3 s, p = 0.003 ANOVA, Tukey’s test) groups after the first three days of exposure
compared to the natural behavior observed in D_0 (68.4 ± 9.1 s and 66.9 ± 2.8 s). In
addition, the CON_OT group revealed an increase in the time spent next to the stimulus in
D_5 (106.8 ± 10.7 s, p = 0.04 ANOVA, Tukey’s test) vs. D_0 (65.8 ± 15.3 s). There were no
significant results for the CTRL group (p = 0.16 ANOVA).
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Figure 13. The time spent in the left arm by the experimental groups during the aggression test.
D stands for day and OT for oxytocin, gray: control (CTRL), red: continuous exposure to OT
(CON_OT), blue: fifteen min exposure every day (15M_OT), green: fifteen min exposure every two
days (2D_OT). The data are expressed as mean ± SEM (n = 10); * p < 0.05, ** p < 0.01 ANOVA,
Tukey is significant compared to the results from D_0 that were set as the initial behavior for each
experimental group.
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In addition to the time spent in the left arm, the time in the right, center, and decision
point of the experimental groups were also measured. In Figures 14 and 15, it can be
seen that the time spent in the right and center arms of the maze by the fish did not reach
significance according to ANOVA.

Brain Sci. 2024, 14, x FOR PEER REVIEW 12 of 20 
 

(CON_OT), blue: fifteen min exposure every day (15M_OT), green: fifteen min exposure every two 
days (2D_OT). The data are expressed as mean ± SEM (n = 10); * p < 0.05, ** p < 0.01 ANOVA, Tukey 
is significant compared to the results from D_0 that were set as the initial behavior for each ex-
perimental group. 

In addition to the time spent in the left arm, the time in the right, center, and decision 
point of the experimental groups were also measured. In Figures 14 and 15, it can be seen 
that the time spent in the right and center arms of the maze by the fish did not reach sig-
nificance according to ANOVA. 

 
Figure 14. The time spent in the right arm by the experimental groups during the aggression test. D 
stands for day and OT for oxytocin, gray: control (CTRL), red: continuous exposure to OT 
(CON_OT), blue: fifteen min exposure every day (15M_OT), green: fifteen min exposure every two 
days (2D_OT). The data are expressed as mean ± SEM (n = 10) and compared to D_0 that were set as 
the initial behavior for each experimental group. 

 
Figure 15. The time spent in the center arm by the experimental groups during the aggression test. 
D stands for day and OT for oxytocin, gray: control (CTRL), red: continuous exposure to OT 
(CON_OT), blue: fifteen min exposure every day (15M_OT), green: fifteen min exposure every two 
days (2D_OT). The data are expressed as mean ± SEM (n = 10) and compared to D_0 that were set as 
the initial behavior for each experimental group. 

The time spent in the decision point arm did not reveal too many changes, except for 
the ones from the 2D_OT group. Consequently, the fish’s activity in this area had de-
creased in D_3 (15.8 ± 4.8 s, p = 0.0001 ANOVA, Tukey’s test) and D_7 (21.6 ± 1.4 s, p = 

Figure 14. The time spent in the right arm by the experimental groups during the aggression test.
D stands for day and OT for oxytocin, gray: control (CTRL), red: continuous exposure to OT
(CON_OT), blue: fifteen min exposure every day (15M_OT), green: fifteen min exposure every
two days (2D_OT). The data are expressed as mean ± SEM (n = 10) and compared to D_0 that were
set as the initial behavior for each experimental group.
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Figure 15. The time spent in the center arm by the experimental groups during the aggression test.
D stands for day and OT for oxytocin, gray: control (CTRL), red: continuous exposure to OT
(CON_OT), blue: fifteen min exposure every day (15M_OT), green: fifteen min exposure every
two days (2D_OT). The data are expressed as mean ± SEM (n = 10) and compared to D_0 that were
set as the initial behavior for each experimental group.

The time spent in the decision point arm did not reveal too many changes, except for
the ones from the 2D_OT group. Consequently, the fish’s activity in this area had decreased
in D_3 (15.8 ± 4.8 s, p = 0.0001 ANOVA, Tukey’s test) and D_7 (21.6 ± 1.4 s, p = 0.0001
ANOVA, Tukey’s test) vs. D_0 (42.1 ± 2.1 s), when the fish tended to spend more time
before choosing their swimming direction (Figure 16).
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D stands for day and OT for oxytocin, gray: control (CTRL), red: continuous exposure to OT (CON_OT),
blue: fifteen min exposure every day (15M_OT), green: fifteen min exposure every two days (2D_OT).
The data are expressed as mean ± SEM (n = 10); **** p < 0.01 ANOVA, Tukey is significant compared to
the results from D_0 that were set as the initial behavior for each experimental group.

4. Discussion

This work presents, for the first time, the effects triggered by different periods of
exposure to OT in zebrafish. It was shown that continuous exposure to OT for seven days
does not lead to significant changes in zebrafish locomotion and aggression levels. On
the other hand, exposure to fifteen minutes per day for seven days exhibited increases
for almost all the locomotor parameters studied, while exposure every two days pointed
out opposite effects. Being a hypothalamic neuroendocrine peptide, OT actions have been
described in numerous research studies, especially for its main implication in the social
domain [26]. Many animal models were used in determining the mechanism of OT in the
brain and its established connections with other brain cells and molecules. For instance,
OT receptors can interact with the neurotransmitter system. When it is communicating
with dopaminergic neurons, it favors the process of bond formation and interaction, which
sparks the sensory and reward processes [56]. The OT controls the release of serotonin,
another hormone engaged in stress control, anxiety, and social activity, while this hormone
plays a similar role in encouraging OT release [70,71]. Known to be implicated more in
the social domain, OT has been tested multiple times in zebrafish experiments. Exposure,
administration, or evaluation of exogenous/endogenous OT indicated that it intervenes in
the regulation of social and anxiety behavior in larval and adult zebrafish [54]. Recently, it
was shown that OT receptors might be manipulated by age or by the social context of the
fish, leading to different responses which cannot be pro- or antisocial [55].

This study aimed to evaluate if the duration of exposure can promote different re-
sponses in zebrafish activity. The first parameter studied for locomotor activity was the
total distance traveled, which showed the most significant activity on the third day of
the study for the group that received OT for fifteen minutes every day. The same can-
not be said in the case of the fish exposed every two days to the hormone. While it
recorded the highest distance in the pretreatment after just two doses of OT, the distance de-
creased considerably, a trend that was maintained until the end of the experimental period.
Chuang et al. explored the role of OT in zebrafish by testing in three different environments,
which were considered as stressful factors. The total distance swum during the novel
tank diving test recorded a decrease when fish were staying in acidic water compared
to double-ionized and high-ammonia environments. In addition, the tissues of zebrafish
were evaluated through PCR, and a 38% increase and 58% decrease, respectively, in oxyrl
expression were observed following the one-week treatment [64].



Brain Sci. 2024, 14, 203 14 of 19

Regarding the time spent moving, the fish treated continuously and every day with
OT tended to explore more of the maze compared to the activity observed in the initial
behavior, while the last group recorded an increase in the time spent inactive. The exposure
to L-368,899, an antagonist of OT receptors, proved that zebrafish locomotion was not
affected, with no difference between the control and treated group. At the same time, the
fish treated with the OT antagonist demonstrated a reduction in the time spent next to the
conspecifics during social testing [54].

Another set of parameters that provided interesting results were the clockwise and
counterclockwise rotations. In general, a higher number of rotations is associated with
altered behavior by the repetitive or sequential character offered by the compound’s
presence. In this study, fish exposed every day for fifteen minutes to OT revealed a
reduction in the number of rotations, regardless of their type. Also, meander, turn angle,
and angular velocity were investigated for describing the swimming pattern of the fish.
These parameters express data about direction, the angle of fish head rotation, and the
amplitude of movement. At the end of the study, OT-treated fish showed a decreased level
of meandering, which suggests that hormone exposure had no a negative impact. A larger
meander is linked with erratic movements, according to several studies where a neurotoxic
impact was seen in zebrafish swimming patterns [72,73]. In humans, improvements
in social and repetitive behaviors were observed after the administration of 24 IU OT
once a day for four days and twice a day for six weeks [74,75]. When discussing OT
involvement during the perinatal period, it was exhibited that alterations in OT could be
reflected in suckling, child–mother bond establishment, or even in the first social reactions
proposed as early signs for ASD [76]. The OT hormone can also act on the brain-derived
neurotrophic factor (BDNF), according to some rodent studies, by increasing its expression
in the hippocampus, which is further linked to brain plasticity that is essential for memory
and learning [77,78]. Furthermore, Bukatova et al. observed that early exposure to OT can
disturb the precursor and the mature forms of BDNF in male rat hippocampus [78].

Antisocial behaviors are often one of the common symptoms reported in ASD cases [24,58].
Genetically predisposed or environmentally induced aggression is associated with negative
outcomes that, in general, perturb the lives of people with autism and those around them. There
are findings that indicate that certain brain areas and connections are strongly correlated with
the appearance of aggression. Reduced activity of the prefrontal cortex, lesions, or neuronal
alterations were associated with violent aggression [79,80]. Malik et al. [81] described the
involvement of specific OT receptor gene variants in the development or expression of this
behavior and proved the tendency of males to manifest a higher risk for aggression. In line
with this, Zhang et al. reported in 2018 on a Chinese male cohort that the OT receptor gene
variant (rs237885) was significantly linked to increased risk of aggression and was sustained by
childhood physical abuse as a result of its interaction [82]. In humans, the administration of OT
offers controversial responses based on the existing literature. For example, acute administration
of 24 IU OT to healthy male adults did not show any effect on aggressive behavior evaluated
through “Point Subtraction Aggression Paradigm” at 30 min prior and 30, 60, and 90 min
post-dose [83]. Previous studies indicated that OT can control zebrafish behavior in normal
and stressful conditions [64]. A recent paper suggested the implication of this hormone in
the development of the social behaviors in zebrafish when one OT receptor was knocked out.
Moreover, it appears that the remaining receptors replaced the receptor’s activity by enhancing
the formation of social responses, concomitantly leading to an elevated preference [55]. Also, the
findings of Nunes et al. [84] revealed that the perturbation of OT receptors in the early stages of
development can lead to a loss in dopaminergic neurons in zebrafish, and later, in the adult stage,
they experienced an altered social response. Defective social decision making and decreased
sociability were the main observations [84]. After zebrafish were kept in double-deionized water
for one week in a generated stress environment, it was discovered that fish were presenting
substantially more OT neurons than those from the control group [64].

Multiple lines of genetically modified animal models were used to study the relationship
between OT and behavioral consequences. The first study, which assessed the OT alterations
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that resulted in social recognition memory deficits in a mouse model, also concluded the
existence of different neural bases for social regulation [85]. Regarding the aggressive behavior
of zebrafish, the present study recorded different effects depending on the exposure time.
For instance, the intensity of aggression decreased significantly for the groups exposed only
for fifteen minutes to OT in the first three days of exposure, but this was a short time effect.
At the end of exposure, fish had demonstrated different trends; except for the fifteen group
that received OT every day, the other groups maintained an elevated level in terms of time
spent next to the stimulus. Evidence shows that early exposure to OT can contribute to an
increase in mirror attacks per minute in zebrafish larvae treated with 50 µM OT for 24 and
48 h, respectively, at 100 µM OT for 24 h [56]. The current study highlights the importance
of knowing the suitable duration of a treatment, and, in this context, it was indicated that
OT exposure for just fifteen minutes for one week led to significant improvements in the
swimming activity of zebrafish. In addition, aggression observed in zebrafish was time-
dependent; continuous exposure to OT promoted a rise in this behavior when fish met the
mirror in comparison to the initial behavior or even to the other groups. More evidence is
required to establish the involvement of OT in zebrafish behavior when it comes to the type
of administration, dosage, stage of development, and so on.

4.1. Limitations

While the current study sheds light on the potential of OT in modulating behavior in
zebrafish, several limitations must be acknowledged. Firstly, the applicability of findings
from zebrafish to humans is not straightforward due to inherent species-specific differences
in neurobiology and behavior. Caution must be exercised in extrapolating these results
to the context of human ASD. Additionally, our investigation was confined to a single
dosage and varied exposure durations. Different dosages might produce distinct behavioral
outcomes, necessitating further exploration. Moreover, this study’s focus on locomotor and
aggressive behaviors leaves out other crucial behaviors related to ASD, particularly social
interaction and anxiety-like behaviors. Lastly, the underlying neurobiological mechanisms
by which OT influences these behaviors in zebrafish remain unexplored, presenting a gap
in our understanding of its therapeutic potential in ASD.

4.2. Future Research

Future research directions should aim to address the limitations noted. Cross-species
studies involving other animal models, and eventually human subjects, are imperative
for validating the efficacy and safety of OT in ASD therapy. Investigating the impact of
varying OT dosages and exposure durations on a broader spectrum of zebrafish behaviors
could provide a more comprehensive understanding of its therapeutic window. The
inclusion of assays that mimic ASD symptoms more closely, like social interaction and
anxiety-related behaviors, would enhance the relevance of the findings to ASD. Integrating
neurobiological approaches, such as brain imaging or neurochemical analyses, could
unravel the mechanisms underlying OT’s behavioral effects. This might involve studying
changes in neurotransmitter systems or gene expression patterns following OT treatment.
Additionally, long-term studies on the effects of OT exposure on neurological development
and behavior in zebrafish are needed. Such investigations would offer critical insights into
the long-term implications of OT therapy in ASD.

In summary, while our findings contribute valuable knowledge about the influence
of OT on zebrafish behavior, comprehensive research incorporating various behavioral
aspects, dosages, neurobiological mechanisms, and long-term effects is essential to fully
delineate OT’s potential as a therapeutic agent for ASD.

5. Conclusions

The focus of pharmacologic research on symptoms associated with autism spectrum
disorder has been driven by the complex interaction of negative outcomes and the preva-
lence of aggressive behaviour in people with autism. Moreover, the use of oxytocin as a
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therapeutic intervention is often highlighted, but neurochemical and molecular analysis
are needed. In the present work, oxytocin presented time-dependent effects that were seen
in swimming activity and aggression level. Nevertheless, knowing the role of oxytocin
in preclinical models is necessary to provide solid evidence of the long-term effects of
treatment, dose optimization, time, and the mode of administration, and these should be
monitored to discover the best intervention in autism with the help of oxytocin.
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