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Abstract: Reactive oxygen species (ROS) and oxidative stress increase susceptibility to neurode-
generation and other age-related pathologies. We have previously demonstrated that an infusion
prepared from Pulicaria incisa (Pi) has protective, anti-inflammatory, and antioxidative effects in glial
cells. However, the neuroprotective activities of Pi infusion in cultured neurons and aging mice have
never been studied. In the following study, the effects of Pi infusion were explored in a hydrogen
peroxide (H2O2)-induced oxidative stress model in SH-SY5Y human neuroblastoma cells. Profiling of
the infusion by gas chromatography–mass spectrometry identified chlorogenic acid, quercetin, and
aucubin as some of its main constituents. H2O2-induced ROS accumulation and caspase 3 activity
decreased SH-SY5Y viability and were prevented upon the pretreatment of cells with Pi infusion.
Additionally, the Pi infusion upregulated cellular levels and the nuclear translocation of nuclear
factor erythroid 2–related factor 2 (Nrf2) as well as the phosphorylation of cyclic AMP response
element-binding protein (CREB). Aging mice treated daily for 18 months with Pi infusion exhibited
reduced neuronal cell death in the hippocampus as compared to age-matched controls. We, therefore,
propose Pi infusion as a candidate regulator of oxidative stress in the brain.

Keywords: Pulicaria incisa; reactive oxygen species; Nrf2; CREB; chlorogenic acid; functional beverage;
phytochemicals; neuroprotection; hippocampus; aging

1. Introduction

Increased lifespans in the Western world have led to a rise in the frequencies of neu-
rodegenerative diseases resulting from neuronal loss. Despite their increased prevalence,
there are currently no effective preventive or therapeutic modalities for these deficits. Ox-
idative stress leading to neuronal cell death is a central process involved in the initiation and
progression of neurodegenerative diseases and aging and, as such, is considered a potential
target for the treatment of these diseases [1,2]. Reactive oxygen species (ROS)-elicited
oxidative stress is one of the major factors involved in the aging process and may serve as
one of the mechanisms underlying age-related degenerative diseases [3]. Indeed, increased
ROS production damages almost every intracellular macromolecule in neurons, including
proteins, lipids, and DNA, resulting in cellular dysfunction, mutations, and/or cell death.
Therefore, the regulation of ROS levels is important to prevent or treat neurodegenerative
diseases and aging. In recent years, natural dietary components with antioxidant activity
have attracted much attention due to their role in modulating oxidative stress associated
with brain aging and chronic conditions [4,5]. H2O2 is a key metabolite in oxidative stress
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which occurs in normal metabolism in mammalian cells at concentrations ~10 nM [6].
Higher concentrations lead to adaptive stress responses via nuclear factor erythroid 2–
related factor 2 (Nrf2)/Keap1, while supraphysiological concentrations of H2O2 (>100 nM)
lead to damage of biomolecules [6]. H2O2 was also shown to modulate the activity of the
transcription factor cyclic AMP response element-binding protein (CREB) [7].

In a previous study, we showed that an infusion prepared from the plant Pulicaria incisa
(Lam.) DC. (Pi) protected astrocytes from oxidative-stress-induced cell death, attenuated the
induced ROS levels, demonstrated antioxidant properties in cell-free assays, and induced
the transcription of glial-derived neurotrophic factor (GDNF) [8,9]. The infusion also
triggered anti-inflammatory activity and inhibited the activation of microglial cells which
secrete ROS [9]. Pulicaria incisa (Pi) is a desert plant that is used in folk medicine to treat
various diseases [10–17]. Interestingly, Bedouins in Israel, northern Sinai, Egypt, and Jordan,
drink infusions prepared from the wild-growing Pi plant in place of tea and to treat various
illnesses [11,12,18]. Since Pi infusion possessed properties of antioxidants and protective
effects in glial cells [8,9], we hypothesized that Pi infusion might protect neuronal cells against
oxidative stress. The present study aimed to examine the antioxidative and neuroprotective
effects of Pi infusion on H2O2-mediated oxidative stress in cultured neuronal cells and on
neuronal survival in the hippocampus of aging mice. The effects of Pi infusion on CREB
and Nrf2 activation in neuronal cells was also assessed. The presented results support the
potential of Pi infusion to be developed as a neuroprotective antioxidant beverage.

2. Materials and Methods
2.1. Plant Material and Preparation of Pi Infusion

The Pi plants were grown in Southern Arava Research and Development, Hevel Eilot,
Israel. Aerial parts of Pi plants collected in January were air-dried. The Pi infusion was
prepared by soaking dried aerial Pi parts in a beaker containing boiling autoclaved double
distilled water (DDW) in a ratio of 1 g plant:20 mL DDW. The beaker was allowed to cool at
room temperature (RT) for 45 min, and the infusion was transferred into tubes. The tubes
were centrifuged (4000 RPM, 10 min, RT), the supernatant was collected, filtered through
0.2 µm filters, and aliquots were frozen and stored at −20 ◦C, until use. To determine the
concentration of Pi infusion, a 40 mL sample of the filtered supernatant was lyophilized to
obtain a powder that was weighed. The average concentration of the various preparations
of Pi infusion was ~7 mg/mL. For in vivo experiments in mice, Pi infusions were prepared
similarly, except that sterile autoclaved tap water was used instead of DDW.

2.2. Chemical Characterization of Pi Infusion
2.2.1. Sample Preparation

The infusion was lyophilized (Alpha-Christ, Christ, Osterode am Harz, Germany)
and stored at −20 ◦C. Samples (30 mg) and 50 µL of 0.2 mg/mL ribitol (Sigma Aldrich,
St. Louis, MO, USA) in methanol (Acros organics, Morris, NJ, USA) as internal standard,
were dissolved in 0.2 mL DDW (Synergy® UV Water Purification System, Merck, Darmstadt,
Germany). A SEP-PAK C18 cartridge (Waters, Milford, MS, USA) was pre-washed with
1 mL methanol, followed by 1 mL H2O. The sample was loaded on the cartridge and eluted
with 1.5 mL DDW. The aqueous phase was collected. Next, the cartridge was washed with
1.5 mL methanol, and the methanolic phase was collected. A 0.5 mL sample of each phase
was lyophilized and then derivatized, according to an established protocol [19].

2.2.2. Silylation Derivatization

Briefly, 70 µL methoxyamine hydrochloride (Sigma, Aldrich, St. Louis, MO, USA)
solution (40 mg/mL in pyridine) was added to each lyophilized sample in an Eppendorf
tube. Samples were then incubated in a thermoshaker for 90 min, after which, 100 µL
N-methyl-N-(trimethylsilyl)-trifluoroacetamide (MSTFA; Sigma, Aldrich, St. Louis, MO,
USA) were added. Samples were mixed in a thermoshaker at 30 ◦C for 30 min, and 70 µL
were used for injection into GC/MS.
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2.2.3. Gas Chromatography–Mass Spectrometry Analysis

GC/MS analysis was performed with an Agilent 6850 GC (Agilent, Santa Clara, CA,
USA), equipped with Agilent 5975C single quadrupole MS, CTC-PAL RSI 85 auto-sampler, and
HP-5MS capillary column (0.25 µm × 30 m × 0.25 mm). The following conditions were applied:
injector temperature 250 ◦C, initial temperature 50 ◦C for 5 min, a gradient of 5 ◦C/min until
180 ◦C, a gradient of 10 ◦C/min until 270 ◦C and a hold time of 10 min, and increasing to
320 ◦C. The MS parameters were set as follows: source temperature 230 ◦C, transfer line 325 ◦C,
quadrupole: 150 ◦C, detector 325, positive ion monitoring and electron ionization (EI)-MS
measurement at 70 eV [19]. Helium was used as a carrier gas, infused at 0.6 mL/min.

2.2.4. Data Processing and Compound Annotation

Data were analyzed by the Unknown Analysis software (Agilent, Santa Clara, CA,
USA). The percentage composition of the samples was computed from the GC peak areas.
Library searches were conducted using the National Institute of Standards and Technology
(NIST) 14 GC/MS Library and mass spectra from the literature. Component-relative
percentages were calculated based on GC peak areas without using correction factors.
Commercially available standards were used for 2-hydroxybenzoic acid, 4-hydroxybenzoic
acid, genistic acid, protocatechuic acid, quininic acid, gallic acid, ferulic acid, caffeic acid,
(2R-E) catechin, and quercetin (Sigma, Aldrich, St. Louis, MO, USA).

2.3. Cell Growth

SH-SY5Y (ATCC CRL-2266) were grown in a 1:1 mixture of Eagle’s minimum essential
medium (EMEM) (ATCC, Manassas, VA USA) and F12 medium (Biological Industries,
Israel), supplemented with 10% fetal bovine serum (FBS) and 1% penicillin–streptomycin
(Biological Industries, Beit Haemek, Israel). Passages 12–20 were used in this study. All
the experiments included a vehicle control group containing double distilled water (DDW)
instead of the Pi infusion.

2.4. Measurement of Cell Viability

SH-SY5Y cells were seeded (30,000/well) in a 96-well plate and were grown for 24 h in a
1:1 mixture of EMEM: F12 medium, containing 2% FBS and 1% penicillin–streptomycin. The
medium was replaced the next day with fresh medium containing different concentrations
of Pi infusion, and cells were incubated for 2 h. Then, cells were treated with H2O2
(200 µM), and cytotoxicity was measured 20 h later. Cytotoxicity was measured using the
2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay, as
per the manufacturer’s instructions (Sartorius AG, Goettingen, Germany). Absorbance was
measured at 490 nm in a Synergy2 multi-detection microplate reader (BioTek Instruments,
Inc., Winooski, VT, USA). The absorbance of the plate before the addition of XTT served as
the background absorbance.

2.5. Quantitation of Nrf2 Levels in Nuclear Extracts

SH-SY5Y cells were seeded (10 × 106/252 cm flasks) and cultured overnight in a
1:1 mixture of EMEM: F12 medium, containing 2% FBS and 1% penicillin–streptomycin.
The medium was replaced the next day with a fresh medium. The cells were pretreated
with Pi infusion, after which, 200 µM H2O2 was added for an additional 2 h or 18 h.
Nuclear proteins were extracted using a nuclear extraction kit (Cayman Chemical, Ann Arbor,
MI, USA), according to the manufacturer’s instructions, and protein concentrations were
determined using the BCA protein assay kit (Pierce Biotechnology, Rockford, lL, USA). Equal
amounts (20 µg protein) from each sample were tested (27 ◦C in a heated block) for Nrf2
levels using the Nrf2 Transcription Factor Assay kit (Cayman Chemical, Ann Arbor, MI, USA).
This assay kit detects specific transcription factor DNA-binding activity in nuclear extracts.
A specific dsDNA sequence containing the Nrf2 response element is immobilized onto a
96-well plate. Nrf2 from nuclear extracts specifically binds to the Nrf2 response element and
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is detected by the addition of a specific primary anti-Nrf2 antibody. A secondary antibody
conjugated to HRP is added to provide a sensitive colorimetric readout at 450 nm.

2.6. Immunocytochemistry

SH-SY5Y cells were replated (150,000 cells/well) into 24-well plates containing glass
coverslips, in a 1:1 mixture of EMEM:F12 medium, containing 2% FBS and 1% penicillin–
streptomycin. The medium was replaced the next day with fresh medium, and cells were
then pretreated with Pi infusion for either 1 h or 2 h. Then, 200 µM H2O2 was added
for either 2 h or 18 h. Following treatment, the cells were washed with warm Phosphate
buffered saline (PBS) and then fixed with 4% formaldehyde for 15 min at room temperature,
washed 3 times with PBS, and permeabilized for 3 min with 0.01% Triton-x in PBS. The
cells were washed again and incubated with 10% normal mouse serum in PBS, for 30 min,
at room temperature, then rinsed with PBS and incubated overnight, at 4 ◦C, with Alexa
Fluor 488-conjugated mouse monoclonal anti-human Nrf2 antibody (sc-518033, Santa Cruz
Biotechnology, Dallas, TX, USA) in PBS containing 1.5% normal mouse serum. To visualize
the nuclei, the cells were washed again, stained with 4’,6-diamidino-2-phenylindole (DAPI)
1:10,000 in PBS (15 min, at room temperature), and rinsed 4 times with PBS. Images were
acquired by a Leica SP8 laser scanning microscope (Leica, Wetzlar, Germany), equipped
with solid-state lasers with 405 and 488 nm light, HC PL APO CS 63x/1.2 water immersion
objective (Leica, Wetzlar, Germany), and Leica Application Suite X software (LASX, Leica,
Wetzlar, Germany). DAPI and Alexa Fluor 488 emission signals were detected with PMT
and HyD (hybrid) detectors in ranges of 415–490 and 500–550 nm, respectively. An average
of 11 images/coverslip were captured, with the same exposure time for all samples. The
mean fluorescence values in regions of interest were quantified with ImageJ software (NIH).

2.7. Determination of Caspase-3 Activity

SH-SY5Y cells were re-plated into 6-well plastic plates at a density of 2 × 106 cells/2.5 mL/
well in 2.5 mL of a 1:1 mixture of EMEM:F12 medium, containing 2% FBS and 1% penicillin–
streptomycin. The medium was replaced the next day with fresh medium and cells were
treated with Pi infusion, for 2 h. Then, 200 µM H2O2 was added to each well, and cells
were incubated for 20 h before being scraped into tubes and washed twice with 1 mL
of cold PBS (125 g, 5 min). The supernatant was discarded, and pellets were incubated
in a cold lysis buffer comprised 10 mM TRIS pH 7.5, 100 mM NaCl, 1 mM EDTA, and
0.01% Triton X-100, for 30 min, on ice. After freezing in liquid nitrogen and thawing, the
supernatant was centrifuged (10,000× g, 15 min) and the lysates were frozen at −80 ◦C.
Protein concentration was determined using a BCA kit. Equal amounts of protein (20 µg)
were tested for caspase-3 activity using the EnzChek Caspase-3 assay kit (Molecular Probes,
Eugene, OR, USA). Fluorescence was measured using the SynergyTM Neo2, Multi-Mode
microplate reader (BioTek Instruments, Inc., Winooski, VT, USA).

2.8. Determination of Phospho-CREB Levels

SH-SY5Y cells were re-plated into 6-well plates at a density of 2 × 106 cells/2.5 mL/well
in a 1:1 mixture of EMEM:F12 medium, containing 2% FBS and 1% penicillin–streptomycin.
Medium was replaced the next day with fresh medium, and cells were treated with Pi
infusions at the indicated concentrations, for 2 h. Thereafter, 200 µM H2O2 was added for
30 min. Medium was collected into tubes and cells were washed with cold PBS and then
lysed on ice in 0.5 mL/well lysis buffer containing 20 mM Tris-HCl (pH 7.5), 150 mM NaCl,
1 mM Na2 EDTA, 1 mM EGTA, 1% Triton x-100, 20 mM sodium pyrophosphate, 25 mM
sodium fluoride, 1 mM β-glycerophosphate, 1 mM Na3VO4, 1 µg/mL leupeptin and 1 mM
PMSF. After 5 min, cells were scraped and collected into tubes, frozen in liquid nitrogen,
thawed, and centrifuged for 10 min at 13,000× g, 4 ◦C. The supernatant was collected and
stored at −80 ◦C. Protein concentration was determined using the BCA kit protein assay kit
(Pierce Biotechnology, Rockford, lL, USA). Equal amounts of protein were analyzed using
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the PathScan Phospho-CREB sandwich ELISA kit (Cell Signaling Technology, Danvers, MA,
USA), according to the manufacturer’s instructions.

2.9. Evaluation of Intracellular ROS Levels

Intracellular ROS levels were determined using the non-fluorescent cell-permeable
compound, 2’7’-dichlorofluorescein diacetate (DCF-DA; Sigma, Aldrich, St. Louis MO,
USA). SH-SY5Y cells were plated onto 24-well plates (30,000 cells/0.5 mL/well) and
incubated for 24 h in a 1:1 mixture of EMEM:F12 medium, containing 2% FBS and 1%
penicillin–streptomycin. Cells were then labeled with DCF-DA (20 µM) for 30 min, at 37 ◦C.
Following incubation with DCF-DA, cultures were rinsed twice with PBS which was then
replaced with fresh medium. ROS levels (fluorescence) at time zero were measured in a
plate reader with excitation at 485 nm and emission at 520 nm. SH-SY5Y cells were then
treated with Pi infusions at the indicated concentrations, for 2 h, before H2O2 was added.
Fluorescence intensities (indicative of ROS levels) were measured 1 h and 18 h later, by
the SynergyTM Neo2, Multi-Mode microplate reader (BioTek Instruments, Inc., Winooski,
VT, USA). The background fluorescence intensities at time zero were subtracted from the
intensities at 1 h and 18 h.

2.10. In Vivo Establishment of the Aging Mouse Model

The research was conducted following The National Institute of Health (NIH) guide-
lines for the care and use of laboratory animals and was approved by The National Permit
Committee for animal science (IL-20-2-60). Twenty-seven female C57BL mice (5-week-old,
weighing ~15.5 g) were purchased from Envigo, Israel. The mice were maintained under a
controlled 12 h light/12 h dark cycle, with free access to food and water. The mice were
randomly allocated into three groups (9 mice/group). Control mice drank only water,
without Pi infusion. Nine mice received a daily Pi infusion (200 mg/kg or 600 mg/kg
body weight) in the drinking water for 18 months, starting from ~1.5 months of age. The
Pi infusions were prepared as described above, except that instead of DDW, they were
prepared in sterile tap water. Each day, a new frozen tube of Pi infusion was thawed and
then diluted into autoclaved tap water, which was added to the drinking autoclaved tap
water bottles to a final volume of 60 mL. Each bottle was covered with aluminum foil to
minimize exposure to light.

2.11. Hematoxylin and Eosin Staining Assay

At 19 months of age, mice were sacrificed, and brains were harvested and stored
for 48 h in 4% formaldehyde. The tissues were processed for paraffin embedding, and
serial sections (4 µM thick) were cut off with a microtome. Paraffin-embedded sections
were deparaffinized and rehydrated and then stained with hematoxylin and eosin (H&E)
following a previously published method [20]. After H&E staining, histopathological
changes were then assessed as described in Section 2.12.

2.12. Digital Morphometry and Histopathological Evaluation of Pyknosis in the Hippocampus

The number of hippocampal neurons at the cornu Ammonis 3 (CA3) and dentate
gyrus (DG) regions was quantified at a magnification of X20, using MATLAB software by
brightness, color, and morphological-based segmentation. The image analysis system used
was Image Pro Ver. 10.0.11 (Media Cybernetics, Rockwille, MD, USA). Identification of
pyknosis in the hippocampus was based on the color and brightness of pixels, as measured
using the ‘Smart Segmentation’ option (Machine Learning option) combined with the
“Classification learning” process, which involves teaching the system morphometric and
density parameters indicative of vital versus pyknotic cells [21]. This selection is saved
and applied to each new image and can be changed if needed (the software keeps learning
the changes). The percentage of the pyknotic neurons was calculated as the number of
pyknotic neurons out of the total number of neurons (vital + pyknotic).
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2.13. Statistical Analyses

Statistical analyses were performed with one-way ANOVA followed by Tukey–Kramer
multiple comparison tests, using the JMP 7 statistical analysis software program (SAS
Institute, Inc., Duxbury, MA, USA). In this analysis, columns with different letters (i.e.,
A, B, C) are significantly different (p < 0.05), and columns with the same letter are not
significantly different (p > 0.05).

3. Results
3.1. Chemical Characterization of Pi Infusions

Pi infusions presented a rich metabolomic profile, comprised a total of 88 compounds,
including 13 organic acids (accounting for 6.5% of the total peak area of the methanolic
phase), 4 alcohols (0.48%), 11 amino acids (0.97%), 26 sugars and saccharides (40.4%), 3 fatty
acids (1.45%), 3 terpenes (8.37%), 35 phenolic compounds (34.8%) and 5 other compounds
(6.8%). The main compounds in Pi infusion and their relative contents in the methanolic
and aqueous phases are presented in Table 1, and respective chromatograms are brought
in Figure 1. In the methanolic phase, saccharides including sucrose (15.35% of total peak
area), fructose (11.65%), myo-inositol (6.42%), and talose (4.52%) were most abundant,
while chlorogenic acid and its derivatives (17.77%), quercetin and its derivatives (8.08%),
and aucubin (2.79%) were most abundant non-saccharides. Saccharides were also the
most abundant group of compounds in the aqueous phase, mainly fructose (25.91%), myo-
inositol (25.90%), talose (10.31%), and glucose (9.04%), in addition to citric acid (3.81%),
galactaric acid (3.57%) and malic acid (1.92%) as the prevalent non-saccharides. Our analysis
revealed the presence of various chlorogenic acid isomers. Phenolic acids rarely appear in a
free form, and typically are esterified with quinic or tartaric acid or a sugar moiety at different
locations, giving rise to various structural isomers [22]. Specifically, chlorogenic acid is a group
of caffeic and quinic acid esters, comprising six different isomers (3-O- caffeoylquinic acid
(3CQA), 4CQA, 5CQA, 3,4-dicaffeoylquinic acid (3,4-DQA), 3,5-DQA and 4,5-DQA), or 26
compounds when considering cis-trans isomerization [23]. These have also been reported to
vary in occurrence, bioavailability, and bioactivity [24]. Similarly, flavonoids, e.g., quercetin,
present characteristic versatility due to structural variability, owing to conjugation with various
sugar moieties at various positions [25,26]. As GC/MS metabolomic analysis cannot be used
for reliable quantification, the current data only provided relative quantification of these
compounds, and further use of quantitative methods, e.g., LC-QqQ-MS, accompanied by
commercially available standards, would be required for supplying quantitative information
about the levels of the reported metabolites in Pi infusion.

Table 1. Main compounds identified in the methanolic and aqueous phases of Pulicaria incisa infusion.

Compound Rt Total Peak Area (%) in the
Methanolic Phase

Total Peak Area (%) in the
Aqueous Phase

Malic acid 21.884 1.925
3-Aminophenol 25.702 1.414

Citric acid 27.333 1.034 3.806
Quininic acid 28.051 1.754

Fructose 28.259 11.647 25.913
Talose 28.634 4.517 10.309

Glucose 28.646 9.038
Myo-Inositol 29.433 6.418 25.897

Quinoline, 5-chloro-8-ethoxy-7-iodo- 29.442 1.825
Galactaric acid 30.296 3.575

Caffeic acid 31.520 1.327
Sucrose 37.814 15.348 8.261

Turanose 38.323 1.240
Aucubin 39.131 2.792

Catechine (2R-E) 40.487 2.115
Chlorogenic acid 1 41.573 16.192

Quercetin 41.974 8.082
Chlorogenic acid 2 42.115 1.424
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Figure 1. A GC/MS chromatogram of a metabolomic analysis of Pi infusion. The Pi infusion was run
on an SPE Sep-Pak C18 cartridge and eluted with water to yield the aqueous phase (a), followed by
methanol elution to yield the methanolic phase (b). Extracts were derivatized before analysis.

Metabolites were analyzed by GC/MS metabolomics following C18 SPE extraction
with methanol (methanolic phase) and DDW (aqueous phase). Presented are metabo-
lites that comprised at least 1% of the total ion count (total peak area) of the respective
chromatograms. Quercetin and Quininic acid were identified by commercial standards.
Fructose and Quercetin represent the sum of numerous derivative peaks, resulting from N-
methyl-N-(trimethylsilyl)-trifluoroacetamide (MSTFA) derivatization at different locations
of the molecules. Chlorogenic acids 1 and 2 may represent different isomers or different
derivatives of the same isomer.

3.2. Pi Infusion Protects Neuronal Cells against Oxidative-Stress-Induced Cell Death

Pi infusion has antioxidant activity [8,9]. To determine the effects of Pi infusion on
H2O2-induced neuronal cell death, the cytotoxicity of H2O2 in SH-SY5Y cells was first
assessed using the XTT assay. Exposure of SH-SY5Y cells to H2O2 resulted in time- and
concentration-dependent cell death (Figure 2a). The concentration of H2O2 selected for
subsequent experiments (200 µM) resembled the concentration reported in rat striatum
under ischemic conditions [27]. Pretreatment of the cells with Pi infusion before the
induction of oxidative stress resulted in marked and statistically significant dose-dependent
protection from cell death (Figure 2b). Of note, no Pi infusion cytotoxicity was recorded at
any concentration tested (Figure 2c).
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Figure 2. Neuroprotective effect of Pulicaria incisa (Pi) infusion against oxidative stress. (a) The cells
were treated with increasing concentrations of hydrogen peroxide. Twenty hours later, cell viability
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was measured using the XTT assay. The results of untreated cells were defined as 100% viability.
0.745 OD = 100%. The results are presented as mean ± SEM and represent one experiment (out of
two experiments) with 6 repetitions. The results were analyzed by one-way ANOVA followed by
the Tukey–Kramer multiple comparisons test. Different letters (A, B, C, D) represent statistically
significant differences (p < 0.001) (b) The cells were treated with increasing concentrations of Pi
infusions for 2 h before exposure to 200 µM hydrogen peroxide. Twenty hours after the induction of
the oxidative stress, cell viability was measured using the XTT assay. The results are presented as
mean ± SEM and represent one experiment with 6 repetitions. The results were analyzed by one-way
ANOVA followed by the Tukey–Kramer multiple comparisons test. Columns marked with different
letters (A, B, C, D, E) represent statistically significant differences (p < 0.05). (c) Effect of Pi infusion
on the viability of SH-SY5Y cells. Cells were treated with increasing concentrations of Pi infusions.
Twenty-four hours later, cell viability was measured using the XTT assay. The results of untreated
cells were defined as 100% viability. 0.364 OD = 100%. The data are expressed as mean ± SEM of two
independent experiments (n = 12). The results were analyzed by one-way ANOVA. No significant
differences were observed.

3.3. Pi Infusion Inhibits H2O2-Induced Caspase-3 Activity

Caspases are cysteine proteases that are involved in cell death [28]. Since it has been
previously shown that H2O2 activates caspase 3 during apoptosis [29,30], and since Pi
infusion protects neuronal cells from oxidative-stress-induced cell death, we examined
whether the neuroprotective mechanism of Pi infusion involves inhibition of caspase 3
activity. To this end, cells were pretreated with Pi infusion for 2 h before exposure to
H2O2. The enzymatic activity of caspase 3 in cell lysates was then determined 3 h and 20 h
after exposure to H2O2. Extended exposure to H2O2 led to a 1.6-fold increase in caspase-3
activity relative to untreated cells, while preincubation with 100 µg/mL Pi infusion before
H2O2 exposure inhibited this activity by 79% (Figure 3a). After 3 h of exposure to H2O2,
only a minor increase (1.1-fold) in caspase 3 activity relative to control untreated cells
was recorded. At both time points, the levels of caspase 3 activity in cells treated with Pi
infusion alone were very similar to that measured in untreated cells. Figure 3b presents
the results of 20 h exposure to H2O2 which demonstrates that the activity of caspase 3 is
significantly elevated by H2O2 (p < 0.001), and the induced activity is significantly (p < 0.01)
inhibited (49% inhibition of the induced activity) by Pi infusion.

3.4. The Effect of Pi Infusion on H2O2-Induced ROS Levels in Neuronal Cells

H2O2 induces an elevation in intracellular ROS levels [9]. To assess the possibility that
Pi infusion protects neuronal cells from H2O2-induced cell death by inhibiting the H2O2-
induced elevation of ROS levels, changes in intracellular levels of ROS were measured
with the ROS indicator DCF-DA. Treatment of cells with H2O2 (200 µM) resulted in a
significant 10-fold and 6-fold elevation in intracellular ROS levels after 1 h and 18 h of
treatment, respectively (Figure 4), suggesting that elevation in ROS levels is an early event
that persists for at least 18 h. When pretreated with various concentrations of Pi infusion 2 h
before H2O2 application, the increase in H2O2-induced ROS levels was entirely abrogated
(at 100 and 200 µg/mL), both after 1 h and 18 h of treatment with H2O2.
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Figure 3. Pi infusion inhibits caspase 3 activity in neuronal cells exposed to hydrogen peroxide. Cells
were pretreated with Pi infusion for 2 h before exposure to 200 µM H2O2. (a) Caspase 3 activity in
cell lysates (20 µg) was measured (for 30 min) 3 h and 20 h after the induction of oxidative stress. The
results are presented as mean ± SD of one experiment with two repetitions. (b) Caspase 3 activity in
cell lysates (20 µg) was measured 20 h after the induction of oxidative stress for 30 min. The results
are presented as mean ± SEM and represent three independent experiments (n = 6). The results were
analyzed by one-way ANOVA followed by the Tukey–Kramer multiple comparisons test. Columns
marked with different letters (A, B, C) represent statistically significant differences. (p < 0.05).
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Figure 4. Pi infusion reduces H2O2-induced increases in intracellular reactive oxygen species (ROS)
levels in neuronal cells. Cells were labeled with (2’7’-dichlorofluorescein diacetate) DCF-DA and
washed, before being treated with increasing concentrations of Pi infusion for 2 h. Then, hydrogen
peroxide (200 µM) was added to the medium and fluorescence levels were measured 1 h and 18 h
thereafter. The results are presented as mean ± SEM and represent two independent experiments
(n = 12). The results were analyzed by one-way ANOVA followed by the Tukey–Kramer multiple
comparison test. Columns marked with different letters (A, B, C, etc.) represent statistically significant
differences (p < 0.05).

3.5. Pi Infusion Upregulates Cellular Levels of Nrf2 and Induces Its Translocation to the Nucleus

We have raised the possibility that Pi infusion activates an intracellular signal path-
way in addition to its chemical antioxidant activity. The Nrf2 transcription factor is a
key regulator of antioxidant responses and is known to be responsible for increasing the
expression of antioxidant enzymes in the cell [31]. Under physiological conditions, most
of the Nrf2 protein is located in the cytoplasm. However, following appropriate signals,
including phytochemicals, Nrf2 translocates to the nucleus, where it activates the Nrf2-ARE
pathway [32]. Both immunostaining and biochemical assays were used to test whether Pi
infusion activates the Nrf2 pathway. Immunostaining with anti-Nrf2 and DAPI demon-
strated that in control untreated cells, Nrf2 levels were relatively very low (Figure 5a).
Following treatment with Pi infusion, cellular levels of Nrf2 were upregulated over time
and underwent translocation from the cytoplasm to the nucleus. To quantify the effect
of Pi infusion, the fluorescence intensities of Nrf2 in the nucleus and cytoplasm, were
normalized relative to the DAPI intensity. Normalized Nrf2 fluorescence of Pi-treated (2 h
of treatment) as compared to untreated cells were 14-, and 15-fold higher in the cytoplasm,
and nucleus, respectively (Figure 5b).
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Figure 5. Pi infusion enhances nuclear factor erythroid 2–related factor 2 (Nrf2) expression levels
and promotes Nrf2 translocation to the nucleus of neuronal cells. SH-SY5Y cells were treated by
Pi infusion (200 µg/mL) for 1 h or 2 h and then immunostained for Nrf2 and nuclei were stained
with DAPI. (a) Representative images of each treatment from two independent experiments. Each
experiment was conducted in duplicates. Bar: 20 µm. (b) The Image J-measured fluorescence
intensities of DAPI were used to normalize nuclear and cytoplasmic Nrf2 fluorescence intensity
in 11 different photographed fields. Nrf2 intensity was normalized to DAPI intensity. The results
are presented as mean ± SEM (n = 11) and were analyzed by one-way ANOVA followed by the
Tukey–Kramer multiple comparison test. Columns marked with different letters (A, B) represent
statistically significant differences (p < 0.05).

To validate our results, protein levels of nuclear Nrf2 were assessed using a biochemical
kit 4 h and 20 h following exposure to Pi infusion. Figure 6 shows that 4 h of treatment
with Pi infusion increased nuclear Nrf2 levels 2.5-fold, relative to those of the control
untreated cells. As expected, nuclear Nrf2 levels decreased with time, with Nrf2 levels after
4 h of Pi infusion treatment significantly higher than Nrf2 levels after 20 h of Pi infusion
treatment. We further examined whether this effect was maintained in the presence of
H2O2 by preincubating cells with Pi infusion for 2 h and then treating them with H2O2
for 2 h or 18 h. H2O2 had no significant effect on the Nrf2 levels that were induced by Pi
infusion (Figure 6).
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Figure 6. Pi infusion enhances Nrf2 expression levels in the nucleus of neuronal cells. SH-SY5Y cells
were pretreated with Pi infusion (200 µg/mL) for 2 h or 18 h, and then incubated for an additional
2 h with H2O2 (200 µM). Nrf2 levels in the nucleus were then determined. The results are from a
representative experiment out of two independent experiments, with each experiment conducted in
duplicates. The results are presented as mean ± SEM (n = 4) and were analyzed by one-way ANOVA
followed by the Tukey–Kramer multiple comparison test. Columns marked with different letters (A,
B, C) represent statistically significant differences (p < 0.05).

3.6. Pi Infusion Upregulates the Phosphorylation of the Transcription Factor Cyclic AMP Response
Element-Binding Protein (CREB)

CREB is localized in the nucleus and acts as a transcription factor, which in its phospho-
rylated state mediates cellular response to a variety of signals [33]. CREB activity in neurons
has been correlated with intracellular processes including survival, neurogenesis, and neu-
ronal plasticity [33–35]. To gain more insight into the involvement of CREB signaling in the
neuroprotective effect of Pi infusion, CREB phosphorylation was measured in neuronal
cells treated with Pi infusion in the presence and absence of H2O2. Treatment of cells with
Pi infusion for 2 h elicited a significant (p = 0.001) increase in CREB phosphorylation, with
a maximal 2-fold elevation at 100 µg/mL and 200 µg/mL infusion (Figure 7) and did not
change on the addition of H2O2. The optimal concentration for the induction of CREB
phosphorylation was 100 µg/mL, which corresponded with the optimal concentration for
cell protection from H2O2-induced cell death. It should be noted that treatment with Pi
infusion and/or hydrogen peroxide, did not induce an increase in the levels of total CREB
(data not shown).
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Figure 7. Pi infusion upregulates cyclic AMP response element-binding protein (CREB) phosphoryla-
tion. Cells were pretreated for 2 h with increasing concentrations of Pi infusion. H2O2 (200 µM) was
then added, and pCREB levels in cell lysates (25 µg) were determined 30 min later. The results are
presented as mean ± SEM of three experiments performed in duplicates (n = 6) and were analyzed
by one-way ANOVA followed by the Tukey–Kramer multiple comparison test. Columns marked
with different letters (A, B) represent statistically significant differences p < 0.001.

3.7. Consumption of Pi Infusion Prevents Neuronal Cell Death in the Hippocampus of Aging Mice

Alterations in the intracellular redox ratio during aging appear to be highly localized
to the brain hippocampus [36,37]. We, therefore, examined whether Pi infusion has a
neuroprotective effect in vivo by preventing neuronal mortality in the hippocampus of
aging mice. Figure 8a demonstrates that after 18 months of daily treatment with Pi infusion-
supplemented drinking water, mouse brains contained a significantly reduced percentage
of pycnotic cells in the CA3 and DG (70% and 83% reduction, respectively). In the DG area,
600 mg/kg Pi infusion also significantly enhanced the number of vital neuronal cells by
more than 50% (Figure 8b).
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Figure 8. Consumption of Pi infusion enhances the viability of hippocampal neurons in aged mice.
Brain sections of 19 months old mice treated daily for 18 months with Pi infusion, were stained with
hematoxylin and eosin for morphometric analysis of the number of hippocampal neurons in the cornu
Ammonis 3 (CA3) and dentate gyrus (DG) regions, as viewed through an objective magnification of
X20. The percentage of pyknotic neurons was calculated as the number of pyknotic neurons out of
the total number of neuronal cells (vital + pyknotic). The results are presented as mean ± SEM (n = 9).
Columns marked with different letters (A, B, C) represent statistically significant differences p < 0.05.

4. Discussion

The increasing life span and number of patients with neurodegenerative diseases have
brought to a growing interest in the development of nutritional supplements and functional
foods and beverages that can support neuronal health. This study examined the effects
of an infusion prepared from the Pulicaria incisa plant on cultured neuronal cells under
oxidative stress and in vivo in aging mice. Pi infusions successfully protected neurons
against oxidative stress, reduced intracellular ROS levels to the levels observed in control
samples, increases Nrf2 expression, and induced its translocation from the cytoplasm to
the cell nucleus.

Long-term oxidative stress, ROS accumulation, and oxidative damage to macro-
molecules in the brain are strongly associated with neurodegenerative diseases and are
critical contributors to aging and age-related pathologies through organelle dysfunction
(e.g., mitochondrial dysfunction), DNA damage, and protein aggregation. Nrf-2 is a redox-
sensitive transcription factor that activates the antioxidant system in the cell [38] and
upregulates genes that combat these adverse effects and mitigates age-related patholo-
gies [1,39,40]. Nrf2 target genes protect against the development of age-related pathologies,
both by neutralizing free radicals and by preventing the damage caused by ROS. Under
basal conditions, Nrf2 is constantly degraded in the cytoplasm, but under oxidative stress,
degradation is halted, leaving it stabilized and free to translocate to the nucleus, and
subsequently activate the transcription of antioxidant genes whose promoters contain the
antioxidant response element (ARE) [41]. Nrf2 induction prevents senescence and promotes
proteasome formation and cell survival by preventing an increase in ROS, controlling the
expression of anti-apoptotic mitochondrial proteins, such as BCL-2 and BCL-xL, and by
modulating apoptosis and autophagy-related signaling [42,43].

The gradual reduction in Nrf2 expression with age resulting in increased oxidative
stress appears to be a major risk factor for heightened susceptibility to neurodegenerative
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disorders and contributes to each of the hallmarks of aging, i.e., inhibited DNA repair, an
overall increase in mutations and genomic instability, loss of proteostasis, telomere attrition,
epigenetic alterations, mitochondrial dysfunction, deregulated nutrient metabolism and
sensing, cellular senescence, stem cell exhaustion and altered intercellular communica-
tions [39,44–47].

The hippocampus has been reported to be among the three most susceptible areas to
oxidative stress and consequently is the first to undergo a functional decline with age [36,37,48].
Several studies have suggested that pyramidal cells of CA3 and granule cells of the DG
are oxidative stress-prone areas, whereas others have suggested that pyramidal cells of
CA1 are more susceptible to oxidative damage [2]. The present study demonstrated that
long-term consumption of Pi infusion can prevent neuronal cell death in the hippocampus
during brain aging in mice.

Our observation that Pi infusion upregulates the levels of pCREB in neuronal cells can
partially explain the neuroprotective effects of Pi infusion on neuronal cells under oxidative
stress and in hippocampal neurons of aging mice. pCREB activates many genes, including
genes that control brain development, function, and plasticity [33]. CREB is expressed in
different regions of the brain, including the hippocampus [49]. Its levels decrease in aged
rodent brains and dementia patients, with alterations and dysfunction in CREB signaling
associated with cognitive deficits, as observed in normal aging and neurodegenerative
diseases [50]. Therefore, CREB was suggested to be a therapeutic target for the treatment of
age-related cognitive deficits [51].

Our in vivo results support the neuroprotective activities of the bioactive phytochem-
icals present in Pi infusion. These effects can be attributed to the presence of the central
low-molecular-weight constituents of Pi infusion, i.e., aucubin (MW 346.33 g/mol), chloro-
genic acid (354.31 g/mol) and quercetin (302.236 g/mol). Chlorogenic acid (~17.8% of the
total constituents of Pi infusion) is a phenolic acid, which is an ester of caffeic acid and
quinic acid [24]. It has been ascribed neuroprotective, anti-inflammatory, and antioxidant
effects [24,52,53] and reported to prevent cognitive decline and neuronal damage in the
hippocampus, and to protect against cognitive impairment in aged mice [54,55]. Chloro-
genic acid was shown to regulate the oxidative stress-related Nrf2 pathway [56] and to
stimulate the CREB pathway [53]. Quercetin is a flavonoid comprising ~8% of the total
constituents of Pi infusion. Flavonoids have been implicated in neuronal proliferation and
survival, by reducing oxidative stress and modulating various cellular signaling cascades,
including CREB [57]. In vivo administration of purified flavonoids led to the phosphory-
lation of CREB and long-term potentiation in the hippocampus and had neuroprotective
effects [57–59]. Aucubin is an iridoid glycoside (a class of monoterpenes) comprising ~2.8%
of the Pi infusion. It has a wide range of pharmacological properties, including neuropro-
tective and anti-aging effects [60]. Aucubin provides a neuroprotective effect in primary
cortical neurons and the hippocampus of experimental traumatic brain injury by inhibit-
ing ROS generation, oxidative stress, and inflammatory responses [61]. The mechanism
involves the activation of the Nrf2-induced antioxidant system [61–63]. It is still to be
determined whether the effects of Pi infusion are elicited by a single constituent or if they
are the output of the synergistic activities of several components.

5. Conclusions

The present study demonstrated that phytochemicals present in Pi infusion protect
neurons from oxidative-stress-induced cell death in vitro and prevent neuronal cell death
in the hippocampus of aging mice in vivo. We suggest that the protective effect of Pi
infusion is mediated by the transcription factors Nrf2 and CREB. The presented results,
along with previous evidence obtained in our laboratory [8,9], demonstrate the protective,
anti-inflammatory, and antioxidant activity of Pi infusion on astrocytes and microglial cells.
These position Pi infusion as a potential candidate for the regulation of oxidative stress and
neuronal death in the brain during aging and neurodegenerative disease conditions.
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