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ABSTRACT 
 

This study aims to investigate countable and uncountable infinite sets from the perspective of real 
analysis. Key theorems and definitions related to this topic are presented, along with some specific 
applications in quantum physics, such as the quantization of energy, the relationships between the 
discrete and the continuous, and the hypothesis of the linearity of the Schrödinger wave equation. 
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1. INTRODUCTION 
 
Infinite sets can be categorized into two types: 
countable and uncountable. Georg Cantor was 

the first mathematician to recognize that there 
are different types of infinite sets, a concept he 
formalized in his theory of cardinal numbers [1,2]. 
The concept of enumerability of infinite sets has 
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practical applications in Statistical Physics, 
particularly in the study of random and 
probabilistic phenomena. In this paper, we 
demonstrate that a hypothesis regarding the 
wave equation in quantum mechanics implies 
that the set of solutions for the wave function 
𝛹(𝑥, 𝑡)  is infinite and uncountable. Numerous 
physical problems have infinite sets of solutions, 
and it is interesting to know whether these sets 
are countable or uncountable; this is one of the 
reasons to convince the reader of the importance 
of this topic. Additionally, the topological 
structure of the metric space in which every 
physical phenomenon is modeled relies on a 
metric defined over an infinite set. Sections 2 and 
3 present some key definitions and theorems on 
this subject, and Section 4 illustrates practical 
applications in the study of physical phenomena. 
The final section, Section 5, is reserved for 
conclusions and final remarks. 
 

2. ENUMERABILITY IN REAL ANALYSIS 
 
The starting point for studying enumerability in 
real analysis [3] is the set of natural numbers 
(ℕ), which is defined through the Peano Axioms: 
 
Axiom (1) 
 
An injective function 𝑠: ℕ → ℕ exist such that for 

all 𝑛 ∈ ℕ, 𝑠(𝑛) is defined as the successor of 𝑛, 

where 𝑠(𝑛) ∈ ℕ. Note: 𝑠(𝑛) = 𝑛 + 1. [3-5] 
 
Axiom (2) 
 
A unique natural number 1 ∈ ℕ exists such that it 
is not the successor of any other natural number 
according to the function 𝑠: ℕ → ℕ. In symbols: 

∃! 1 ∈ ℕ ; 1 ∉ 𝑠(ℕ) . This means that the 

successor function 𝑠: ℕ → ℕ  is not surjective 

because 𝑠(ℕ) = ℕ − {1}, and therefore 𝑠(ℕ) ≠ ℕ. 
[3-5] 
 

Axiom (3) 
 
(Principle of Induction) Let 𝑋 ⊂ ℕ . If 1 ∈ 𝑋  and 

𝑠(𝑋) ⊂ 𝑋 , then 𝑋 = ℕ . Note: 𝑠(𝑋) ⊂ 𝑋  indicates 

that 𝑠(𝑛) ∈ 𝑋 for all 𝑛 ∈ 𝑋. In other words, when 

𝑋 ⊂ ℕ, if the natural number 1 belongs to 𝑋 and 
for each element 𝑛 in 𝑋, its successor 𝑠(𝑛) also 

belongs to 𝑋 , then 𝑋  is the set of natural 

numbers (𝑋 = ℕ). [3-5] 

 
Peano’s Axiom (3) is referred to as the principle 
of induction in ℕ and will be used in many proofs 
of the theorems that follow [6]. Essentially, to 
prove that a given property 𝑃  holds for every 

natural number 𝑛 ∈ ℕ, we must first show that 𝑃 

holds for 𝑛 = 1, and then we must prove that 𝑃 
holds for 𝑠(𝑛) = 𝑛 + 1  assuming, utilizing the 

induction hypothesis, that 𝑃 holds for 𝑛. In logical 

terms, demonstrating that a property 𝑃 holds for 

every natural number 𝑛 ∈ ℕ means proving that: 
 

𝑃(1) is true and 𝑃(𝑛) ⇒ 𝑃(𝑠(𝑛)), ∀𝑛 ∈ ℕ  
 
𝑃(𝑛) is true for all 𝑛 ∈ ℕ, where the truth of 𝑃(𝑛) 
is the induction hypothesis. 
 
Introducing the well-ordering principle in ℕ  is 
necessitated for the proof of Theorem 1 below. 
This is referred to as the Second Principle of 
Induction. The Well-Ordering Principle states that 
every non-empty subset 𝐴 ⊂ ℕ has the smallest 
element. 
 

We will now formally define an infinite set. For 
this purpose, we will assume, without proof, that 
the set of natural numbers, denoted as ℕ , is 
infinite. For further information, the reader can 
refer to the proofs presented [3]. An infinite set, 
denoted as 𝑋, can be defined as a set for which 
there exists an injective function, denoted as 
𝑓: ℕ → 𝑋. This means that if 𝑋 is infinite, then the 

cardinality of 𝑋 , denoted as card(𝑋), is greater 

than or equal to the cardinality of ℕ, or card(𝑋) ≥
card(ℕ). The cardinality of a set is a function that 
assigns a natural number to each set, indicating 
the number of elements in the set. It should be 
noted that the injective function  𝑓: ℕ → 𝑋  is 

defined through induction on 𝑛 ∈ ℕ. The function 
is initially defined for 𝑓(1) ∈ 𝑋. For every 𝑘 ∈ ℕ, 

we choose 𝑓(𝑘) ∈ 𝐴𝑘 = 𝑋 − {𝑓(1), 𝑓(2), . . . , 𝑓(𝑘 −
1)} . The induction hypothesis assumes that 

𝑓(1), 𝑓(2), . . . , 𝑓(𝑛) are defined and we let 𝐴𝑛+1 =
𝑋 − {𝑓(1), 𝑓(2), . . . , 𝑓(𝑛)} . 𝐴𝑛+1  is a non-empty 

subset of 𝑋 because 𝑋 is infinite. Therefore, we 

can choose 𝑓(𝑛 + 1) ∈ 𝐴𝑛+1. This completes the 
definition of 𝑓: ℕ → 𝑋. The injectivity of 𝑓 follows 

from the fact that for any 𝑚, 𝑛 ∈ ℕ  with 𝑚 < 𝑛, 

𝑓(𝑚) ∈ {𝑓(1), 𝑓(2), . . . , 𝑓(𝑛 − 1)}  and 𝑓(𝑛) ∈ 𝑋 −
{𝑓(1), 𝑓(2), . . . , 𝑓(𝑛 − 1)}; thus, 𝑓(𝑚) ≠ 𝑓(𝑛). 
 

Infinite sets can be classified as countable or 
uncountable [7]. By definition, every finite set is 
countable. However, in this study, we will focus 
on infinite sets and specifically what makes an 
infinite set countable. An infinite set 𝑋  is 

countable if there exists a bijection 𝑓: ℕ → 𝑋. This 

means that if 𝑋  is infinite and countable, then 

card(𝑋) = card(ℕ) . In other words, countable 
infinite sets are, in a sense, the ‘smallest 
infinites’. In mathematics and physics, there are 
‘infinities greater than others’. An infinite set 𝑋 is 
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uncountable if there does not exist a surjection 
𝑓: ℕ → 𝑋 , that is, 𝑓(ℕ) ≠ 𝑋  for every function 

𝑓: ℕ → 𝑋 . This means that if 𝑋  is infinite and 
uncountable, then card(𝑋) ≥ card(ℕ). 
 
Therefore, every countable set has an 
enumeration of the form 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛 , . . . } . 
We can set 𝑓(1) = 𝑥1 , 𝑓(2) = 𝑥2 , ..., 𝑓(𝑛) = 𝑥𝑛 , 

... utilizing the bijection 𝑓: ℕ → 𝑋. In other words, 

an infinite set 𝑋 is countable if it is possible to 

define 𝑥𝑘+1  for every element 𝑥𝑘 ∈ 𝑋 . We say 
that 𝑥𝑘+1 is the next element of 𝑋 after 𝑥𝑘 . This 
notion can be used to intuitively verify that the set 
of real numbers, denoted by ℝ, is uncountable. 
Given any real number 𝑥 ∈ ℝ, it is impossible to 
determine what the next real number is. For 
example, given 1.001 ∈ ℝ, what is the next real 

number? Is it 1.00101? 1.001001? 1.0010001? ... 
? 1.001000. . .0001? There is no way to know. 

The set of natural numbers, denoted ℕ , is 
obviously countable because there exists the 
trivial bijection 𝑓: ℕ → 𝑋, given by 𝑓(𝑛) = 𝑛 for all 
𝑛 ∈ ℕ, which is the identity function. Another way 

to see that ℕ is countable is to consider Peano’s 

Axiom (3), which states that the successor 𝑠(𝑛) 
of 𝑛 ∈ ℕ, defined as the injective function ℕ → ℕ, 

is also an element of ℕ . This means that for 

every 𝑛 ∈ ℕ , 𝑠(𝑛) = 𝑛 + 1 ∈ ℕ . Therefore, it is 
possible to define an enumeration of the set of 
natural numbers, namely ℕ =
{𝑛1, 𝑛2, . . . , 𝑛𝑘 , . . . } =
{1, 𝑠(1), 𝑠(𝑠(1)), . . . , s𝑘(1), . . . }. In other words, the 
set of natural numbers is countable because its 
elements can be counted. This is not the case for 
ℝ. 
 
In the following section, we will present theorems 
related to infinite countable sets, which are 
pertinent to the applications discussed in Section 
4. These theorems are important in the fields of 
statistical physics and quantum mechanics, 
where random variables and probabilistic 
conditions often play a role in the phenomena 
under investigation. 
 

3. THEOREMS RELATED TO INFINITE 
COUNTABLE SETS 

 
Theorem 1: Every infinite subset 𝑋 ⊂ ℕ  is 
countable. [3-5] 
 
Proof: We define an enumeration of the infinite 
subset 𝑋 ⊂ ℕ through induction and use the well-

ordering principle in ℕ. We start by taking 𝑥1 =
min(𝑋) . We then define 𝐴1 ⊂ 𝑋  such that 𝐴1 =
𝑋 − {𝑥1}. We take 𝑥2 = min(𝐴1) and define 𝐴2 ⊂

𝑋  such that 𝐴2 = 𝑋 − {𝑥1, 𝑥2} . Proceeding 

inductively, we assume that 𝐴𝑛 ⊂ 𝑋  is defined 

such that 𝐴𝑛 = 𝑋 − {𝑥1, 𝑥2, . . . , 𝑥𝑛}. We then take 
𝑥𝑛+1 = min(𝐴𝑛) . This process gives us an 

enumeration of the infinite subset 𝑋 ⊂ ℕ given by 

𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛 , . . . } , with 𝑥1 = min(𝑋)  and 

𝑥𝑘+1 = min(A𝑘)  for all 𝑘 ∈ ℕ , where 𝐴𝑘 = 𝑋 −
{𝑥1, 𝑥2, . . . , 𝑥𝑘}. 
 
Theorem 2: Let 𝑋, 𝑌 be infinite sets, and 𝑓: 𝑋 →
𝑌 be an injective function. If 𝑌 is countable, then 
so is 𝑋. [3-5] 
 
Proof: If 𝑌 is infinite and countable, then there 

exists a bijection 𝑔: ℕ → 𝑌. Furthermore, if 𝑓: 𝑋 →
𝑌 is injective, then 𝑓(𝑋) ⊂ 𝑌. We can then obtain 

a bijection 𝑓|𝑓(𝑋): 𝑋 → 𝑓(𝑋)  by restricting the 

range of the original function 𝑓: 𝑋 → 𝑌  to the 

subset 𝑓(𝑋) ⊂ 𝑌. This is similar to how 𝑔: ℕ → 𝑌 
is bijective and there exists a subset 𝐴 ⊂ ℕ such 

that 𝑔|𝑓(𝑋): 𝐴 → 𝑓(𝑋) is also a bijection. Based on 

Theorem 1, 𝐴 ⊂ ℕ  is countable, and since 

𝑔|𝑓(𝑋): 𝐴 → 𝑓(𝑋) is a bijection, it follows that 𝑓(𝑋) 

is countable. In turn, the bijection 𝑓|𝑓(𝑋): 𝑋 →

𝑓(𝑋) implies that 𝑋 is countable. 
 
Theorem 3: Let 𝑋, 𝑌 be infinite sets, and 𝑓: 𝑋 →
𝑌 be a surjective function. If 𝑋 is countable, then 

so is 𝑌. [3-5] 
 

Proof: For every 𝑦 ∈ 𝑌 , we can choose an 

element 𝑔(𝑦) ∈ 𝑋 and define a function 𝑔: 𝑌 → 𝑋 
such that 𝑓(𝑔(𝑦)) = 𝑦 for all 𝑦 ∈ 𝑌. The function 

𝑔: 𝑌 → 𝑋, thus defined, is injective. To see this, 

consider two generic elements 𝑔(𝑦1) ≠ 𝑔(𝑦2) ∈
𝑋. We have 𝑓(𝑔(𝑦1)) ≠ 𝑓(𝑔(𝑦2)) ⇒ 𝑦1 ≠ 𝑦2. The 

function 𝑔  is the right inverse of 𝑓 . Based on 

Theorem 2, if 𝑔: 𝑌 → 𝑋  is injective and 𝑋  is 
countable (by hypothesis), then so is 𝑌. 
 

Theorem 4: Let 𝑋, 𝑌  be infinite and countable 

sets. The Cartesian product 𝑋 × 𝑌  is also 
countable. [3-5] 
 

Proof: Let 𝑋 and 𝑌 be infinite, countable sets. By 

definition, there exist bijections 𝑓: ℕ → 𝑋  and 
𝑔: ℕ → 𝑌 . In particular, we can consider that 

there exist surjections 𝑓: ℕ → 𝑋  and 𝑔: ℕ → 𝑌 . 
We can then define a surjective function 
𝐹: ℕ × ℕ → 𝑋 × 𝑌  by setting 𝐹(𝑚, 𝑛) =
(𝑓(𝑚), 𝑔(𝑛)) for all 𝑚, 𝑛 ∈ ℕ. Based on Theorem 

3, it suffices to prove that ℕ × ℕ  is countable. 

Indeed, taking the function Ψ: ℕ × ℕ → ℕ  given 
by Ψ(𝑚, 𝑛)  =  2𝑚. 3𝑛 , we demonstrate that Ψ is 
injective due to the uniqueness of the prime 
factorization of natural numbers, which is 
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ensured by the fundamental theorem of 
arithmetic [1]. Since the function Ψ: ℕ × ℕ → ℕ is 

injective, and ℕ is countable, ℕ × ℕ is countable 
based on Theorem 2. 
 

Theorem 5: The collection of a countable family 
of countable sets is countable, that is, if (𝑋𝜆)𝜆∈𝐿 
is a countable family whose elements are 
countable sets, then the union  ⋃ 𝑋𝜆𝜆∈𝐿  is also 
countable. [3-5] 
 

Proof: Consider a countable family (𝑋𝜆)𝜆∈𝐿 

whose elements are countable sets 𝑋1 , 𝑋2 , ..., 

𝑋𝑛 ,... By definition, bijections 𝑓1: ℕ → 𝑋1 , 𝑓2: ℕ →
𝑋2 , ..., 𝑓𝑛: ℕ → 𝑋𝑛 ,... exist. In particular, we can 
consider that surjections 𝑓1: ℕ → 𝑋1 , 𝑓2: ℕ → 𝑋2 , 

..., 𝑓𝑛: ℕ → 𝑋𝑛 ,... exist. The union ⋃ 𝑋𝑛
∞
𝑛=1  is the 

collection of all elements of (𝑋𝜆)𝜆∈𝐿. We can then 
define a surjective function 𝐹: ℕ × ℕ → ⋃ 𝑋𝑛

∞
𝑛=1  

by setting 𝐹(𝑚, 𝑛) = 𝑓𝑛(𝑚)  for all 𝑚, 𝑛 ∈ ℕ , that 

is, by setting 𝐹(𝑚, 𝑛) equal to the 𝑛-th function, 
𝑓𝑛, applied to the natural number 𝑚. As already 

proven in Theorem 4, ℕ × ℕ is countable. Based 

on Theorem 3, if 𝐹: ℕ × ℕ → ⋃ 𝑋𝑛
∞
𝑛=1  is surjective, 

then the union ⋃ 𝑋𝑛
∞
𝑛=1 = ⋃ 𝑋𝜆𝜆∈𝐿  is countable. 

 

Notably, the notation 𝐴 ≡ 𝐵 indicates that sets 𝐴 

and 𝐵 are equipotent, that is, they have the same 

number of elements. Thus, stating that 𝐴 ≡ 𝐵 is 

equivalent to writing card(𝐴) = card(𝐵) , which 
implies that two sets are equipotent if and only if 
they have the same cardinality. Specifically, if the 
sets 𝐴 and 𝐵 are equipotent, there exists a one-
to-one correspondence between them, given by 
the bijective function 𝑓: 𝐴 → 𝐵. 
 

Theorem 6: Every infinite set contains a 
countably infinite subset. [3-5] 
 

Proof: Let 𝑋 be an infinite set. First, consider the 

case where 𝑋 is countable. In this case, we can 

consider that 𝐴 = 𝑋 . Then, 𝐴  is a subset of 𝑋 , 
and 𝐴  is infinite countable. Now, consider the 

case where 𝑋  is uncountable. By definition, a 

surjection ℕ → 𝑋 does not exist. However, as 𝑋 is 
infinite, there must exist an injective function 
ℎ: ℕ → 𝑋 . This implies that card(𝑋) > card(ℕ) 

and ℎ(ℕ) ⊂ 𝑋 . We can then obtain a bijection 

ℎ|ℎ(𝑁): ℕ → ℎ(ℕ)  by restricting the range of the 

original function ℎ: ℕ → 𝑋 to the subset ℎ(ℕ) ⊂ 𝑋. 

If ℎ|ℎ(𝑁): ℕ → ℎ(ℕ) is a bijection, then card(ℕ) =

card(ℎ(ℕ)), which means that 𝑁 ≡ ℎ(ℕ). Thus, 

ℎ(ℕ) ⊂ 𝑋 is infinite countable. 
 

The result of Theorem 6 is significant for the 
investigation of probabilistic physical phenomena 
whose domains are typically uncountable infinite 

sets of random variables. It is useful to analyze 
an infinite countable subset of the original 
domain, the existence of which is guaranteed by 
Theorem 6, to derive a mathematical law for 
these variables and find a deterministic solution 
for the physical phenomenon being researched. 
For example, when a researcher is modeling a 
purely probabilistic phenomenon, the domain of 
which is represented by an uncountable infinite 
set of random variables, it may not be possible to 
determine the set of solutions analytically but 
only numerically. The researcher will be able to 
solve the problem using numerical methods but 
will not be able to establish a mathematical law 
that governs the studied phenomenon for the 
entire domain. One potential issue in this 
scenario may be the non-enumerability of the 
domain of random variables that describe the 
parameters of the investigated phenomenon. 
 
In this situation, it is important to emphasize the 
significance of mathematical studies related to 
the perturbation of domains of physical 
phenomena. Simply put, domain perturbation is 
the intentional modification of the set of elements 
that make up the domain of the studied 
phenomenon. For example, constraining a 
generic function 𝑓: 𝑋 → 𝑌 to a subset 𝑋′ ⊂ 𝑋 of its 
original domain, resulting in the restriction 
𝑓|𝑋′: 𝑋′ → 𝑌, implies a perturbation of the domain 

of the function 𝑓: 𝑋 → 𝑌 . Returning to the 
scenario from earlier, if the researcher is 
interested in analytically solving a physical 
problem with a random or probabilistic 
component, even if this is not feasible for the 
entire set of variables in the initial problem, 
they can determine whether there is a 
perturbation of the domain that permits the 
development of a mathematical law capable of 
modeling the physical phenomenon limited to the 
variables of the new subset obtained after the 
perturbation was made. For a more in-depth 
analysis, consider the generic function 𝑓: 𝑋 → 𝑌 
that models a certain physical phenomenon with 
an uncountable infinite domain 𝑋. The researcher 
can explore the possibility of perturbing the 
domain of 𝑓: 𝑋 → 𝑌  to obtain an infinite subset 

𝐴 ⊂ 𝑋 that is countable. The existence of such a 

subset 𝐴 ⊂ 𝑋  in the domain of 𝑓: 𝑋 → 𝑌  is 
guaranteed by Theorem 6. Therefore, the 
problem involves finding a way to perturb the 
original domain of the studied physical 
phenomenon to ensure that a countable subset 
is obtained. 
 
In summary, it is generally easier to establish a 
mathematical pattern for an infinite countable set 
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than for an infinite uncountable set, even if this 
results in a law that only applies to a portion of 
the studied physical phenomenon, that is, a law 
that holds only for a subset of the domain. This is 
because an infinite countable set has a bijection 
with the set of natural numbers ℕ, which means 
that it can be counted; this, in turn, leads to a 
mathematical pattern that allows one to 
determine, for any element in the set, which 
element comes next (see the definition of 
enumerability in Section 2). Additionally, 
obtaining an analytical solution for the studied 
physical phenomenon by restricting it to a certain 
countable subset of variables is still valuable, 
even if it is not a complete solution. 
 
In certain cases, the method previously 
described, which is guaranteed to be valid by 
Theorem 6, may not be sufficient to establish a 
mathematical law that can provide analytical 
solutions, even in a limited manner. In such 
situations, the researcher still has another tool at 
their disposal. It is possible to divide the infinitely 
countable subset 𝐴 ⊂ 𝑋  of the domain of the 

function 𝑓: 𝑋 → 𝑌 , obtained from the previous 
method, into countable parts 𝐴𝑛 ⊂ 𝐴 , 𝑛 ∈ ℕ , 

resulting in a partition. Thus, the subset 𝐴 ⊂ 𝑋 
can be analyzed as a collection of countable 
parts 𝐴𝑛 ⊂ 𝐴 , 𝑛 ∈ ℕ . In other words, we have 
(𝐴𝑛)𝑛∈ℕ, where ⋃ 𝐴𝑛 = 𝐴∞

𝑛=1 . Using this process, 
the researcher can limit their problem to 
investigating mathematical laws that explain the 
physical phenomenon being studied for each 
countable part 𝐴𝑛 ⊂ 𝐴 , 𝑛 ∈ ℕ . From there, it is 

possible to eliminate unwanted parts of (𝐴𝑛)𝑛∈ℕ 
and only retain those that can be modeled 
analytically. The researcher is interested in the 
countable parts 𝐴𝜆 ⊂ 𝐴, 𝜆 ∈ 𝐿 , which can be 

gathered to obtain a new subset ⋃ 𝐴𝜆𝜆∈𝐿 = 𝐴̅ , 

where 𝐴̅ ⊂ 𝐴. According to Theorem 5, we know 

that the union ⋃ 𝐴𝜆𝜆∈𝐿 = 𝐴̅ is countable, because 
(𝐴𝜆)𝜆∈𝐿 is a countable family of countable parts 
𝐴𝜆 ⊂ 𝐴, 𝜆 ∈ 𝐿. 
 
In the field of mathematical physics known as 
dynamical systems, the study of functions that 
describe the evolution of systems over time in 
topological spaces [8] is a major focus. As a 
result, the concepts of infinite sets and 
countability are of great significance for the study 
of systems that change over time. These 
systems are often described using partial 
differential equations, and are particularly 
relevant in the study of physical phenomena in 
modern celestial mechanics, mainly the evolution 
of galaxies, which can be mathematically 
modeled as dynamical systems. 

Some examples and applications are mentioned 
in the following section. 
 

4. APPLICATIONS AND EXAMPLES 
 

4.1 Georg Cantor’s Diagonal Method 
 
In Section 2, a method was described that allows 
one to obtain infinite countable subsets from any 
uncountable set based on the results 
demonstrated in Theorems 5 and 6 in Section 3. 
In this section, we present a method that takes 
the inverse approach: the diagonal method, 
developed by German mathematician Georg 
Cantor in 1891, which aims at obtaining 
uncountable sets from infinite countable sets [1]. 
It was through this method that Cantor proved 
the existence of infinite sets of distinct natures. 
Let 𝑋 be an infinite countable set and 𝑌 be a set 

containing at least two elements. Let 𝐹(𝑋; 𝑌) be 

the set 𝐹(𝑋; 𝑌) = {𝑋, 𝑌 ⊂ ℝ;  there exists 𝑓: 𝑋 →
𝑌} , whose elements are all possible functions 

𝑓: 𝑋 → 𝑦. Cantor’s method states that no function 

𝜑: 𝑋 → 𝐹(𝑋; 𝑌)  is surjective. Initially, Cantor’s 
argument for the diagonal method was stated for 
the specific case of the function 𝜑: ℕ →
𝐹(ℕ; {0,1}) , where 𝑋 = ℕ  and 𝑌 = {0,1} . It was 
later demonstrated for the more general case, 
using the same argument, and was established 
as a theorem. Here, we will only consider the 
proof for the specific case to define our method 
of interest. To show that ℕ → F(ℕ; {0,1})  is not 

surjective, we can define inductively 𝜑(1) = 𝑠1 , 

𝜑(2) = 𝑠2, 𝜑(𝑁) = 𝑠𝑛, …, where 𝑠1, 𝑠2, …, 𝑠𝑛, … 
are sequences whose terms are elements of the 

set {0,1} . Let 𝑠𝑚𝑛
 be the 𝑛 -th term of the 

sequence 𝑠𝑚 . Therefore, it will always be 
possible to obtain a new sequence 𝑠∗  different 

from all previous ones by taking 𝑠𝑛
∗ = 0 if 𝑠𝑛𝑛

= 1 

or 𝑠𝑛
∗ = 1  if 𝑠𝑛𝑛

= 0 . This means that no 

countable list can exhaust all functions in the set 
𝐹(ℕ; {0,1}) . This result will be crucial for the 

following proof. Let 𝑋 ⊂ ℝ  be an infinite and 

countable set. Consider the set 𝑃(𝑋) = {𝐴 ⊂
ℝ|𝐴 is a subset of 𝑋}  of the parts of 𝑋 . We will 
prove that there exists a function 𝜉: 𝑃(𝑋) →
𝐹(𝑋; {0,1})  that is bijective, using the Cantor 

Diagonal Method with 𝑌 = {0,1}. For each subset 

𝐴 ⊂ 𝑋 , that is, for each element of 𝑃(𝑋) , we 

define a restricted function 𝜉|𝐴: 𝑋 → {0,1}  such 
that for all 𝑥 ∈ 𝑋 , 𝜉|𝐴(𝑥) = 1  if 𝑥 ∈ 𝐴 , and 

𝜉|𝐴(𝑥) = 0 if 𝑥 ∉ 𝐴. Thus, we obtain the bijection 

𝜉: 𝑃(𝑋) → 𝐹(𝑋; {0,1})  that relates 𝐴 ↦ 𝜉|𝐴  for all 
𝐴 ∈ 𝑃(𝑋). We have seen that the function 𝜑: 𝑋 →
𝐹(𝑋; {0,1})  cannot be surjective. Therefore, the 

composite function 𝜉−1 ∘ 𝜑: 𝑋 → 𝑃(𝑋)  must also 
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not be surjective. However, there is a trivial 
injective function ψ: 𝑋 → 𝑃(𝑋)  given by ψ(𝑥) =
{𝑥} for all 𝑥 ∈ 𝑋 . Therefore, we have card(𝑋) <
card(𝑃(𝑋)). By assumption, we take an arbitrary 

infinite set 𝑋 ⊂ ℝ  that is countable. Then, we 

have card(𝑋) = card(ℕ). As a result, we obtain 
card(ℕ) < card(𝑃(𝑋)). By definition, this implies 

that the set of parts of 𝑋 given by 𝑃(𝑋) = {𝐴 ⊂
ℝ; 𝐴 is a subset of 𝑋}  is uncountable, regardless 

of the countable infinite set 𝑋 ⊂ ℝ  considered.           
In summary, Georg Cantor’s diagonal                               
method allows us to obtain an uncountable set 
𝑃(𝑋) from any countably infinite set 𝑋 ⊂ ℝ. To do 

this, we simply define 𝑃(𝑋)  as the set of                 

parts of 𝑋. Cantor’s diagonal method will be used 
in Example 4.4 to prove an important                   
result in theoretical physics: every physical 
phenomenon whose nature is discrete can                  
be interpreted as a continuous set of                  
solutions, which may or may not have practical 
validity. 
 

4.2 Linearity Hypothesis of 𝚿(𝒙, 𝒕) in the 
Quantum Mechanics Wave Equation 

 

The fundamental equation of quantum 
mechanics, known as Schrödinger’s wave 
equation, was presented by Austrian physicist 
Erwin Schrödinger in 1925 [9,10]. This second-
order partial differential equation, whose 
solutions are referred to as wave functions and 
denoted by Ψ(𝑥, 𝑡)  [11], is a landmark in the 
history of modern science. These functions 
describe the behavior of atomic particles and 
serve as the foundation of quantum knowledge. 
The one-dimensional wave equation proposed by 
Schrödinger is given by the following expression 
[12]: 
 

−
ℏ2

2𝑚

𝜕2Ψ(𝑥,𝑡)

𝜕𝑥2 + 𝑉(𝑥, 𝑡)Ψ(𝑥, 𝑡) = 𝑖ℏ
𝜕Ψ(𝑥,𝑡)

𝜕𝑡
 ,  

 

where 𝑚  is the mass of the particle, ℏ  is the 

reduced Planck constant [13], 𝑖 = √−1 is the 

imaginary number, and 𝑉(𝑥, 𝑡)  is the potential 
energy of the particle. Schrödinger was 
motivated to derive this equation by De Broglie’s 
hypothesis about the dual nature of matter. It is 
also possible to derive the Schrödinger wave 
equation from four hypotheses, or axioms, that 
justify its validity. One of these axioms is the 
linearity of Ψ(𝑥, 𝑡). This assumption states that 

the wave equation must be linear in Ψ(𝑥, 𝑡) .         

This suggests that if Ψ1(𝑥, 𝑡) and Ψ2(𝑥, 𝑡) are two 
different solutions of the wave equation for a 
given potential energy 𝑉(𝑥, 𝑡)  of the                  
particle, then any arbitrary linear combination 

Ψ(𝑥, 𝑡) = 𝛼1Ψ1(𝑥, 𝑡) + 𝛼2Ψ2(𝑥, 𝑡)  is also a 

solution, where 𝛼1 and 𝛼2 are constants [14]. 
 
The set of solutions of Schrödinger’s wave 
equation is infinite, owing to the arbitrary nature 
of linear combinations. In other words, there are 
an infinite number of wave functions Ψ(𝑥, 𝑡) that 
satisfy this equation. Let Ω be the set of all these 

functions Ψ(𝑥, 𝑡) . We will now prove that Ω  is 

uncountable. Given two solutions Ψ1(𝑥, 𝑡)  and 

Ψ2(𝑥, 𝑡)  of the Schrödinger equation, we can 
define the subset Ω′ ⊂ Ω  as Ω′ = {Ψ(𝑥, 𝑡) ∈
Ω|Ψ(𝑥, 𝑡) = 𝛼1Ψ1(𝑥, 𝑡) + 𝛼2Ψ2(𝑥, 𝑡) ∧ 𝛼1, 𝛼2 ∈ ℝ} , 

where ∧  represents the logical conjunction 
operator, which is equivalent to the ‘and’ 
connective in grammar. As Ω′ ⊂ Ω , it follows               

that card(Ω′) ≤ card(Ω) . Therefore, it is                    

sufficient to show that Ω′ is uncountable. We can 
define the bijection ℱ: ℝ × ℝ → Ω′ as ℱ(𝛼1, 𝛼2) =
𝛼1Ψ1(𝑥, 𝑡) + 𝛼2Ψ2(𝑥, 𝑡). We know that the set ℝ 
of real numbers is uncountable. Additionally, it 
follows that card(ℝ) ≤ card(ℝ ×  ℝ) . By 
definition, it follows that ℝ × ℝ  is also 

uncountable. Since ℱ  is a bijection                      

between ℝ × ℝ and Ω′, we demonstrate that Ω′ ⊂
Ω  is uncountable. In conclusion, it has                   

been proven that the set of solutions Ω                                
of Schrödinger’s wave equation is         
uncountable. Therefore, the following 
conclusions are valid: 
 

1. The set Ω is not bijective with ℕ. Therefore, 

card(Ω) > card(ℕ). 
2. All quantum mechanical phenomena that 

satisfy the Schrödinger equation are 
continuous, as the uncountable nature of 
the set Ω makes it impossible to quantize 
them for the full range of 
wavefunctions Ψ(𝑥, 𝑡) ∈ Ω. 

3. According to the result proven in Theorem 
6, there exists at least one infinite subset 
of Ω, which is countable. This subset is 
denoted as Ω′′ ⊂ Ω  and can be defined 
from the auxiliary set Ω′  used in the 
previous test by limiting the coefficients of 
the linear combinations of Ω′  to natural 

numbers. Specifically, Ω′′  is defined as: 
Ω′′ = {Ψ(𝑥, 𝑡) ∈ Ω; Ψ(𝑥, 𝑡) = 𝑛1Ψ1(𝑥, 𝑡) +
𝑛2Ψ2(𝑥, 𝑡) ∧ 𝑛1, 𝑛2 ∈ ℕ}. To show that Ω′′ ⊂
Ω  is countable, we consider the bijection 

𝐹: ℕ × ℕ → Ω′′  defined as 𝐹(𝑛1, 𝑛2)  =
𝑛1Ψ1(𝑥, 𝑡) + 𝑛2Ψ2(𝑥, 𝑡) . As we proved in 

Theorem 4, ℕ × ℕ  is countable, so it 

follows that the subset Ω′′ ⊂ Ω  is also 
countable. 
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4. An interesting way to interpret the previous 
conclusion is that any quantum 
phenomenon that satisfies the Schrödinger 
wave equation can be quantified within a 
certain restricted domain. To do this, it is 
sufficient to restrict the linearity of the wave 
equation in Ψ(𝑥, 𝑡)  to ensure that the 
allowed coefficients for the linear 
combinations are natural numbers. In 
general, for any uncountable set of 
solutions that describe continuous physical 
phenomena, exists an infinite, countable 
subset of these solutions that correspond 
to the quantifiable, discrete particular 
cases of the phenomena. This idea is also 
supported by Theorem 6. 

 

4.3 Quantization of Energy, Photons of 
Light, and PLANCK’S Equation (1900) 

 
In 1900, German physicist Max Planck published 
his theory on the quantization of light energy to 
explain the problem of blackbody radiation, which 
had been a subject of much discussion since it 
was first observed by Gustav Kirchhoff in 1860 
[15]. Planck’s theory, known as the Planck 
equation, was able to successfully describe the 
phenomenon of blackbody radiation emission 
through a revolutionary approach [16]. According 
to Planck, the energy 𝐸 of standing 
electromagnetic waves that oscillate sinusoidally 
with time is a discrete quantity rather than a 
continuous one [17]. Thus, Planck suggests that 
 

𝐸 = 𝑛ℎ𝜈, 𝑛 ∈ ℕ  
 
where ℎ  is a constant, later referred to as 
Planck’s constant [18], and 𝜈 is the frequency of 
the corresponding electromagnetic wave. By 
fixing the frequency 𝜈 , we consider the set of 

allowed energies, Γ(𝐸) = {𝑛ℎ𝜈; 𝑛 ∈ ℕ} , for the 
electromagnetic waves of this radiation [19]. It is 
evident that this set is infinite, as there exists an 
energy value associated with each natural 
multiple = 1, 2, 3, . .. . To prove that the set Γ(𝐸) is 
countable, we can define the bijection ℱ: ℕ →
Γ(𝐸)  such that ℱ(𝑛) = 𝑛ℎ𝜈  for all 𝑛 ∈ ℕ . This 
mathematically proves that the quantum 
phenomena that satisfy Planck’s equation are 
discrete. Notably, in physics, continuous 
phenomena are always associated with 
uncountable sets, while discrete phenomena are 
associated with infinite countable sets, directly 
related to the existence (or lack thereof) of a 
restriction of these phenomena to the set of 
natural numbers ℕ or to any other set equipotent 

to it, for example, ℕ × ℕ. 

4.4 Relationships between the Discrete 
and the Continuous in Physics 

 
We conducted a general discussion about 
physical phenomena of continuous nature and 
showed that they are associated with 
uncountable sets. As an example, we highlighted 
the wave equation of quantum mechanics. The 
result proved in Theorem 6 showed us that there 
are specific cases of these continuous 
phenomena, described by countable sets. This 
defines a quantifiable condition of the original 
phenomenon for a given restriction of its domain, 
giving it a discrete interpretation. While this result 
remains within the realm of theoretical physics, it 
is interesting to note the relationship between the 
nature of physical phenomena and the nature of 
infinite sets. 
 
At this point, we are aware that it is possible to 
obtain the discrete from the continuous. We 
extensively discussed the physical significance of 
this restriction, which characterizes a disturbance 
of the domain that governs the studied 
phenomenon. However, we have not yet 
analyzed the reverse path. Therefore, we pose 
the following question: can we define a physical 
phenomenon of continuous nature from a 
discrete case, that is, quantifiable? Georg 
Cantor’s diagonal method, discussed in Section 
4.1, provides the answer. We will prove that it is 
indeed possible to obtain the continuous from the 
discrete. To do this, let us consider the case of 
Planck’s equation again. Given any radiation of 
frequency 𝜈  of the electromagnetic spectrum, 
consider the set of all allowed energies for 
electromagnetic waves, Γ(𝐸) = {𝑛ℎ𝜈; 𝑛 ∈ ℕ} . As 
we saw in the analysis conducted in Section 4.3, 
the set Γ(𝐸) is infinite and countable. Therefore, 
the Diagonal Method allows us to easily obtain 
the uncountable set 𝑃(Γ) = {𝐴 ⊂
ℝ; 𝐴 is a subset of Γ(𝐸)}, whose elements are the 

subsets of Γ(𝐸). In physical terms, this set can 
be interpreted as the sum of all events in nature 
where Planck’s equation is applicable, for some 
restriction of the natural multiples of ℎ𝜈  to a 

subset of ℕ. Proceeding in this way, we obtain a 
continuous case, that is, uncountable, from the 
discrete quantum phenomena that follow 
Planck’s equation. 
 
The set Γ(𝐸) = {𝑛ℎ𝜈; 𝑛 ∈ ℕ}  is countable 
because it describes the allowable energies for 
waves of specific electromagnetic radiation, 
whose frequency 𝜈  is fixed. However, if we 

consider the set Υ(𝐸) = {𝑛ℎ𝜈; 𝑛 ∈ ℕ, 𝜈 ∈ 𝑅} of all 
energies allowed for waves of any radiation in 
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the electromagnetic spectrum, then we have 
Υ(𝐸) is an uncountable set because there exists 

a clear bijection ℱ: ℕ × ℝ → Υ(𝐸)  given by 
ℱ(𝑛, 𝜈) = 𝑛ℎ𝜈 for all 𝑛 ∈ ℕ and 𝜈 ∈ ℝ, where the 

Cartesian product ℕ × ℝ  is evidently 
uncountable. Therefore, the uncountable nature 
of the set Υ(𝐸)  allows us to infer that the 
electromagnetic spectrum as a whole is 
continuous, which is consistent with the theory of 
physics concerning electromagnetic waves. 
 

4.5 The Principle of Induction and the 
Linearity Hypothesis of the 
Schrödinger Equation 

 
In Section 4.2, we mentioned that four 
assumptions, or axioms, were made               

regarding the quantum mechanical wave 
equation, also known as the Schrödinger 
equation [11]. These hypotheses                     
justify its validity and support a possible                               
proof of it. In Section 4.2, we examined the 
assumption of the linearity of the                
Schrödinger equation in Ψ(𝑥, 𝑡), from which we 
proved the uncountable nature of the solution set 
Ω . This hypothesis states that if Ψ1(𝑥, 𝑡)  and 
Ψ2(𝑥, 𝑡)  are two distinct solutions of                              
the wave equation for a given potential energy 
𝑉(𝑥, 𝑡)  of the particle, then any arbitrary linear 
combination Ψ(𝑥, 𝑡) = 𝛼1Ψ1(𝑥, 𝑡) + 𝛼2Ψ2(𝑥, 𝑡)  is 

also a solution, where 𝛼1, 𝛼2 ∈ ℝ                     

[14]. Let Ψ1(𝑥, 𝑡), Ψ2(𝑥, 𝑡), . . . , Ψ𝑛(𝑥, 𝑡), . ..  be 
solutions of the Schrödinger equation. Therefore, 
we have: 

 

−
ℏ2

2𝑚

𝜕2Ψ1(𝑥,𝑡)

𝜕𝑥2 + 𝑉(𝑥, 𝑡)Ψ1(𝑥, 𝑡) − 𝑖ℏ
𝜕Ψ1(𝑥,𝑡)

𝜕𝑡
= 0   

 

−
ℏ2

2𝑚

𝜕2Ψ2(𝑥,𝑡)

𝜕𝑥2 + 𝑉(𝑥, 𝑡)Ψ2(𝑥, 𝑡) − 𝑖ℏ
𝜕Ψ2(𝑥,𝑡)

𝜕𝑡
= 0  

 
        ⋮                              ⋮                                   ⋮                     ⋮  

 

−
ℏ2

2𝑚

𝜕2Ψ𝑛(𝑥,𝑡)

𝜕𝑥2 + 𝑉(𝑥, 𝑡)Ψ𝑛(𝑥, 𝑡) − 𝑖ℏ
𝜕Ψ𝑛(𝑥,𝑡)

𝜕𝑡
= 0 .  

 
Induction on 𝑛 ∈ ℕ can prove that the linearity assumption holds for every arbitrary linear combination 

of these solutions. For 𝑛 = 1, we have Ψ(1) = 𝛼1Ψ1(𝑥, 𝑡). Thus, it follows: 
 

−
ℏ2

2𝑚

𝜕2Ψ(1)

𝜕𝑥2 + 𝑉Ψ(1) − 𝑖ℏ
𝜕Ψ(1)

𝜕𝑡
= −

ℏ2

2𝑚

𝜕2(𝛼1Ψ1(𝑥,𝑡))

𝜕𝑥2 + 𝑉(𝛼1Ψ1(𝑥, 𝑡)) − 𝑖ℏ
𝜕(𝛼1Ψ1(𝑥,𝑡))

𝜕𝑡
   

 

= 𝛼1 (−
ℏ2

2𝑚

𝜕2Ψ1(𝑥,𝑡)

𝜕𝑥2 ) + 𝛼1(𝑉Ψ1(𝑥, 𝑡)) − 𝛼1 (𝑖ℏ
𝜕Ψ1(𝑥,𝑡)

𝜕𝑡
)   

 

= 𝛼1 (−
ℏ2

2𝑚

𝜕2Ψ1(𝑥,𝑡)

𝜕𝑥2 + 𝑉Ψ1(𝑥, 𝑡) − 𝑖ℏ
𝜕Ψ1(𝑥,𝑡)

𝜕𝑡
)  

 
= 𝛼1 ⋅ (0) = 0.  

 

Thus, the linear combination Ψ(1) = 𝛼1Ψ1(𝑥, 𝑡) is a solution to the Schrödinger Equation. To prove 
this, we must admit the induction hypothesis for 𝑛 ∈ ℕ and show that the property also holds for 𝑛 + 1. 

Let Ψ1(𝑥, 𝑡), Ψ2(𝑥, 𝑡), . . . , Ψ𝑛(𝑥, 𝑡), Ψ𝑛+1(𝑥, 𝑡) be solutions to the Schrödinger equation.  
 
The induction hypothesis states that the linear combination 
  

Ψ(𝑛)(𝑥, 𝑡) = 𝛼1Ψ1(𝑥, 𝑡) + 𝛼2Ψ2(𝑥, 𝑡)+. . . +𝛼𝑛Ψ𝑛(𝑥, 𝑡)  
 
is a solution to this equation. Based on the induction hypothesis, we need to show that 
 

Ψ(𝑛+1) = 𝛼1Ψ1(𝑥, 𝑡) + 𝛼2Ψ2(𝑥, 𝑡)+. . . +𝛼𝑛Ψ𝑛(𝑥, 𝑡) + 𝛼𝑛+1Ψ𝑛+1(𝑥, 𝑡),  
 
also satisfies the Schrödinger equation. To simplify the notation, we define 
 

Ψ(𝑛+1) = Ψ(𝑛) + 𝛼𝑛+1Ψ𝑛+1  
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This yields the following equation: 
 

−
ℏ2

2𝑚

𝜕2Ψ(𝑛+1)

𝜕𝑥2 + 𝑉Ψ(𝑛+1) − 𝑖ℏ
𝜕Ψ(𝑛+1)

𝜕𝑡
=  

 

= −
ℏ2

2𝑚

𝜕2

𝜕𝑥2 (Ψ(𝑛) + 𝛼𝑛+1Ψ𝑛+1) + 𝑉(Ψ(𝑛) + 𝛼𝑛+1Ψ𝑛+1) − 𝑖ℏ
𝜕

𝜕𝑡
(Ψ(𝑛) + 𝛼𝑛+1Ψ𝑛+1)  

 

= −
ℏ2

2𝑚

𝜕2Ψ(𝑛)

𝜕𝑥2 −
ℏ2

2𝑚

𝜕2(𝛼𝑛+1Ψ𝑛+1)

𝜕𝑥2 + 𝑉Ψ(𝑛) + 𝑉(𝛼𝑛+1Ψ𝑛+1)

−𝑖ℏ
𝜕Ψ(𝑛)

𝜕𝑡
− 𝑖ℏ

𝜕(𝛼𝑛+1Ψ𝑛+1)

𝜕𝑡

  

 

= (−
ℏ2

2𝑚

𝜕2Ψ(𝑛)

𝜕𝑥2 + 𝑉𝛹(𝑛) − 𝑖ℏ
𝜕Ψ(𝑛)

𝜕𝑡
) +

(−
ℏ2

2𝑚

𝜕2(𝛼𝑛+1Ψ𝑛+1)

𝜕𝑥2 + 𝑉(𝛼𝑛+1Ψ𝑛+1) − 𝑖ℏ
𝜕(𝛼𝑛+1Ψ𝑛+1)

𝜕𝑡
)
  

 

= (−
ℏ2

2𝑚

𝜕2Ψ(𝑛)

𝜕𝑥2 + 𝑉Ψ(𝑛) − 𝑖ℏ
𝜕Ψ(𝑛)

𝜕𝑡
) +

𝛼𝑛+1 (−
ℏ2

2𝑚

𝜕2Ψ𝑛+1

𝜕𝑥2 + 𝑉𝛹𝑛+1 − 𝑖ℏ
𝜕Ψ𝑛+1

𝜕𝑡
)
  

 
= (0) + 𝛼𝑛+1(0) = 0,  

 

that is, the linear combination Ψ(𝑛+1) = Ψ(𝑛) +
𝛼𝑛+1Ψ𝑛+1(𝑥, 𝑡)  is also a solution to the 
Schrödinger equation. This completes our proof. 
Therefore, we have just proved by induction that 
the hypothesis of the linearity of the Schrödinger 
equation holds for any solutions 
Ψ1(𝑥, 𝑡), Ψ2(𝑥, 𝑡), . . . , Ψ𝑛(𝑥, 𝑡), … of this equation. 
 

5. CONCLUSION 
 
In this article, we investigate the relationships 
between the discrete and the continuous, 
focusing on quantum physics. We demonstrate 
that the linearity of wave functions Ψ(𝑥, 𝑡) in the 
Schrödinger equation can be proven through the 
principle of induction, which is the third Peano 
axiom. This principle is only valid for 
mathematical events that have a bijective 
relationship with the set of natural numbers or 
countable phenomena. In contrast, it was shown 
that the set Ω of all wave functions permitted by 
the Schrödinger equation is uncountable, thus 
implying no bijection between ℕ and Ω due to the 
principle of superposition, which states that if 
Ψ𝑛(𝑥, 𝑡)  is a countable sequence of wave 
functions that solve the Schrödinger equation for 
𝑛 ∈ ℕ, then the linear combination Σ𝛼𝑛Ψ𝑛(𝑥, 𝑡) is 

also a solution, where 𝛼𝑛 ∈ ℝ. Therefore, we can 
conclude that the wave functions Ψ𝑛(𝑥, 𝑡)  of 
quantum mechanics exhibit discrete 
characteristics, that is, countable, when analyzed 
separately. However, the set of possibilities for 
Ψ𝑛(𝑥, 𝑡)  is continuous, that is, uncountable. 
These results reflect a unique aspect of the 

quantum world: depending on the perspective 
used to analyze phenomena in this domain, both 
discrete and continuous behaviors can be 
observed. In this article, we also demonstrate a 
similar concept for the case of the quantization of 
electromagnetic wave energy through Planck’s 
equation. We showed that each frequency range 
of the electromagnetic spectrum has an infinite, 
countable set of permissible energy values for an 
electromagnetic wave, where the frequency of 
the wave is fixed. This set is given by Γ(𝐸) =
{𝑛ℎ𝜈; 𝑛 ∈ ℕ} and has a bijective relationship with 

ℕ, implying that the energies of each frequency 
range of the electromagnetic spectrum form a 
discrete set, that is, are quantized. However, we 
showed that the set of all permissible energy 
levels for the electromagnetic waves of these 
radiations is uncountable when analyzing the 
entire electromagnetic spectrum, where the 
frequency of radiation 𝜈 ∈ ℝ is variable. This set 

is given by Υ(𝐸) = {𝑛ℎ𝜈; 𝑛 ∈ ℕ, 𝜈 ∈ ℝ} and does 

not have a bijective relationship with ℕ . In 
summary, each frequency band of the 
electromagnetic spectrum has a countable set of 
energy levels, meaning these levels are discrete. 
In contrast, the electromagnetic spectrum in its 
entirety, with all its possibilities of radiation 
beams, presents an uncountable set of energy 
levels, that is, the total energy of the 
electromagnetic spectrum is continuous, despite 
it being constituted by infinitely many discrete 
sets of energy levels, generating a mathematical 
contradiction with Theorem 5, which states that 
the assembly of a countable family of countable 
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sets is countable, leading to the question of the 
continuity of the electromagnetic spectrum. In 
short, this article allows us to emphasize 
analytically and mathematically that the main 
paradigms and contradictions of quantum 
mechanics originated from the duality between 
the discrete and the continuous. 
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