
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: modh044@gmail.com; 

 
 

Journal of Pharmaceutical Research International 
 
33(28B): 81-92, 2021; Article no.JPRI.68512 
ISSN: 2456-9119 
(Past name: British Journal of Pharmaceutical Research, Past ISSN: 2231-2919, 
NLM ID: 101631759) 

 

 

Synthesis, Drug Likeness and In-vitro Screening of 
Some Novel Quinazolinone Derivatives for  

Anti-Obesity Activity 
 

Pratik G. Modh1* and Laxman J. Patel1 
 

1Faculty of Pharmacy, Ganpat University, Ganpat Vidyanagar, Mehsana-384012,Gujarat, India. 
 

Authors’ contributions 
 

This work was carried out in collaboration between both authors. Author PGM designed the study, 
performed the synthesis, characterization and anti-obesity activity, wrote the protocol, and wrote the 
first draft of the manuscript. Author LJP managed the analyses of the study, the literature searches 

and results. Both the authors read and approved the final manuscript. 
 

Article Information 
 

DOI: 10.9734/JPRI/2021/v33i28B31541 
Editor(s): 

(1) Syed A. A. Rizvi, Nova Southeastern University, USA. 
Reviewers: 

(1) Trimurti L. Lambat, Manoharbhai Patel College of Arts, Commerce & Science, India. 
(2) Rajan Kumar, Lovely Professional University, India. 

Complete Peer review History: http://www.sdiarticle4.com/review-history/68512 

 
 

 
Received 02 March 2021 

Accepted 09 May 2021 
Published 11 May 2021 

 
 

ABSTRACT 
 

Aim: A series of novel quinazolinone derivates was synthesized and assessed for their ability to 
inhibitory action on pancreatic lipase. The cyclization of quinazolinone-4(3H)-one derivatives was 
achieved, whereas carbon-carbon cross coupling reactions were carried out on cyclized 
quinazolinone-4(3H)-one. This synthesis method afforded corresponding 2, 3 and 6 substituted 
quinazolin-4(3H)-ones (3a to 3m) with moderate to high yields. 
Methods: Benzamide derivatives (1a-1b) were synthesized from anthranilic acid using acid-amine 
reaction, followed by cyclization using catalytic p-toluene sulfonic acid and oxidation using 
(diacetoxyiodo)benzene to give bromo substituted quinazolin-4(3H)-ones (2a-2b), which were cross 
coupled to suitable boronic acid using Suzuki-Miyaura condition to obtain desired compound (3a-
3m). All synthesized compounds were characterized by FTIR, proton NMR, LC-MS analysis, 
checked for their drug likeness, absorption and evaluated for in vitro pancreatic lipase inhibition 
activity.  
Results: Analytical interpretation of all compounds with infrared, proton NMR and LC-MS 
spectroscopy confirmed their correct structure. All compounds (3a-3m) show good absorption and 
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have reasonably good molecular properties except 3c and 3m which violate two criteria for 
Lipinski’s rule. Whereas, Compounds 3l and 3m showed IC50 value of 13.13±0.84 µg/mL and 
13.80±1.27 µg/mL respectively comparable to the Orlistat (12.72±0.97µg/mL), a US FDA approved 
drug for the treatment of obesity.  
Conclusion: Pancreatic lipase is an important lipolytic enzyme, synthesized and secreted through 
pancreas, plays an important role in dietary trigycerol absorption and metabolism. Therefore, 
reducing fat absorption through pancreatic lipase inhibition is a promising strategy to treat obesity. 
Based upon our findings, compounds 3l and 3m can be further developed as potent anti-obesity 
agents.  
 

 
Keywords: Quinazolin-4(3H)-one; carbon-carbon cross coupling reactions; cyclization; pancreatic 

lipase inhibition; anti-obesity agents. 
 
ABBREVIATIONS 
 
TLC :  Thin layer chromatography; 
FTIR :  Fourier transform infrared; 
NMR :  nuclear magnetic resonance; 
LC-MS : Liquid chromatography–mass 

spectrometry; 
IC50 : The half maximal inhibitory 

concentration. 
 

1. INTRODUCTION  
 
The quinazolinones have been reported to 
possess a vast range of biological activities [1] 
including effects on the cardiovascular system 
such as antihypertensive, antiarrhythmic, 
vasodilatory, and lipid-lowering effects. 
Additionally, quinazolinones exhibit anti-
inflammatory activity by inhibiting 
cyclooxygenase activity and leukocyte function. 
The Quinazolinones can also inhibit monoamine 
oxidase, aldose reductase, tumor necrosis factor 
R, thymidylate synthase, pyruvic acid oxidation, 
and acetylcholine-esterase activity and therefore 
used as antitumor, antiulcer, antiplatelet 

aggregation (glycoprotein IIb/ IIIa inhibitors) and 
hypoglycemic agents [2-7]. Various quinazolin-
4(3H)-ones with different substitutions have been 
reported to have anti-diabetic [8], anti-
hyperlipidemic [9], anti-hyperlipidemic and 
hypoglycemic activity [10]. Additionally, Ghrelin 
receptor antagonism [2], melanin concentrating 
hormone receptor 1 (MCHR1) antagonism [11] 
and α-glucosidase inhibition [12] are amongst 
their other mechanism for the treatment of 
diabetes and obesity.  
 
A variety of methods for the synthesis of 
substituted quinazolin-4(3H)-ones have been 
reported. The most common method is based on 
the Niementowski reaction by the fusion of 
anthranilic acid analogues with amides, 
proceeding via an o-aminobenzamides 
intermediate [13], using various catalysts like 
graphite at 220 

0
C [14,15], UHP (urea hydrogen 

peroxide)-potassium carbonate [16], DMSO and 
ionic liquid as a chemical Catalysts [17-19]. 
Various 2-substituted quinazolinones can be 
synthesized from functional iminophosphoranes 
bearing an amido group using aza-wittig

 

 
 

Fig. 1. Some quinazolinone drugs 



 
 
 
 

Modh and Patel; JPRI, 33(28B): 81-92, 2021; Article no.JPRI.68512 
 
 

 
83 

 

reactions which utilize reagents like triphenyl 
phosphine [20], benzyl isocyanate, carbon 
disulfide [21] and polymer PEG 4000 [22]. 
Quinazolinone-4(3H) ones have also been 
synthesized from benzoxazinone intermediate 
like piriqualone using carbodiimide (DCC) [23], 
N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide 
(EDCI) [24], ferrous chloride or bromide and 
sodium acetate in acetic acid [25] and via 
electrolysis method using LiClO4 and other 
solvents [26-27]. Some quinazolinone drugs 
have been shown below in Fig. 1. 
 
In the present work, we synthesized novel 
quinazolin-4(3H)-one derivatives and evaluated 
for pancreatic lipase inhibition activity which 
support their future development as anti-obesity 
agent. 
 

2. MATERIAL AND METHODS  
 
The novel synthesis scheme for the title 
compounds is outlined in Fig. 2. Melting points of 
all synthesized compounds were determined in 
open capillaries using Veego melting point 
apparatus, Model VMP-D (Veego India ltd., 
Mumbai, India) and were uncorrected. Infrared 
spectra were recorded on SHIMADZU-IR Affinity-
1S Fourier Transform Infrared (FTIR) 
spectrophotometer using attenuated total 
reflection (ATR) technique. LC–MS analysis for 
all samples were carried out using WATERS 
ACQUITY UPLC H class spectrometer with PDA 

and SQ detector. Samples were prepared in 
2mM ammonium acetate and injected into the 
BEH C18 (502.1 mm) 1.7µm column for 
detection using 0.1% formic acid in water: 
acetonitrile as mobile phase with. 1H-NMR 
spectra were recorded on Brucker 400 MHz 
Avance III HD instrument with 5mm PABBO 
BB/19F-1H/D Z-GRD Z108618 probe using 
DMSO D6 as a solvent and data were processed 
using Topspin 3.2 software. TLC was performed 
on precoated alumina silica gel 60 F254 (Merck) 
using different polarity ratios of ethylacetate: n-
hexane   as mobile phase and detection was 
done using UV light. The resulting compounds 
were purified by recrystallization using suitable 
solvent or by flash column chromatography. 
 
General synthetic procedures used for the 
preparation of the target compounds are 
described below. 
 

2.1 Synthesis of 2-amino- N-substituted-
5-bromobenzamide (1a-1b)  

 
To the mixture of 2-amino-5-bromobenzoic acid 
(1.0 mmol), cyclohexyl amine or benzyl amine 
(1.0 mmol) in tetrahydrofuran (15 time), N, N-
diisopropylethylamine (2.0 mmol), 1-(3-
dimethylaminopropyl)-3-ethylcarbodiimide 
hydrochloride (1.5 mmol) and 1-
hydroxybenzotriazole (0.5 mmol) were added 
successively and stirred for 12 h at room 
temperature. The progression of the reaction was

 

 
 

Fig. 2. Synthetic scheme of 2, 3 and 6-trisubstituted quinazolin-4(3H)-one (3a-3m) 
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monitored with TLC using ethylacetate: n-hexane 
(4:1) as mobile phase. The reaction mixture was 
poured to water, extracted with ethylacetate, 
washed with brine, dried over sodium sulfate and 
concentrated under reduced pressure to get the 
crude product which was purified by trituration 
using diethyl ether and dried to obtain the 
desired product as 2-amino-5-bromo-N-
cyclohexyl benzamide (1a) or 2-amino-N-benzyl-
5-bromobenzamide (1b). 
 

2.2 Synthesis of 3-substituted-6-bromo-2-
(3-nitrophenyl) quinazolin-4(3H)-one 
(2a-2b) 

 
To a solution of 2-amino-5-bromo-N-cyclohexyl 
benzamide (1a) or 2-amino-N-benzyl-5-
bromobenzamide (1b) (1.0 mmol) and 3-
nitrobenzaldehyde (1.2 mmol) in tetrahydrofuran 
(10 time), p-toluene sulfonicacid monohydrate 
(0.2 mmol) was added and stirred for 1 h at room 
temperature. Consumption of 1a or 1b was 
checked with TLC using ethylacetate: n-hexane 
(1:1) as mobile phase, followed by addition of 
(diacetoxyiodo) benzene (1.5 mmol) portion-wise 
and mixture was stirred for another 3 h at room 
temperature. After checking the reaction 
completion with TLC using ethylacetate: n-
hexane   (1:1) as mobile phase, the reaction 
mixture was poured to water, extracted with 
ethylacetate, washed with brine, dried over 
sodium sulfate and concentrated under reduced 
pressure to get the crude product which was 
purified by flash column chromatography using 
20-30 % ethylacetate in n-hexane   as mobile 
phase, eluting the desired product as 6-bromo-3-
cyclohexyl-2-(3-nitrophenyl)quinazolin-4(3H)-one 
(2a) or 3-benzyl-6-bromo-2-(3-nitrophenyl) 
quinazolin-4(3H)-one (2b). 
 
2.3 Synthesis of 2, 3 and 6 substituted 

quinazolin-4(3H)-one (3a to 3m) 
 
To the mixture of 2a or 2b (1.0 mmol) and 
Boronic acid derivative (1.5 mmol) in 1, 4-
dioxane (20 time) was added cesium carbonate 
(3.0 mmol) in a glass sealed tube and the 
reaction mixture was degassed with nitrogen for 
15 min, followed by the addition of tetrakis 
(triphenylphosphine) palladium (0) (Pd(PPh3)4) 
(0.05 mmol) and heated to 100 0C for 12 h. The 
reaction was monitored with TLC using 
ethylacetate: n-hexane as mobile phase. The 
reaction mixture was poured to water, extracted 
with ethylacetate, washed with brine, dried over 
sodium sulfate, concentrated under reduced 

pressure to give the crude product which was 
purified by flash column chromatography using 
ethylacetate: n-hexane as mobile phase to give 
the desired product (3a-3m) with good yield. 
 

2.4 Prediction of Drug Likeness and 
Absorption 

 
The prediction of molecular properties like drug 
likeliness and absorption were carried out by 
Molinspiration Cheminformatics Software 
available online. All synthesized molecules were 
sketched in ChemDraw 15 and they were copied 
as SMILES and saved. The Molinspiration home 
page was opened online, where a link for 
“Calculation of Molecular Properties and 
Bioactivity Score” was opened. All saved 
SMILES for synthesized compounds were pasted 
and properties like Log P, molecular weight, 
number of hydrogen bond acceptors, number of 
hydrogen bond donors, number of rotatable 
bonds, molecular volume, total polar surface 
area were calculated and saved. Absorption 
(%abs) was calculated by %abs = 109- (0.345 X 
TPSA) [28]. 
 

2.5 Pancreatic Lipase Inhibitory Activity 
(Anti-Obesity Activity) 

 
2.5.1 Chemicals & reagents 
 
4-methylumbelliferyl oleate (4-MU oleate), Tris-
HCl, Sodium chloride, Calcium chloride, sodium 
citrate, orlistat. 
 
2.5.2 Instrument 
 
Fluorometrical microplate reader. 
  
2.5.3 Experimental method 
 
In vitro pancreatic lipase inhibition activity was 
performed as described by Nakai et al. [29]. 
Pancreatic lipase activity was measured using 4-
methylumbelliferyl oleate (4-MU oleate) as a 
substrate. 25 µl of different concentrations (10, 
50, 100 µg/mL) of test compound (3a to 3m) or 
standard (Orlistat) (Positive control) dissolved in 
water and 50 µL of 0.1 mM 4-MU dissolved in 
buffer consisting of 13 mM Tris-HCl, 150 mM 
NaCl, and 1.3 mM CaCl2 (pH 8.0), were mixed in 
the microtiter plate well, followed by addition of 
25 µL of lipase solution (50 U/mL) prepared in 
the above buffer to start the enzyme reaction. 
After incubation at 25 °C for 30 min, 100 µl of 0.1 
M sodium citrate (pH 4.2) was added to stop the 
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reaction. The amount of 4-methylumbelliferone 
released by lipase was measured using a 
fluorometrical microplate reader at an excitation 
wavelength of 355 nm and an emission 
wavelength of 460 nm. The IC50 value of the test 
sample (3a to 3m) and standard (orlistat) was 
obtained from the least-squares regression 
analysis performed by plotting logarithm of the 
sample concentration (log) versus the pancreatic 
lipase activity (%). 
 

3. RESULTS AND DISCUSSION 
 
In the first step, benzamide derivatives (1a-1b) 
were synthesized from anthranilic acid using 
acid-amine coupling condition.  In the second 
step, substituted benzamide derivatives were 
cyclized using catalytic p-toluene sulfonic acid, 
followed by oxidation using 
(diacetoxyiodo)benzene to give bromo 
substituted quinazolin-4(3H)-ones (2a-2b),               
which were cross coupled to suitable boronic 
acid using Suzuki-Miyaura condition in third step 
to obtain desired compound (3a-3m). All 
synthesized compounds were characterized                
and confirmed with physical parameters like 
melting point, IR, LC-MS and 1H-NMR 
spectroscopy. 
 

3.1 Physical and Spectral Data of 
Synthesized Compounds 

 
3.1.1 2-amino-5-bromo-N-

cyclohexylbenzamide (1a) 
 
Off white solid product; MP: 195-199°C; Rf: 0.55 
(TLC, Ethylacetate: n-hexane = 4: 1); Yield:     
70%. 
 
1
H NMR (400 MHz, DMSO-d6): � 8.12 (d, J=7.8 

Hz, 1H), 7.63 (d, J=2.3 Hz, 1H), 7.25 (dd, J=8.7, 
2.3 Hz, 1H), 6.65 (d, J=8.8 Hz, 1H), 6.50 (s, 2H), 
3.70 (s, 1H), 1.76 (dd, 22.6, 7.7 Hz, 4H), 1.61 (d, 
J=12.8 Hz, 1H), 1.28 (t, J=9.6 Hz, 4H), 1.12 (d, 
J=11.7 Hz, 1H). LC-MS m/z = 297/299 [M]

+
. 

 
3.1.2 2-amino-N-benzyl-5-bromobenzamide 

(1b) 
 
Off white solid product; MP: 204-208°C; Rf: 0.62 
(TLC, Ethylacetate: n-hexane = 4: 1); Yield: 79%. 
 
1H NMR (400 MHz, DMSO-d6): � 8.93 (t, J=6.0 
Hz, 1H), 7.73 (d, J=2.4 Hz, 1H), 7.37-7.20 (m, 
6H), 6.68 (d, J=8.7 Hz, 1H), 6.63 (s, 2H), 4.40 (d, 
J=5.9 Hz, 2H). LC-MS m/z = 305/307 [M]

+
. 

3.1.3 6-bromo-3-cyclohexyl-2-(3-nitrophenyl) 
quinazolin-4(3H)-one (2a) 

 
Cream solid product; MP: 192-196°C; Rf: 0.44 
(TLC, Ethylacetate: n-hexane = 1: 1); Yield: 68%. 
 
1H NMR (400 MHz, DMSO-d6): � 8.54 (s, 1H), 
8.43 (d, J=8.4 Hz, 1H), 8.27 (d, J=2.4 Hz, 1H), 
8.12 (d, J=7.7 Hz, 1H), 8.01 (dd, J=8.8, 2.5 Hz, 
1H), 7.87 (t, J=8.0 Hz, 1H),  7.64 (dd, J=8.6 Hz, 
2.3 Hz, 1H), 3.66 (m, 1H), 1.82 (d, J=12.4 Hz, 
2H), 1.70 (d, J= 13.2 Hz, 2H), 1.49 (d, J=13.0 Hz, 
1H), 1.24 (d, J=13.0 Hz, 1H), 1.09 (d, J=13.3 Hz, 
1H), 0.93-0.86 (m, 3H).LC-MS m/z = 428/430 
[M]+. 
 
3.1.4 3-benzyl-6-bromo-2-(3-nitrophenyl) 

quinazolin-4(3H)-one (2b) 
 
Cream solid product; MP: 201-205°C; Rf: 0.48 
(TLC, Ethylacetate: n-hexane = 1: 1); Yield: 80%. 
 
1
H NMR (400 MHz, DMSO-d6): � 8.39-8.30 (m, 

2H), 8.25 (d, J=8.3 Hz, 1H), 8.13-8.03 (m, 1H) 
7.87 (t, J=7.8 Hz, 1H), 7.71 (q, J=7.9 Hz, 2H), 
7.26-7.16 (m, 3H), 6.94 (dd, J=10.1, 5.0 Hz, 2H), 
5.18 (s, 2H). LC-MS m/z = 436/438 [M]+. 
 
3.1.5 3-benzyl-6-cyclopropyl-2-(3-

nitrophenyl)quinazolin-4(3H)-one (3a)  
 
Off white solid product; MP: 170-174°C; Rf: 0.35 
(TLC, Ethylacetate: n-hexane = 1: 4); Yield: 55%. 
 
IR (υmax, cm-1): 3030 (Alkane C-H), 2922, 2854 
(Ar. C-H), 1681 (C=O), 1620 (C=N), 1587 (Ar. 
C=C), 1535 (N-O asymmetrical), 1492, 1342 (N-
O symmetrical). 

1
H NMR (400 MHz, DMSO-d6): � 

8.33 (d, J=8.4 Hz, 1H), 8.24 (s, 1H), 7.94 (s, 1H), 
7.86 (d, J=7.6 Hz, 1H), 7.76 (t, J=8.4 Hz, 1H), 
7.68 (s, 2H), 7.29-7.20 (m, 3H), 6.90 (d, J=6.8 
Hz, 2H), 5.18 (s, 2H), 2.20 (p, J=4.5 Hz, 1H), 
1.09 (d, J=6.8 Hz, 2H), 0.83 (d, J=4.4 Hz, 2H). 
LC-MS m/z = 398.31 [M+H]

+
. 

 
3.1.6 3-cyclohexyl-6-(3,5-dichlorophenyl)-2-

(3-nitrophenyl)quinazolin-4(3H)-one (3b) 
 
White solid product; MP: 185-189°C; Rf: 0.38 
(TLC, Ethylacetate: n-hexane = 1: 4); Yield:  
61%. 
 
IR (υmax, cm

-1
): 2927, 2852 (Ar. C-H), 1676 

(C=O), 1616 (C=N), 1583 (Ar. C=C), 1529 (N-O 
asymmetrical), 1492, 1348 (N-O symmetrical), 
835, 800 (C-Cl). 

1
H NMR (400 MHz, DMSO-d6): 

� 8.56 (s, 1H), 8.45 (s, 1H), 8.43 (s, 1H), 8.24 (d, 
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J=9.0 Hz, 1H), 8.14 (d, J=8.3 Hz, 1H), 8.03 (d, 
J=16.7 Hz, 1H), 7.89-7.86 (m, 2H), 7.78 (t, J=8.0 
Hz, 1H), 7.68 (s, 1H), 3.71-3.69 (m, 1H), 2.60-
2.50 (m, 2H), 1.86 (d, J=12.0 Hz, 2H), 1.73 (d, 
J=12.7 Hz, 2H), 1.50 (d, J=12.9 Hz, 1H), 1.11 (d, 
J=13.6 Hz, 1H), 0.93 (d, J=13.2 Hz, 2H). LC-MS 
m/z = 494.34 [M]+.  
 
3.1.7 3-benzyl-6-(3,5-dichlorophenyl)-2-(3-

nitrophenyl)quinazolin-4(3H)-one (3c) 
 
White solid product; MP: 201-205°C; Rf: 0.38 
(TLC, Ethylacetate: n-hexane = 1: 4); Yield: 35%. 
 
IR (υmax, cm-1): 2926, 2856 (Ar. C-H), 1674 
(C=O), 1616 (C=N), 1585 (Ar. C=C), 1529 (N-O 
asymmetrical), 1492, 1348 (N-O symmetrical), 
837, 798 (C-Cl). 

1
H NMR (400 MHz, DMSO-d6): 

� 8.53 (s, 1H), 8.38-8.24 (m, 3H), 7.95-7.81 (m, 
4H), 7.77-7.66 (m, 2H), 7.22 (d, J=5.7 Hz, 3H), 
6.95 (d, J=6.8 Hz, 2H), 5.22 (s, 2H). LC-MS m/z 
= 502.29 [M]+. 
 
3.1.8 3-benzyl-2-(3-nitrophenyl)-6-(thiophen-

3-yl) quinazolin-4(3H)-one (3d) 
 
Light brown solid product; MP: 203-207°C; Rf: 
0.44 (TLC, Ethylacetate: n-hexane = 2: 3); Yield: 
53%. 
 
IR (υmax, cm

-1
): 3093 (Alkane C-H), 1676 (C=O), 

1618 (C=N), 1581 (Ar. C=C), 1529 (N-O 
asymmetrical), 1487, 1350 (N-O symmetrical).

 1
H 

NMR (400 MHz, DMSO-d6): � 8.52 (s, 1H), 8.38-
8.23 (m, 3H), 8.16 (s, 1H), 7.89 (d, J=7.7 Hz, 
1H), 7.83-7.67 (m, 4H), 7.22 (d, J=6.0 Hz, 3H), 
6.94 (d, J=6.9 Hz, 2H), 5.21 (s, 2H). LC-MS m/z 
= 440.14 [M+H]

+
. 

 
3.1.9 3,6-dibenzyl-2-(3-nitrophenyl) 

quinazolin-4(3H)-one (3e) 
 
Off white solid product; MP: 187-191°C; Rf: 0.48 
(TLC, Ethylacetate: n-hexane = 2: 3); Yield:    
33%. 
 
IR (υmax, cm-1): 3078, 3030 (Alkane C-H), 2924, 
2852 (Ar. C-H), 1676 (C=O), 1616 (C=N), 1591 
(Ar. C=C), 1529 (N-O asymmetrical), 1487, 1344 
(N-O symmetrical). 

1
H NMR (400 MHz, DMSO-

d6): � 8.32 (d, J=8.4 Hz, 1H), 8.20 (d, J=4.8 Hz, 
1H), 8.09 (d, J=4.9 Hz, 1H), 7.87-7.76 (m, 2H), 
7.68 (t, J=7.1 Hz, 2H), 7.37-7.27 (m, 4H), 7.21 
(dt, J=10.1, 5.8 Hz, 4H), 6.90 (s, 2H), 5.16 (s, 
2H), 4.17 (s, 2H). LC-MS m/z = 448.2 [M+H]

+
.  

 

3.1.10 3-benzyl-2,6-bis(3-nitrophenyl) 
quinazolin-4(3H)-one (3f) 

 

Light yellow solid product; MP: 192-196°C; Rf: 
0.42 (TLC, Ethylacetate: n-hexane = 2: 3); Yield: 
25%. 
 
IR (υmax, cm

-1
): 3088 (Alkane C-H), 2962, 2922, 

2852 (Ar. C-H), 1683 (C=O), 1616 (C=N), 1575 
(Ar. C=C), 1525 (N-O asymmetrical), 1500, 1348 
(N-O symmetrical). 

1
H NMR (400 MHz, DMSO-

d6): � 8.60 (d, J=8.6 Hz, 2H), 8.36 (s, 3H), 8.40-
8.25 (m, 2H), 7.93-7.80 (m, 3H), 7.73 (t, J=7.9 
Hz, 1H), 7.22 (d, J=6.1 Hz, 3H), 6.96 (d, J=6.5 
Hz, 2H), 5.22 (s, 2H). LC-MS m/z = 479.39 
[M+H]

+
. 

 
3.1.11 3-benzyl-6-(4-chlorophenyl)-2-(3-

nitrophenyl) quinazolin-4(3H)-one (3g) 
 
Off white solid product; MP: 203-207°C; Rf: 0.44 
(TLC, Ethylacetate: n-hexane = 2: 3); Yield:    
60%. 
 
IR (υmax, cm

-1
): 1683 (C=O), 1616 (C=N), 1558 

(Ar. C=C), 1527 (N-O asymmetrical), 1475, 1350 
(N-O symmetrical), 821(C-Cl). 1H NMR (400 
MHz, DMSO-d6): � 8.48 (s, 1H), 8.35 (d, J=8.3 
Hz, 1H), 8.25 (d, J=8.2 Hz, 2H), 7.87 (dd, J=15.5, 
8.2 Hz, 4H), 7.72 (t, J=8.0 Hz, 1H), 7.60 (d, J=8.2 
Hz, 2H), 7.22 (d, J=5.9 Hz, 3H), 6.94 (d, J=6.7 
Hz, 2H), 5.21 (s, 2H). LC-MS m/z = 391.3 [M-77] 
+; 468.7 [M+H]

+
. 

 
3.1.12 4-(3-cyclohexyl-2-(3-nitrophenyl)-4-

oxo-3,4-dihydroquinazolin-6-
yl)benzoicacid (3h) 

 
Light yellow solid product; MP: 182-186°C; Rf: 
0.24 (TLC, Ethylacetate: n-hexane = 4: 1); Yield: 
43%. 
 
IR (υmax, cm

-1
): 3068 (Alkane C-H), 2939, 2854 

(Ar. C-H), 1697 (C=O), 1670 (C=O), 1608 (C=N), 
1585 (Ar. C=C), 1529 (N-O asymmetrical), 1483, 
1348 (N-O symmetrical). 1H NMR (400 MHz, 
DMSO-d6): � 13.07 (s, 1H), 8.56 (s, 1H), 8.51-
8.41 (m, 2H), 8.25 (d, J= 8.7 Hz, 1H), 8.14 (d, 
J=7.6 Hz, 1H), 8.08 (d, J= 8.0 Hz, 2H), 7.95 (d, 
J=8.0 Hz, 2H), 7.89 (t, J=7.6 Hz, 1H), 7.79 (d, J= 
8.4 Hz, 1H), 3.76-3.65 (m, 1H), 2.58-2.50 (m, 
2H), 1.85 (d, J=12.0 Hz, 2H), 1.72 (d, J=13.0 Hz, 
2H), 1.52-1.49 (m, 1H), 1.11 (d, J=13.5 Hz, 1H), 
0.93 (d, J=13.5 Hz, 2H). LC-MS m/z = 470.41 
[M+H]

+
. 
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3.1.13 3-(3-cyclohexyl-2-(3-nitrophenyl)-4-
oxo-3,4-dihydroquinazolin-6-yl) 
benzamide (3i) 

 
Light yellow solid product; MP: 188-192°C; Rf: 
0.26 (TLC, Ethylacetate: n-hexane = 4: 1); Yield: 
37%. 
 
IR (υmax, cm

-1
): 2933, 2856 (Ar. C-H), 1670 

(C=O), 1654 (C=O), 1616 (C=N), 1589, 1577 (Ar. 
C=C), 1529 (N-O asymmetrical), 1479, 1344 (N-
O symmetrical). 1H NMR (400 MHz, DMSO-d6): � 
8.54 (d, J=18.5 Hz, 2H), 8.44 (d, J=8.4 Hz, 1H), 
8.32 (s, 1H), 8.25 (d, J= 10.1 Hz, 2H), 8.14 (d, 
J=7.7 Hz, 1H), 7.92 (ddd, J=25.5, 16.1, 8.0 Hz, 
3H), 7.80 (d, J=8.5 Hz, 1H), 7.62 (t, J=7.6 Hz, 
1H), 7.50 (s, 1H),  3.70-3.68 (m, 1H), 2.59-2.50 
(m, 2H), 1.86 (d, J=12.3 Hz, 2H), 1.73 (d, J=12.8 
Hz, 2H), 1.52 (d, J=12.9 Hz, 1H), 1.11 (d, J=13.4 
Hz, 1H), 0.93 (d, J=13.9 Hz, 2H). LC-MS m/z = 
469.44 [M+H]

+
. 

 
3.1.14 3-cyclohexyl-6-(3-hydroxyphenyl)-2-(3-

nitrophenyl) quinazolin-4(3H)-one (3j) 
 
Off white solid product; MP: 203-207°C; Rf: 0.34 
(TLC, Ethylacetate: n-hexane = 4: 1); Yield: 53%. 
 
IR (υmax, cm-1): 3350 (O-H), 2926, 2856 (Ar. C-
H), 1681 (C=O), 1658, 1616 (C=N), 1587 (Ar. 
C=C), 1537 (N-O asymmetrical), 1473, 1344 (N-
O symmetrical). 1H NMR (400 MHz, DMSO-d6): � 
9.66 (s,1H), 8.54 (s, 1H), 8.44 (d, J=8.4 Hz, 1H), 
8.34 (s, 1H), 8.11 (t, J=8.4 Hz, 2H), 7.87 (t, J=8.1 
Hz, 1H), 7.74 (d, J=8.4 Hz, 1H), 7.33 (t, J=7.9 
Hz, 1H), 7.21 (d, J=7.8 Hz, 1H), 7.14 (s, 1H), 
6.84 (d, J= 8.0 Hz, 1H), 3.70-3.68 (m, 1H), 2.59-
2.50 (m, 2H), 1.84 (d, J=12.3 Hz, 2H), 1.72 (d, 
J=13.0 Hz, 2H), 1.51 (d, J=12.5 Hz, 1H), 1.16-
1.09 (m, 1H), 0.93 (d, J=13.5 Hz, 2H). LC-MS 
m/z = 442.7 [M+H]

+
. 

  
3.1.15 3-benzyl-6-(3-hydroxyphenyl)-2-(3-

nitrophenyl) quinazolin-4(3H)-one (3k) 
 
Light yellow solid product; MP: 212-216°C; Rf: 
0.34 (TLC, Ethylacetate: n-hexane = 4: 1); Yield: 
49%. 
 
IR (υmax, cm

-1
): 3250 (O-H), 3084 (Alkane C-H), 

1653 (C=O), 1614 (C=N), 1577 (Ar. C=C), 1525 
(N-O asymmetrical), 1479, 1344 (N-O 
symmetrical). 

1
H NMR (400 MHz, DMSO-d6): � 

9.67 (s, 1H), 8.41 (s, 1H), 8.34 (d, J=8.4 Hz, 1H), 
8.25 (s, 1H), 8.17 (d, J=8.6 Hz, 1H), 7.85 (dd, 
J=23.1, 8.1 Hz, 2H), 7.71 (t, J=8.0 Hz, 1H), 7.34 
(t, J=7.8 Hz, 1H), 7.31-7.15 (m, 5H), 6.94 (d, 

J=6.6 Hz, 2H), 6.85 (d, J=8.1 Hz, 1H), 5.21 (s, 
2H). LC-MS m/z = 450.10 [M+H]+.  
 
3.1.16 3-cyclohexyl-2-(3-nitrophenyl)-6-(2-

(trifluoromethyl)phenyl)quinazolin-
4(3H)-one (3l) 

 
Off white solid product; MP: 192-196°C; Rf: 0.42 
(TLC, Ethylacetate: n-hexane = 1: 4); Yield: 52%. 
 
IR (υmax, cm

-1
): 2933, 2862 (Ar. C-H), 1666 

(C=O), 1616 (C=N), 1558 (Ar. C=C), 1533 (N-O 
asymmetrical), 1456, 1346 (N-O symmetrical), 
1315 (C-F), 1168 (C-F), 1118 (C-F). 1H NMR 
(400 MHz, DMSO-d6): � 8.58 (t, J=1.9 Hz, 1H), 
8.44 (dd, J=8.3, 2.3 Hz, 1H), 8.15 (d, J=7.7 Hz, 
1H), 8.07 (d, J=2.0 Hz, 1H), 7.89 (dd, J=8.0, 7.5 
Hz, 2H), 7.84-7.65 (m, 4H), 7.50 (d, J=7.6 Hz, 
1H), 3.70-3.65 (m, 1H), 2.54-2.50 (m, 2H), 1.85 
(d, J=12.1 Hz, 2H), 1.71(d, J=13.0 Hz, 2H), 1.49 
(d, J=12.9 Hz, 1H), 1.07 (t,  J=12.9 Hz, 1H), 0.91 
(dd, J=12.2, 11.7 Hz, 2H). LC-MS m/z = 494.37 
[M+H]

+
. 

 
3.1.17 3-benzyl-2-(3-nitrophenyl)-6-(2-

(trifluoromethyl)phenyl)quinazolin-
4(3H)-one (3m) 

 
Off white solid product; MP: 201-205°C; Rf =0.44 
(TLC, Ethylacetate: n-hexane = 1: 4); Yield:  
42%. 
 
IR (υmax, cm

-1
): 3035 (Alkane C-H), 2953 (Ar. C-

H), 1674 (C=O), 1618 (C=N), 1589 (Ar. C=C), 
1533 (N-O asymmetrical), 1479, 1348 (N-O 
symmetrical), 1313 (C-F), 1172 (C-F), 1112 (C-
F). 1H NMR (400 MHz, DMSO-d6): � 8.36 (dd, 
J=8.4, 2.3 Hz, 1H), 8.29 (s, 1H), 8.16 (d, J=1.9 
Hz, 1H), 7.86 (ddt, J=27.0, 11.4, 7.7 Hz, 5H), 
7.72 (q, J=7.5 Hz, 2H), 7.55 (d, J=7.5 Hz, 1H), 
7.23 (d, J=6.3 Hz, 3H), 7.00-6.93 (m, 2H), 5.19 
(s, 2H). LC-MS m/z = 502.26 [M+H]+.  
 

3.2 Prediction of Drug Likeness and 
Absorption  

 
Biological activity being the function of the 
complex influence of many molecular descriptors 
in a drug, highlighting the effect of some 
individual parameters makes it possible to 
estimate the drug-likeness of newly synthesized 
molecules. There are several strategies for 
defining drug-like properties, Lipinski’s rule is 
most commonly preferred. It states that to be 
drug-like, a candidate should have less than five 
hydrogen bond donors (HBD), less than 10 
hydrogen bond acceptors (HBA), a molecular 



weight of less than 500 Da, and a pa
coefficient log P of less than 5. It aims to 
highlight possible bioavailability problems if two 
or more properties are violated [30,
synthesized targets (3a to 3m), 
follow Lipinski’s rule except 3c and 
violate two criteria of Log P and molecular 
 

Fig. 3. 1H-NMR Spectra of 3
(trifluoromethyl)phenyl)quinazolin

Table 1. Drug likeness properties

Compounds Log P 
3a 5.02 
3b 8.06 
3c 7.75 
3d 6.06 
3e 6.63 
3f 6.40 
3g 7.15 
3h 6.69 
3i 5.57 
3j 6.28 
3k 5.97 
3l 7.63 
3m 7.32 
MW: molecular weight, nON: number of hydrogen bond acceptors, nOHNH: number of hydrogen bond donors, 

nrotb: number of rotatable bonds nviol: number of violations
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weight of less than 500 Da, and a partition 
coefficient log P of less than 5. It aims to 
highlight possible bioavailability problems if two 

30,31]. Out of 
 all molecules 
and 3m which 

criteria of Log P and molecular 

weight. However, they need be explored during 
formulation development and bioavailability 
study. Moreover, all synthesized targets 
3m) show good percentage of absorption. 
Results of calculated molecular properties and
absorption have been summarized in 
and Table 2. 

 
NMR Spectra of 3-cyclohexyl-2-(3-nitrophenyl)-6-(2-

(trifluoromethyl)phenyl)quinazolin-4(3H)-one (3l) 
 

Table 1. Drug likeness properties 
 

MW nON nOHNH nrotb
397.43 6 0 5 
494.38 6 0 4 
502.36 6 0 5 
439.50 6 0 5 
447.49 6 0 6 
478.46 9 0 6 
467.91 6 0 5 
469.50 8 1 5 
468.51 8 2 5 
441.49 7 1 4 
449.47 7 1 5 
493.49 6 0 5 
501.46 6 0 6 

MW: molecular weight, nON: number of hydrogen bond acceptors, nOHNH: number of hydrogen bond donors, 
nrotb: number of rotatable bonds nviol: number of violations 

 
 
 
 

; Article no.JPRI.68512 
 
 

weight. However, they need be explored during 
formulation development and bioavailability 
study. Moreover, all synthesized targets (3a to 

show good percentage of absorption. 
Results of calculated molecular properties and % 
absorption have been summarized in Table 1 

 

nrotb nviol 
1 
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 

MW: molecular weight, nON: number of hydrogen bond acceptors, nOHNH: number of hydrogen bond donors, 



Fig. 4. 1H-NMR Spectra of 3
(trifluoromethyl)phenyl)quinazolin

Table 2. Percentage of absorption

Compounds MV
3a 350.77
3b 411.45
3c 409.66
3d 373.30
3e 399.39
3f 405.93
3g 396.13
3h 411.38
3i 414.65
3j 392.39
3k 390.61
3l 415.67
3m 413.89

MV: molecular volume, TPSA: Total Polar Surface

 

Modh and Patel; JPRI, 33(28B): 81-92, 2021; Article no.

 
89 

 

 
NMR Spectra of 3-benzyl-2-(3-nitrophenyl)-6-(2- 

(trifluoromethyl)phenyl)quinazolin-4(3H)-one (3m) 

 
Table 2. Percentage of absorption 

 
MV TPSA %abs
350.77 80.72 81.15
411.45 80.72 81.15
409.66 80.72 81.15
373.30 80.72 81.15
399.39 80.72 81.15
405.93 126.55 65.34
396.13 80.72 81.15
411.38 118.02 68.28
414.65 123.81 66.29
392.39 100.95 74.17
390.61 100.95 74.17
415.67 80.72 81.15
413.89 80.72 81.15

MV: molecular volume, TPSA: Total Polar Surface Area, %abs: percentage of absorption
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%abs 
81.15 
81.15 
81.15 
81.15 
81.15 
65.34 
81.15 
68.28 
66.29 
74.17 
74.17 
81.15 
81.15 

Area, %abs: percentage of absorption. 
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Table 3. Pancreatic lipase inhibition (IC50 values) 
 

Compounds IC50 (µg/mL) 
Mean ± SEM 

Compounds  IC50 (µg/mL) 
Mean ± SEM 

3a 19.72±0.87 3h 27.73±1.24 
3b 48.85±1.67 3i 38.10±0.83 
3c 34.81±0.87 3j 21.60±1.16 
3d 31.33±1.31 3k 64.95±2.47 
3e 69.81±1.78 3l 13.13±0.84 
3f 30.87±2.12 3m 13.80±1.27 
3g 20.27±1.86 Orlistat 12.72±0.97 

Mean ± S.E.M = Mean values ± Standard error of means 
 

 
 

Fig. 5. Pancreatic lipase inhibition 
 

3.3 Pancreatic Lipase Inhibitory Activity 
(Anti-Obesity Activity) 

 
Compounds (3a to 3m) were tested for 
pancreatic lipase inhibition activity and results 
were compared with Orlistat (Positive control). 
The pancreatic lipase inhibitory effects of the test 
compounds were indicated by IC50 value in 
Table 3. 

 
Orlistat prevents absorption of fat from human 
diet and thereby produces calorie intake. It works 
by inhibiting pancreatic lipase, an enzyme that 
breakdowns triglyceride in the intestine and in 
absence of this enzyme, triglycerides from the 
diet are prevented from being hydrolyzed into the 
absorbable free fatty acids and instead excreted 
unchanged and undigested [32]. 
 
Pancreatic lipase is an important lipolytic enzyme 
secreted into the duodenum via duct system of 
pancreas. It plays a significant role in dietary 
trigycerol absorption.  Pancreatic lipase 
hydrolyses triglycerols to monoacyl glycerols and 
fatty acids and it accounts for the hydrolysis of 
50-70% of total dietary fats. The synthesized 

compounds studied here may probably inhibit 
digestion and absorption of dietary lipids through 
an inhibitory action on pancreatic lipase and 
therefore they can be further developed as 
potent anti-obesity agents. IC50 value of Orlistat 
(positive control) was found to be 12.72±0.97 
µg/mL. From all the tested compounds, 3l and 
3m exhibited IC50 Value of 13.13±0.84 µg/mL 
and 13.80±1.27 µg/mL respectively, suggesting 
their potent pancreatic lipase inhibitory functions 
comparable to the standard Orlistat. 
 

4. CONCLUSION 
 
Quinazolin-4(3H)-one derivatives constitute an 
important class of heterocycles with diverse 
pharmacological activities. All the title 
compounds (3a-3m) were synthesized, 
characterized, and evaluated for their drug 
likeness, absorbance and pancreatic lipase 
inhibitory activity. Two most potent compounds 3l 
and 3m exhibited IC50 value of 13.13±0.84 
µg/mL and 13.80±1.27 µg/mL respectively for 
pancreatic lipase inhibition which is analogous to 
the orlistat, a US FDA approved drug for the 
treatment of obesity. Two molecules 3l and 3m 
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can be further evaluated for their effectiveness to 
treat obesity disorder. 
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