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Abstract: Land use and land cover (LULC) change is one of the primary contributors to hydrological
change in urban watersheds and can potentially influence stream flow and flood volume. Under-
standing the impacts of LULC change on urban hydrological processes is critical to effective urban
water management and minimizing flood risks. In this context, this study aims to determine the
impacts of LULC change on hydrological response in a fast transitioning watershed for the predicted
years of 2050 and 2080. This research employs the hybrid land use classification technique, Cellular
Automata–Markov (CA–Markov) model to predict land use changes, utilizing land use data from
2001, 2013, and 2021. Additionally, it incorporates a calibrated, event-specific hydrologic model
known as the Personal Computer Storm Water Management Model (PCSWMM) to assess alterations
in hydrological responses for storm events of various magnitudes. The findings indicate a transition
of the watershed into an urbanized landscape, replacing the previous dominance of agriculture and
forested areas. The initial urban area, constituting 11.6% of the total area in 2021, expands to cover
34.1% and 44.2% of the total area by 2050 and 2080, respectively. Due to the LULC changes, there
are increases in peak discharge of 5% and 6.8% and in runoff volume of 8% and 13.3% for the years
2050 and 2080 for a 100-year return period storm event. Yet, the extent of these changes intensifies
notably during storm events with lower return periods. This heightened impact is directly attributed
to the swift urbanization of the watershed. These results underscore the pressing necessity to regulate
LULC change to preserve the hydrological equilibrium.

Keywords: LULC; PCSWMM; urbanization; CA–Markov; hydrology; peak discharge; runoff

1. Introduction

Land use and land cover (LULC) change refers to changes to the Earth’s surface caused
by both natural and human-caused factors, such as urbanization [1], deforestation [2],
increasing population [3], agricultural activities [4], climatic shifts [5], and more. LULC
change and changing climate are the two most important aspects of environmental change
which can alter the hydrologic properties of an area through changes in patterns such
as infiltration, evaporation, and precipitation [6–8]. Therefore, a special focus has been
given in water resources engineering to the study of runoff response to LULC and climate
change [9,10].

The issue of urban flooding has increased in recent decades due to the impact of a
changing environment [11,12]. The swift rise in population is negatively affecting water
resources on both the local and global levels [13,14]. This growth is driving urban expansion
to accommodate the escalating population [15]. Urbanization has transformed the natural
landscape, replacing green spaces with concrete, asphalt, and other impervious surfaces.
The development of roads, residential and commercial buildings alters the runoff coefficient
of the catchment and influences the runoff routing process, which in turn increases the peak
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stormwater and vulnerabilities to flooding [16]. This effect on hydrological response is
dependent on the degree of urbanization within the watershed [17]. Therefore, a limitation
on the extent of urban development in catchments can be set if the impacts of urbanization,
particularly flooding, are assessed [18]. The effects of LULC change on hydrology can be
examined through hydrologic modeling, statistical evaluation, and comparative analysis
of experimental catchments [19]. Dwarakish and Ganasri [20] have provided a detailed
review of the modeling approaches used to access the impact of land use change on
hydrological response. Out of these methods, hydrological modeling is the one that has
been extensively used to assess the impacts on hydrology [21–23]. Hydrologic modeling
tools help to predict the impact of changing LULC on flow regimes. There have been
studies that have examined changes in the streamflow due to LULC changes [24–27].
Other studies by Setegn et al. [28], Gebremicael et al. [29], and Neupane and Kumar [30]
have reported significant changes in the hydrology of watersheds. Studies by Huong and
Pathirana [31] and Shanableh et al. [32] have found an increase in stormwater runoff due to
the development of impervious surfaces during urbanization. Huong and Pathirana [31]
observed a 21% rise in stormwater runoff with a 55% expansion in urban regions using
the Storm Water Management Model (SWMM) model, suggesting a notable correlation
between urban growth and increased runoff. Getachew and Melesse [24] utilized the Soil
and Water Assessment Tool (SWAT) model to analyze the impact of land use conversion
in the Angereb watershed, Ethiopia, between 1985 and 2011. Their study revealed a 39%
rise in average wet flow and a 46% reduction in dry flow due to the change from forest
to agriculture. Conversely, Bahremand et al. [33] discovered a 12% reduction in peak
discharge with a 50% increment in forested areas. This signifies that a larger forested area
aids in water retention, reducing peak discharge rates. These discoveries highlight the
substantial impact of LULC changes on a watershed’s hydrological reaction, prompting
extensive research for effective water resource management strategies.

However, these studies have focused on existing LULC data, neglecting the incorpora-
tion of LULC prediction to assess its impact on hydrological responses. But, for effective
water resource management strategies, it is essential to analyze hydrological changes in
predicted LULC. This assessment is critical for designing an appropriate drainage system
to meet future requirements. There are several models to predict LULC, such as statistical
models [34], the Markov chain model [35], logistic regression [36], Cellular Automata
(CA) [37], and Artificial Neural Networks (ANNs) [38]. CA is a commonly used method for
urban growth modeling [39,40] and has an open structure, which makes it easier to integrate
with other models [41]. It also has a strong spatial computing power to simulate spatial
variability [42,43]. However, it lacks quantitative aspects and the ability to include driving
forces in simulations, making integration with a quantitative model like the Markov chain
essential [44]. On the other hand, Markov models excel in capturing long-term patterns
but struggle with simulating spatial aspects [45]. Therefore, using only a single model will
have simulation limitations. To overcome the limitation of standalone methods, integration
of different models can be found in numerous studies [46–50]. Based on a review of the
available literature on land use prediction, a combination of CA and Markov is widely used
and also addresses the limitations of each [51]. Hence, this research proposes the combina-
tion of the CA and Markov models, aiming to enhance simulation accuracy and positively
impact the prediction of spatiotemporal scenarios [52]. This integration is supported by
Mondal et al. [53], who assert that the combined CA–Markov model demonstrates superior
capability in generating accurate spatio-temporal LULC change patterns. This combination
also incorporates the probabilistic aspect of the Markov method with the stochastic spatial
attributes of the CA method [54]. Therefore, the CA–Markov model has been a widely used
model to predict future land use patterns [55–58]. Furthermore, the CA–Markov model’s
ability to successfully combine geographic information system (GIS) and remote sensing
(RS) makes it stand out as a reliable technique for simulating changes in land use across
time and space [59].
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In contrast to previous research, which usually relies on existing LULC data, this
study takes a unique approach. It innovatively employs the CA–Markov model to predict
future LULC changes and subsequently utilizes PCSWMM to analyze the hydrological
changes. The research hypothesizes that increased urbanization in the watershed will lead
to a higher average weighted curve number (CN), resulting in a significant increase in
stormwater runoff and volume. This hypothesis underpins the study’s objectives, which
are as follows:

(a) Forecast LULC maps for the years 2050 and 2080 utilizing the CA–Markov model.
(b) Evaluate the impact of these LULC changes on peak runoff and flood volumes during

storm events of varying return periods.

This approach aims to provide a comprehensive understanding of how urban expan-
sion will affect watershed hydrology in the future.

2. Materials and Methods
2.1. Study Area

Charlotte is the eighth fastest-growing city in the United States, and the surrounding
region is experiencing rapid urbanization [60]. According to research by the Charlotte
Regional Business Alliance, this area is projected to undergo a 50% population increase
by 2050, surging from 3 million to 4.5 million people [61]. Charlotte’s cost of living is 9%
lower than the national average. Furthermore, the city offers affordable housing rates,
approximately 23% below the national average, which is one of its most appealing features
and promotes urban growth [62]. Given the swift urbanization and the looming challenges
posed by climate change, it becomes imperative to comprehend the evolving hydrological
dynamics of the region. Consequently, this study focuses on a watershed north of Charlotte,
bordering three burgeoning cities: Mooresville, Kannapolis, and Salisbury. Each of these
cities has undergone substantial growth over the past two decades. The population of
Mooresville rose from 18,800 to 50,500 between 2000 and 2020, while Kannapolis witnessed
an increase from 37,391 to 53,431, and Salisbury’s population grew from 26,500 to 35,600
during the same period. Based on the population growth and the watershed’s proximity to
these expanding urban centers, there is an expectation that the land use patterns within the
watershed will undergo substantial changes. As these cities extend outward towards the
watershed, it is expected that these modifications will impact the hydrological response of
the watershed. The watershed is currently predominantly characterized by agriculture and
forested areas; however, it is anticipated to transform into a highly urbanized watershed in
the future.

Figure 1a,b illustrate the study area’s geographical location; Figure 1c depicts the
Charlotte city boundary, which was used for the prediction of LULC; and Figure 1d shows
the study area watershed with prevailing CN used for assessing hydrological changes.
The study area’s outlet is positioned adjacent to the Coddle Creek Reservoir in Cabarrus
County, North Carolina, at geographic coordinates of approximately 35◦30′14′′ N degrees
latitude and 80◦44′11′′ W degrees longitude. This outlet serves as a pivotal point for our
hydrological analysis, encompassing a drainage area spanning 58.87 square kilometers. The
specific station ID assigned to this outlet is USGS 0212419274, and it operates at a gauge
datum of 199.73 m.
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2.2. Methods
2.2.1. CA–Markov Model

The CA–Markov model, a widely used tool in LULC modeling, uniquely combines the
Markov chain and CA concepts into a hybrid model. The Markov chain model operates as a
stochastic process, assessing the likelihood of moving between states. It forecasts a system’s
state at a given time (t) by relying solely on its state at a preceding time (t − 1). Notably,
this model does not consider the neighboring states of the observed cell, functioning
independently in its analysis. Only using the Markov model overlooks spatial distribution,
hampering its ability to predict direction accurately. Hence, the CA model becomes essential
for integrating land use’s spatial characteristics. In this way, the hybrid model has the ability
to capture alterations in both the spatial and temporal components of land use [63]. The
CA–Markov chain is an inclusive model utilized for LULC forecasting, which is integrated
into the TerrSet2020 software. The formula for representing the Markov model is given in
Equations (1) and (2), whereas that for CA is given in Equation (3).

Lt= P× Lt−1 (1)
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P =
[
pij
]
=


p11 p12 . . . p1m
p21 p22 . . . p2m

pm1 pm2 . . . pmm


(0 ≤ pij < 1 and ∑m

j=1 pij = 1), (i, j = 1, 2, . . . , m)

(2)

where P is the matrix of Markov transitions; pij is the element of matrix P which defines the
probability of going from land use type i to j; (i and j) are the categories of LULC for t − 1
and t time frames, respectively; t − 1 and t represent two different time frames used in the
model; m is the number of LULC classes; and Lt and Lt−1 are the land use status at time t
and t − 1, respectively. Lt and Lt−1 are vectors representing fractions of different land use
type at time t and t − 1, respectively.

L(t−1,t)= f(Lt−1, N) (3)

where L represents a collection of distinct and finite cellular states, N denotes the neigh-
borhood of the cell, and f is the guideline governing the transformation of cellular states
within a localized space. The use of Equations (1) and (2) can be found in [64–66], while
Equation (3) can be seen in [67,68].

This study used land use data from 2001, 2013, and 2021 from the Multi-Resolution
Land Characteristics (MRLC) National Land Cover Database (NLCD) map viewer. To
prepare the land use data for further analysis, a series of data preprocessing steps were
carried out using ArcMap, ERDAS, and QGIS. The main objective of this data preparation
process was to create a consistent and compatible LULC dataset that could be seamlessly
integrated into TerrSet to predict LULC changes in the years 2050 and 2080.

LULC maps were classified into five classes: water, urban area, forest, barren land,
and agriculture. The driver variables that were considered to affect urban growth were
topography, road networks, slope, and distance from the city center. The selection of
driver variables was based on [69,70]. Markov chain analysis and CA models were used
to complete the prediction in TerrSet2020, which is developed by Clark Labs [71]. The
Land Change Model (LCM) in TerrSet relies on historical land cover data, transition
potential maps, and Markov matrices to simulate future land cover changes. The LCM
comprises three primary steps: change analysis, transition potential modeling, and change
prediction. More details on the three steps can be found in [72]. This research utilizes
LULC maps from 2001 and 2013 to forecast LULC conditions for 2021, subsequently
validating the predictions against the actual LULC map for 2021. After the validation,
maps for 2050 and 2080 were simulated from the available 2013 and 2021 LULC maps.
Altuwaijri et al. [58] and Rahnama et al. [73] have used a similar approach for predicting
LULC change in the future. The prediction of urbanization was carried out considering the
variables for the whole of the city of Charlotte, and then the desired watershed was clipped
for studying hydrological changes.

2.2.2. Hydrological Model Using PCSWMM

The Storm Water Management Model (SWMM) is a dynamic simulation model de-
signed to replicate both the quantity and quality of water in urban and rural environ-
ments, covering individual events and extended-term scenarios [74]. A specialized type of
stormwater modeling software, PCSWMM v7.5.3406, integrates GIS with the computational
engine of the SWMM. SWMM employs non-linear reservoir theory to compute surface
runoff and incorporates hydrologic abstractions, including factors like surface depression,
accumulation, and infiltration on permeable surfaces. The Water Delineation Tool (WDT)
within PCSWMM was employed to generate layers for flow slope, flow direction, and
contributing area for individual sub-catchments based on the specified size criteria for each
target sub-catchment. Subsequently, these generated layers were used to create the streams
and flow path layers, which are essential for constructing the Conduits layer within the
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PCSWMM system. The Conduits layer depicts the water delivery lines connecting system
nodes, and the Transect object defines its non-uniform cross-section. The Transect Creator
and Transect Editor tools were used to construct transects based on topography data given
as the DEM layer. Input features such as Manning’s roughness, entry and exit node inverts,
and length are also considered by the Conduits layer.

Various geospatial datasets were integrated to assess watershed dynamics in this
hydrological analysis. These datasets included a Digital Elevation Model (DEM), Soil
Data, Impervious Data, and LULC data. To facilitate this analysis, essential geometric
information for the watershed, such as central lines, cross-sections, bank lines, and Man-
ning’s n values, were generated within the HEC-RAS 6.3.1 software. These geometric
data were subsequently imported into PCSWMM. The whole study area was divided
into 70 sub-catchments with the help of WDT based on the 413 junctions from geometric
information. The selection of PCSWMM for this specific watershed was based on the fact
that the watershed’s size falls below 100 km2, and PCSWMM yields desirable simulation
outcomes for catchments of this size [75]. In addition to the geometric data, CN grids were
produced by overlaying hydrologic soil groups with the LULC data in ArcMap for 2021,
2050, and 2080. Subsequently, the CN for each sub-catchment was computed using the area
weighted average method, a function available in PCSWMM. This step allowed for the
incorporation of temporal changes in land use and land cover into the hydrological analysis.
Figure 2 below illustrates the procedures conducted in the study through a methodology
flowchart and Table 1 provides the sources of data downloads.

Geosciences 2024, 14, x FOR PEER REVIEW 6 of 16 
 

 

layer within the PCSWMM system. The Conduits layer depicts the water delivery lines 
connecting system nodes, and the Transect object defines its non-uniform cross-section. 
The Transect Creator and Transect Editor tools were used to construct transects based on 
topography data given as the DEM layer. Input features such as Manning’s roughness, 
entry and exit node inverts, and length are also considered by the Conduits layer. 

Various geospatial datasets were integrated to assess watershed dynamics in this hy-
drological analysis. These datasets included a Digital Elevation Model (DEM), Soil Data, 
Impervious Data, and LULC data. To facilitate this analysis, essential geometric infor-
mation for the watershed, such as central lines, cross-sections, bank lines, and Manning’s 
n values, were generated within the HEC-RAS 6.3.1 software. These geometric data were 
subsequently imported into PCSWMM. The whole study area was divided into 70 sub-
catchments with the help of WDT based on the 413 junctions from geometric information. 
The selection of PCSWMM for this specific watershed was based on the fact that the wa-
tershed’s size falls below 100 km2, and PCSWMM yields desirable simulation outcomes 
for catchments of this size [75]. In addition to the geometric data, CN grids were produced 
by overlaying hydrologic soil groups with the LULC data in ArcMap for 2021, 2050, and 
2080. Subsequently, the CN for each sub-catchment was computed using the area 
weighted average method, a function available in PCSWMM. This step allowed for the 
incorporation of temporal changes in land use and land cover into the hydrological anal-
ysis. Figure 2 below illustrates the procedures conducted in the study through a method-
ology flowchart and Table 1 provides the sources of data downloads. 

 
Figure 2. Methodology flowchart for LULC prediction and hydrologic modeling. 

  

Figure 2. Methodology flowchart for LULC prediction and hydrologic modeling.



Geosciences 2024, 14, 40 7 of 15

Table 1. Data and their sources.

Data Source

DEM (3 m) National Map viewer

LULC Multi-Resolution Land Characteristics
Consortium (MRLC)

Soil Geospatial Data Gateway

Precipitation National Centers for Environmental
Information (NCEI), NEXRAD III Radar Data

Road Open Street Maps

2.2.3. Hydrological Model Evaluation

For proper assessment of changes in hydrologic response of the watershed due to
LULC change, it is necessary to calibrate and validate the PCSWMM model. Calibration
of model is made by changing the parameters to best match the observed data and then
validation is done to access the calibrated parameter. This process ensures that the hy-
drological model is ready for further analysis. Accuracy of model was verified based on
statistical metrics such as coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE)
and Percent Bias (PBIAS). The formula for above statistical parameters are listed below:

R2 =
∑N

j=1
[(

qj,o − qo
)
∗
(
qj,s − qs

)]2
∑N

j=1
(
qj,o − qo

)2 ∗∑N
j=1
(
qj,s − qs

)2 (4)

NSE = 1−
∑N

j=1
(
qj,s − qj,o

)2

∑N
j=1
(
qj,o − qo

)2 (5)

PBIAS =
∑N

j=1
(
qj,o − qj,s

)
∑N

j=1
(
qj,o
) ∗ 100 (6)

where qj,o is the observed flow, qj,s is the simulated flow at time t = j, qo and qs are the
average observed and average simulated values, respectively and N is the total number
of observations.

R-squared (R2) quantifies the extent to which a model accounts for variation in mea-
sured data, with a scale from 0 to 1. Larger R2 values signal reduced error variance, and
those exceeding 0.5 are typically seen as satisfactory [76]. Similarly, the Nash-Sutcliffe
Efficiency (NSE) spans from negative infinity to 1, where 1 signifies a flawless alignment
between observed and modeled data, and values surpassing 0.5 are commonly seen as
satisfactory. Moreover, Percent Bias (PBIAS) gives an idea about the average deviation of
the modeled data from the observed data with 0% meaning no deviation. A model is said
to be calibrated if PBIAS ≤ ±10% [77]. More details on the use of above equations can be
found in [78].

3. Results
3.1. CA-Markov Model: Validation

This study employed area under the curve (AUC) of Total Operating Characteristic
(TOC) and a cross-tabulation method comparing three maps to validate the model. This
method assesses both the elements of agreement and disagreement between the maps.
The TOC method assesses the model’s effectiveness in predicting change, whereas the
cross-tabulation matrix involving the three maps offers in-depth insights into the accuracy
of predicted changes and the persistence of each land cover class. The three maps used here
are the study reference map (LULC of 2013), original map (LULC 2021), and predicted map
(LULC 2021 simulated). [79,80] propose two agreement components—Hits and Correct
Rejection—and three disagreement components—Misses, False Alarm, and Wrong Hits.
These metrics serve as an alternative to Kappa statistics. Kappa indices compare accuracy
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to randomness, which is not suitable for map construction and can falsely indicate high
accuracy. Thus, Pontius and Millones [80] metrics offer a more reasonable approach,
focusing on agreement and disagreement components which are given in Table 2. The
model had an AUC of 0.84, which deems the prediction is satisfactory for further analysis.

Table 2. Percentage of validation parameters obtained after comparing predicted and actual image
of 2021.

Agreement
Components % Disagreement

Components %

Hits 3.10 Wrong Hits 4.70
Correct Rejection 68 False Alarms 9.30

Misses 14.90

Total 71.10 Total 28.90

3.2. PCSWMM: Calibration and Validation

Calibration and validation of model was done for an event-scale rainfall. Due to the
unavailability of reliable gauged precipitation data for the watershed, this study considered
the use of NEXRAD precipitation data from the RAS Mapper of PCSWMM for calibration
and validation of the model. NEXRAD precipitation has a spatial resolution of 4 km and
has very high accuracy when compared to other satellite-based precipitation data [81].
Bhusal et al. [82] and Hamedi et al. [83] have demonstrated the effectiveness of NEXRAD
precipitation data in regions lacking reliable gauge precipitation data, producing satis-
factory results. It’s important to note that while gauge precipitation data fails to capture
the spatial variability of precipitation, radar precipitation data excels in this regard. The
RAS Mapper creates a precipitation dataset for each of the sub-catchments, which is then
applied to the model.

Factors such as manning’s n and the area of the sub-catchments were adjusted so that the
observed value at the outlet matches the simulated value from the model for the calibration
and validation of the model. A single hydrologic event on 11 November 2020–14 November
2020 was used for calibration, and an event on 5 February 2020–8 February 2020 was used to
validate the hydrologic model, shown in Figure 3. The statistical parameters such as R2, NSE,
and PBIAS were calculated for two events and are shown in the Table 3.
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Table 3. Statistical evaluation of observed and simulated discharge hydrograph for the watershed.

Events Date
Parameter

R2 NSE PBIAS

1 11 November 2020 0.91 0.87 1.45%
2 5 February 2020 0.88 0.83 8.70%

3.3. LULC Change

To assess the alterations in hydrological response in the future, it was essential to
forecast the LULC change for 2050 and 2080. The spatial distribution of LULC changes for
2021, 2050, and 2080 is illustrated in Figure 4 and quantified in Table 4.
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Figure 4. Predicted LULC for (a) 2021, (b) 2050, and (c) 2080 using CA-Markov model.

Table 4. LULC change with percentage of area covered for observed and simulated.

LULC/Year

Observed Simulated

2001 2013 2021 2021 2050 2080

km2 % km2 % km2 % km2 % km2 % km2 %

Water Body 0.70 1.2 0.69 1.2 0.69 1.2 0.67 1.1 0.67 1.1 0.67 1.1
Urban Area 5.96 10.1 7.11 12.1 6.82 11.6 7.13 12.1 20.09 34.1 26.0 44.2

Forest 26.39 44.8 25.25 42.9 25.50 43.3 25.39 43.2 25.17 42.8 22.2 37.7
Barren 0.01 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.00 0.0 0.00 0.0

Agriculture 25.81 43.9 25.81 43.8 25.85 43.9 25.67 43.6 12.94 22.0 9.99 22.0

Notably, the map from Figure 4. indicates a substantial decrease in the green and
yellow areas and a significant expansion of built-up areas in the watershed. As the study
area sits between three expanding cities, it’s noticeable that the LULC has retained a
relatively steady pattern from 2001 to 2021, aligning with the growth experienced by these
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cities during this time frame. However, once the cities’ urbanization peaked, the built-up
areas started to encroach towards the watershed. As a result, a rise in the built-up areas
can be seen for the year 2050 and 2080.

The study area shows an increase of urban areas by approximately 13 km2 and 20 km2

from the original 7 km2 for the years 2050 and 2080, respectively, compared to the urban
area in 2021. Most of the increase has been accompanied by the loss of agricultural area,
whereas a small portion has been contributed from forest and barren land. This is because
of road networks being developed around the vicinity of agricultural areas. In 2021, the
watershed’s built-up area made up only 12% of its entire size, with forests and farmland
making up the majority of the land cover. However, by 2050 and 2080, this figure rose
substantially to 34% and 44% of the total watershed area, signifying a notable rise in the
built-up area. The expansion of urbanization will lead to an elevation in the curve number
of sub-catchments, mainly due to the increased presence of impervious surfaces within
the watershed.

3.4. Effect of LULC Change on Streamflow

The findings of the LULC prediction show that the watershed underwent a signifi-
cant amount of land use change. The LULC patterns predicted from TerrSET were then
processed in ArcMap to create CN grids for both 2050 and 2080, which were then used
as the direct inputs in the validated PCSWMM model to generate CN values for the de-
lineated 70 sub-catchments. Runoff in PCSWMM can be calculated with the CN method
for infiltration, which is computationally efficient and a popular method for estimating
runoff [84,85].

This research investigates how future LULC changes affect peak discharge and runoff
volume in storms with return intervals of 10, 50, and 100 years (Table 5). Peak discharge
exhibited a 5% and 6.8% rise in the 2050 and 2080 LULC scenarios for a storm event
of 100-year magnitude. For a 50-year storm event, the increase amounted to 14.4% and
18.2%; during a 10-year storm event, it surged to 17.1% and 30.1%. The escalation in peak
discharge was significant for smaller storm events and reduced as the storm event size
increased. Runoff volume continued to rise as the size of the storm event continued to
increase. Similarly, as in the case of peak discharge, the rise in runoff volume was much
more significant for smaller events as compared to larger storm events.

Table 5. Comparison of peak discharge and runoff volumes for 2021, 2050, and 2080 with different
return periods.

Return Period Year Peak Discharge (m3/s) Runoff Volume (m3)
Percentage Change Compared to 2021

Peak Discharge Runoff Volume

T = 10 yrs 2021 288.23 4,361,300
2050 337.52 4,691,500 17.1% 7.6%
2080 374.99 5,186,000 30.1% 18.9%

T = 50 yrs 2021 450.73 6,197,700
2050 515.74 6,778,600 14.4% 9.4%
2080 532.65 7,149,800 18.2% 15.4%

T = 100 yrs 2021 512.72 6,891,900
2050 538.58 7,441,700 5.0% 8.0%
2080 547.62 7,810,100 6.8% 13.3%

Urban land had the highest CN values among the five land use types that this study
investigated, followed by barren land, agricultural, and forest areas. The relationship out-
lined by [86] indicates that land use types with lower CN values possess greater infiltration
capacities. Because of their decreased capacity to absorb or intercept rainfall, surfaces
with greater CN values are thus considered more vulnerable to flooding. Since surface
impermeability increases due to urbanization, the runoff production from the basin has
increased and flood peaks and volumes have increased.
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4. Discussion and Conclusions

This research utilized a combined method involving a land use transition model
(CA–Markov) and an event-specific hydrological model (PCSWMM) to assess how future
changes in land use might affect storm runoff generation within a rapidly urbanizing
watershed, specifically considering simulated rainstorm scenarios. The findings can be
summarized as follows: Firstly, a significant shift in land use was noted, transitioning
from agricultural and forest areas to urban development. This transformation makes it
an ideal case study area for assessing alterations in hydrological responses. Secondly, as
urbanization progresses within the watershed, the projected land use changes predicted by
CA–Markov indicate an increase in runoff volume and peak discharge levels relative to the
2021 land use patterns. Thirdly, the effects of changes in land use are notably significant
during periods of moderately frequent and less intense rainfall, yet they exhibit minimal
impact during extreme rainfall events.

The declining sensitivity of hydrology to land use alterations during high-frequency
events aligns with the observations made by Chen et al. [87] and Gao et al. [88]. The most
significant land use change witnessed during the study period involved a 20 km2 increase
in urbanization, predominantly at the expense of agricultural and forested areas. According
to predictions based on land use and other similar studies like [89,90], this shift is expected
to heighten peak runoff within the watershed. This increase stems from the reduction in
the watershed’s innate capacity to absorb rainfall, leading to varied increments in flood
quantities. Moreover, the research highlights that smaller floods are especially affected by
the decrease in surface permeability, underscoring the significant impact of urbanization
on hydrological responses.

The methodology employed in this study showcased how utilizing predicted land use
data from a land change modeler can effectively assess the impact on a watershed through
an event-specific hydrological model like PCSWMM. The methodology, complemented
by quantitative outcomes such as hydrographs and tabulated data, provides a valuable
resource for authorities. It enables the scientific formulation of land use policies and the
implementation of appropriate stormwater infrastructure measures. Moreover, it is crucial
to establish policy measures aimed at encouraging the widespread adoption of Low-Impact
Development (LID) techniques. These measures are supported by numerous research
studies that have consistently shown their effectiveness in mitigating the rise in peak runoff
resulting from urbanization [91–93]. The primary goal is to reduce peak runoff and alleviate
the risks associated with flooding. As a result, this method holds promise as a supportive
tool for decision-making in watershed land use planning and management.

The current study’s LULC mapping methodology, based on four primary drivers,
could be significantly refined for better accuracy by including additional variables such as
population density, socio-economic aspects, policy factors, and proximity to key facilities
like hospitals and schools. These factors directly influence changes in land use patterns. By
integrating them, the model would provide a more holistic and accurate view of potential
shifts. Future research endeavors should aim to incorporate these variables into LULC
models and also add machine leaning approaches to CA–Markov for a more precise repre-
sentation of land use change [94,95]. Moreover, there is no inclusion of the potential effect of
climate change on the hydrological response in the watershed, which is a notable limitation
of this study. Incorporating the effects of climate change on stormwater runoff, alongside
LULC alterations, would provide a comprehensive perspective on the hydrological dy-
namics of the watershed. This approach would enhance the effectiveness of the model for
planning and decision-making. Future research should prioritize integrating the effects of
climate change to improve the accuracy and applicability of hydrological predictions.
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