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With the outbreak of the COVID-19 pandemic in 2020, most colleges and universities

move to restrict campus activities, reduce indoor gatherings and move instruction online.

These changes required that students adapt and alter their daily routines accordingly. To

investigate patterns associated with these behavioral changes, we collected smartphone

sensing data using the Beiwe platform from two groups of undergraduate students at a

major North American university, one from January to March of 2020 (74 participants),

the other from May to August (52 participants), to observe the differences in students’

daily life patterns before and after the start of the pandemic. In this paper, we focus on the

mobility patterns evidenced by GPS signal tracking from the students’ smartphones and

report findings using several analytical methods including principal component analysis,

circadian rhythm analysis, and predictive modeling of perceived sadness levels using

mobility-based digital metrics. Our findings suggest that compared to the pre-COVID

group, students in the mid-COVID group generally 1) registered a greater amount of

midday movement than movement in the morning (8–10 a.m.) and in the evening (7–9

p.m.), as opposed to the other way around; 2) exhibited significantly less intradaily

variability in their daily movement; 3) visited less places and stayed at home more

everyday, and; 4) had a significant lower correlation between their mobility patterns and

negative mood.

Keywords: COVID-19, college students, mobility pattern, smartphone sensing, GPS, principal component analysis,

circadian rhythm, digital health phenotyping

1. INTRODUCTION

Since the first cases of COVID-19 were confirmed in the United States in January 2020,
organizations and individuals scrambled to come up with counter-measures to curb the spread
of the virus. State and municipal authorities declared emergency or disaster status, issued stay-
at-home orders, and canceled events. Colleges and universities around the country also started
implementing decisive measures such as closing campuses and shifting instruction online. One
direct consequence is the altered mobility patterns of nearly all people. The way in which people’s
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daily routine changed was unprecedented. College students are a
group of people especially influenced by the changes.

One way to assess mobility patterns is through the use of
questionnaires or momentary assessment prompts (1). These
methods have their limitations which could be overcome through
the use of smartphone sensors, which provide an objective way
to measure daily mobility behavior. College students would be
an ideal population to examine this approach since they are
heavy users of smartphones – carrying their smartphones with
them everywhere they go. A number of smartphone sensing
studies have been conducted to monitor health and behavior of
college students (2, 3). Among smartphone embedded sensors,
GPS data tracked over a continuous period of time is found to
reflect fluctuations in daily movement patterns and used to detect
other related behavior and health issues. We believe smartphone
sensing is an appropriate approach to study the mobility change
in college students due to the COVID-19 pandemic and the
related societal response.

We collected smartphone sensing data from two groups
undergraduate participants from the University of Texas at
Austin to investigate mobility pattern change. One group was
assessed from January to March, a period that resides mostly
before the pandemic was officially declared. The second group
was collected from May to August of 2020, during which the
pandemic was in full force. To examine mobility and changes
in mobility, we applied multiple analytic approaches—principal
component analysis, circadian rhythm analysis, and digital
phenotyping—to quantify the intradaily patterns of participants’
movement. Existing studies tend to quantify mobility as
a singular construct (e.g., the amount of movement) and
the corresponding findings simply suggest “after the COVID
outbreak that people traveled way less everyday.” We wanted
to utilize more sophisticated GPS data processing techniques to
tease out finer patterns that would reflect changes in mobility
patterns across the entire 24-h period, rather than overall
movement comparisons. The focus on college students, the use
of mobile sensing to study mobility, together with the deep dive
into the intradaily patterns are how this paper is unique in the
current literature on COVID-19 related behavior change.

Our findings suggest that compared to the pre-outbreak
group, students in the post-outbreak group 1) registered greater
movements midday rather than in the morning (8–10 a.m.) or in
the evening (7–9 p.m.); 2) exhibited significantly less intradaily
variability in their daily movement; 3) visited less places and
stayed at home more everyday, and; 4) had a significantly lower
correlation between their mobility patterns and their depression
symptoms. The first three findings portray an image of a less
active and less organized day experienced by the post outbreak
group. The last takeaway suggests that mental health prediction
using personal sensing features is greater when participants’ daily
life has more normalcy, that is before the pandemic started.

2. RELATED WORK

2.1. COVID-19 and Mobility Change
Researchers have sought evidence of COVID-19-induced
mobility change from commercial mobile location data

providers. Smartphone apps make location requests sporadically,
resulting in a record of GPS locations registered by the
smartphone. Commercial location data companies have
collected anonymized location pings from an extremely large
number of smartphones in the US and globally. An outstanding
advantage of suchmobile location data is its extensive geographic
coverage, allowing researchers to aggregate the data based on
specific regions of choice (e.g., city or county) and derive
region-specific, population-level insights. The limitation is also
significant. Because smartphone location pings are sporadic
“snapshots,” the resulting data does not form a continuous
portrait of the user’s daily mobility pattern and thus cannot be
used to understand individual-level behavior. We found several
studies using data of this kind to evaluate population mobility
change specific to geographic or administrative divisions. Using
commercial mobile location data collected shortly after the
COVID-19 outbreak, Warren et al. (4) showed a sharp decrease
in population mobility in multiple major cities around the world.
Gao et al. (5) mapped county-level mobility change in the United
States and also found mobility decreases in the vast majority
of counties in the early months of rapid COVID-19 spread.
Engle et al. (6) discovered significant correlations between
county-level mobility change and county-level infection rate
and other socioeconomic indicators such as age and political
affiliation. Couture et al. (7) investigated population movement
between counties and states in the United States as well as visits
to different types of commercial venues.

While the commercial data approach uncovers population
level mobility patterns, a personal sensing approach proves useful
to monitor individual participants’ daily movement more closely,
together with other behavioral aspects such as physical activity
and sleep. Sun et al. (8) collected smartphone sensing (GPS,
Bluetooth, phone usage; no accelerometer) and Fitbit data from
a large, multi-national sample (1,062 participants) in Europe
from early 2019 to mid 2020. They found significant decreases
in daily distance traveled and the number of surrounding devices
detected and increases in phone usage, sleeping time, and home
stay after the COVID-19 outbreak. Sañudo et al. (9) collected
smartphone sensing data (accelerometer and phone usage; no
GPS) from 20 college students during two periods, once before
and once during the COVID-19 lockdown and arrived at similar
findings that are reduced physical activity, increased smartphone
use, and longer sleeping hours. Most other studies investigating
COVID-related behavioral changes in colleges students focused
on constructs of physical activity and used questionnaire-based
methods (10). To the best of our knowledge, no existing studies
have used objectively measured location data to look into the
intradaily patterns of college students as they experience the
COVID-19 pandemic.

2.2. Mining GPS Data From Personal
Sensing
Analytical methods for processing GPS data captured by
smartphones and other smart wearable devices largely fall in two
categories. Both approaches seek to convert the raw GPS trace
captured over a period of time (e.g., a day) to a vector of feature
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values to feed as input to subsequent analyses such as predictive
modeling or clustering. The first category is a raw data approach,
which directly makes use of the raw GPS data collected and bulk-
calculate descriptors or statistics using established algorithms or
feature representation methods. This approach aims to preserve
information contained in the raw GPS data and requires minimal
researcher input on how to manipulate the data. One example of
this approach is the vector space representation of GPS locations
(11), which creates a location label (e.g., home, work, etc.) for
every predetermined interval (e.g., 30 min) during the length
of the GPS trace, thus forming a vector of labels characterizing
the sequence of place types. The vector space method has also
been used to represent other types of mobile sensor signals such
as Bluetooth (12). Another example of this approach is training
autoencoders using a displacement vector created by differencing
the original GPS coordinate series (13). A key commonality of
the methods that belong in this category is the division of a GPS
trace into a series of sub-traces, thus preserving the characteristics
of the original trace, and use simple measures of the sub-traces
themselves as features without aggregation.

The second category is a feature engineering approach,
which requires direct input from the researcher to devise
metrics. Researchers have proposed various GPS features
such as location variance, maximum distance covered, and
percentage of time spent at home (14, 15), which can be
further linked with behavioral and health outcomes and become
digital health phenotypes. Because they are created with specific
purposes to quantify specific constructs, these features are
easily interpretable.

3. METHOD

3.1. Data
We used the Beiwe research platform (16) to collect smartphone
sensing and real-time survey data from two groups of
undergraduate students at the University of Texas at Austin
(UT), over two non-overlapping periods in 2020. Beiwe is a
mobile software suite through which smartphone sensor data
and survey responses can be collected and uploaded to a server
for research purposes. The study was approved by University of
Texas at Austin IRB (study number 2019-09-0120). Participants
underwent an initial screening before being consented into either
phase of the study. Participants were only recruited if they
were enrolled UT students between 18 and 35 years of age
and had no current neurological and psychiatric/psychological
disorders, current significant substance abuse, or hormone
altering medication intake.

Enrollment for Phase 1 started in early January prior to the
spring semester. The study period lasted frommid January to the
end of March, corresponding to the period of time when the first
cases of COVID-19 were confirmed in the US and no nation-wide
counter measures had been taken. This study phase included 74
participants. All of the 74 participants had a primary residence
in Austin during the study period. Enrollment interviews for
Phase 2 were conducted over a period of 2 weeks with full
enrollment completed by May 1st. The second phase of the study
concluded when participants scheduled a virtual meeting with a

study coordinator in late August to early September for an exit
interview and to coordinate shipping study materials back to UT.
Phase 2 consisted of 52 participants during which the pandemic
and the related orders andmandates were in full effect. Twenty of
the 52 participants lived in Austin and all of the 52 participants
lived in Texas during the study period.

Smartphone sensing data we collected include GPS,
accelerometer, and phone usage data from the participants’
primary smartphones and real-time survey data includes
participants’ responses to daily activity, mood, and sleep
questions. Specifically, the GPS data contain timestamped
coordinates (longitude and latitude). The GPS sensor was
configured to scan for 1 min every 10-min break, subject
to hardware constraints such as phone power-off or user
deactivating GPS. In total, we collected 6,442 days of GPS data
across all 126 participants striding the two groups.

3.2. Experiments
We implemented three different methods to analyze smartphone
GPS data collected from our participants in the pre- and
post-outbreak groups: principal component analysis, circadian
rhythm analysis, and digital phenotyping. The first two belong in
the raw data approach whereas the third method involves feature
engineering and predictive modeling.

3.2.1. Principal Component Analysis
For Principal Component Analysis (PCA), we preprocessed the
GPS data by constructing a Daily Displacement Profile for each
day of each participant during which GPS data was collected.
For each participant’s each day’s GPS data, we placed the entire
GPS trace into 48 half-hour bins and calculate an average
coordinate within each bin. Then we calculated the haversine
distance between two adjacent bins and regard the vector of
subsequent distance values as constituting a Daily Displacement
Profile (DDP). A DDP consists of 47 displacement values because
of the distance differencing. If during a half-hour bin, no GPS
data was observed, then we carried over the coordinate from
the most recent available location. Figure 1 shows the DDP of
all the days collected from one example participant. Overall, we
observe increased displacement values on some days during the
day compared to in the early morning.

Once the DDPs are constructed, we treat each dimension
as a separate feature or variable and conduct PCA to discover
the representative linear combinations of the local displacement
values that can explain large proportions of the variance within
the participants’ movement patterns. The results indicate that
63% of variance is explained by the first 10 Principal Components
(PCs); 81% of variance by the first 20 and 92% by the first 30.
Figure 2 visualizes the weights on each displacement variable
(i.e., loadings) of the first 10 PCs. The first Principal Component
represents an entire day of moving around with two peaks at
about 3 p.m. and 8 p.m. The second PC has positive weights
on displacement in the morning hours but negative weights on
displacement at around 8 p.m. All PCs had almost zero weights
on the early morning hours, during which participants were most
likely sleeping. We then performed the Welch t-test on the value
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FIGURE 1 | Daily Displacement Profile extracted from one participant’s GPS data. Labels on the horizontal axis indicate the half-hour bins: for example, H06a

indicates the 6-6:30 a.m. and H20b indicates 8:30-9 p.m. Cell color indicates the natural logarithm of the displacement detected by the smartphone GPS sensor

during the current half-hour bin compared to the previous one. Brighter blue means greater displacement.

of each of the first 10 PCs between the pre- and post-outbreak
participant groups.

3.2.2. Circadian Rhythm Metrics
Besides relative movement across different hours of the day,
we were also interested in extracting circadian rhythm metrics
from the participants’ GPS data. Circadian rhythm quantifies
the day-to-day regularity in the magnitude fluctuation of an
individual’s daily routine activity and is found to be correlated
with many health and well-being statuses. We borrowed several
important circadian rhythmmetrics from the actigraphy analysis
literature (17) and applied them on our GPS data. Specifically,
we extracted the five metrics listed below using R package
nparACT (17). Just like the DDP discussed in section 3.2.1,
we first calculated each participant’s GPS displacement for each
15-min bin during the study period and use the displacement
values as signal magnitude. Here we chose a more granular
binning strategy (15-min) in order to capture finer variations of
daily movement.

• Interdaily Stability (IS): IS quantifies the stability of rest-
activity rhythms or the invariability of the rhythm between

different days. It takes a higher value when the daily
distribution of a signal activity appears more similar across
different days, hence more “stable.” IS is officially defined

as
624
h=1

(X̄h−X̄)2/24

6n
i=1(Xi−X̄)2/n

, where n represents the total number of

sampled points, Xi is the i-th sampled signal magnitude, X̄ is
the mean value of all sampled points, and X̄h is the mean value
of sampled points within hour h ∈ {1, . . . , 24} across all days
observed.

• Intradaily Variability (IV): In contrast to IS, IV quantifies
the fragmentation of a rest-activity pattern within each
day. It takes a higher value when signal strength fluctuates
consecutively between high and low more intensively during

each day. IV is officially defined as
6n
i=2(Xi−Xi−1)

2/(n−1)

6n
i=1(Xi−X̄)2/n

,

following the same notation above for IS.
• M10: the average magnitude of the signals (i.e., displacement)

over the 10 consecutive hours that have the maximum signal

magnitude over all days observed.
• L5: the average magnitude of the signals (i.e., displacement)

over the five consecutive hours that have the minimum signal
magnitude over all days observed.
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FIGURE 2 | Loadings of the first 10 Principal Components of our participants’ Daily Displacement Profiles. Labels on the horizontal axis are the same as Figure 1 and

indicate the GPS displacement associated with each half-hour segment compared to the previous one. Cell color indicates the sign of a particular variable in relation

to a PC. Red indicates that a specific PC is in the same direction as a variable whereas blue indicates that it is the opposite. Darker color (red or blue) indicates

loadings with a greater absolute value.

• Relative Amplitude (RA): defined by M10−L5
M10+L5 , increases when

there is a sharp contrast between the active and inactive
periods within each day. A uniform distribution of signal
magnitude (i.e., no concrast between active and inactive
periods) would result in a RA of 0.

These metrics are again daily metrics. Similar to our analysis
on PCs, we performed the Welch t-test on the value of each of
the five circadian rhythm metrics between the pre- and post-
outbreak participant groups.

3.2.3. Digital Phenotyping
The previous two methods were based on Daily Displacement
Profiles. Additionally, we explored the feature engineering
approach and extracted seven daily-level digital phenotypes from
our participants’ GPS data:

• Location variance (loc.var): square root of the variance in
GPS coordinates.

• Number of places visited (num.pls): determined by an
established temporal clustering algorithm (18). The algorithm
utilizes the distance and time difference between consecutive
GPS coordinates and segments a GPS trace into periods of
staying at different places and periods of transition between
places. The number of distinct places extracted serves as the
value of this feature.

• Normalized entropy of time spent at different places visited
(ent.pls): greater values indicate more equally distributed

time spent at different places extracted, whereas lower values
indicate most time spent at a small number of places.

• Percentage of time spent at home (perc.home): home is defined
by the place extracted where a participant spent the most time
between 12 and 6 a.m. during the study period.

• Total distance traveled (total.dist): the sum of the distance
between every pair of consecutive GPS coordinates registered.

• Maximum distance covered (max.dist): the greatest distance
between any two GPS coordinates registered.

• Routine index (routine.idx): quantifying the degree to which a
participant’s mobility pattern over a period of time is similar
to that of the same period of time on all days, as formulated by
Canzian and Musolesi (14).

With these daily GPS features computed for all participants
in both groups, we further carried out two analyses. First,
like the Principal Components and Circadian Rhythm metrics,
we compared the values of these daily between the pre- and
post-outbreak group using the Welch t-test. Second, we built
supervised learning models using these GPS features to predict
the experience of severe sadness during the concurrent day. Daily
sadness experience was solicited from participants in both groups
via smartphone delivered surveys in the study. At a random time
during the day, we presented participants with the prompt “right
now I am feeling sad” with answer options “not at
all,” “a little bit,” “quite a bit," and “very much” to choose from.
We consider an observation as severe sadness when the self-
reported sadness level is “quite a bit” or “very much” because
these two levels would justify intervention. While correlating
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personal sensing data (especially mobility patterns characterized
by GPS traces) with mood experience or mental health symptoms
is a typical practice in digital health phenotyping (19, 20), our
objective here is to discover whether there exists a significant
performance discrepancy between the two groups, since the post-
outbreak participants were under influence by the pandemic and
subject to systematically altered mobility patterns. We limited
the data used for the predictive modeling of severe sadness
to those participants who reported being at least “quite a bit"
sad at least twice over their study period (pre or post) because
there is little point in predicting severe sadness for those who
are never affected by it. Thirty-five out of the 74 participants
in the pre-outbreak group, and 27 out the 52 participants in
the post-outbreak group were thus retained for the analysis.
We extracted GPS features from the 24-h period leading up
to each sadness self-report and used two machine learning
methods to evaluate performance of predicting severe sadness:
1) mixed-effect logistic regression with random participant effect
and 2) random forest with leave-one-out cross validation per
participant. Logistic regression is a typical approach for two-class
classification problems and random forest is a popular, high-
performing machine learner for many supervised learning tasks
including in digital health phenotyping applications (21).

4. RESULTS

4.1. Principal Component Analysis
Out of the first ten PCs extracted from our participants’ Daily
Displacement Profiles, one PC—the fourth Principal Component
(PC4)—turns out to be significantly different between the pre-
and post-outbreak group. PC4 is significantly lower (p < 0.001;
−322.4 post vs. 406.3 pre) in the post-outbreak group than the
pre-outbreak group. The remaining nine PCs do not achieve
statistical significance. We aggregated the value of PC4 by its
mean value by the day to show its variation throughout the two
study periods (Figure 3). The lower value of PC4 in the post-
outbreak group is visible with more days below zero than the
pre-outbreak group.

As shown in Figure 2, what PC4 represents is a day with
increased movement in the morning (∼8 a.m.) and in the
evening (∼8 p.m.) but decreased movement in-between. As
such, participants in the post-outbreak group spent more of
their days going places during the day whereas participants
in the pre-outbreak group had a more concentrated mobility
pattern with greater movement in the morning and in
the evening.

4.2. Circadian Rhythm Metrics
Out of the five Circadian Rhythm metrics described in section
3.2.2, Intradaily Variability (IV) and Relative Amplitude (RA)
showed statistical significance between the two groups whereas
the remaining three did not. The post-outbreak group is
significantly lower in both IV (p = 0.004) and RA (p = 0.002)
than the pre-outbreak group. Of note, Interdaily Stability (IS),
characterizing the variation in circadian rhythm over multiple
days, is not significantly different between the two groups.

Straightforwardly, a lower IV indicates less presence of rest-
activity alternation within a day, and a lower RA indicates a
smaller contrast between the magnitude of movement between
active and inactive periods within a day. Significant lower values
in both IV and RA suggest that participants experienced less
“chaotic" days in terms of mobility in the post-outbreak group.

4.3. Digital Phenotyping
Out of the seven GPS features described in section 3.2.3, three
features were significantly different between the two participant
groups, namely num.pls (number of significant places), ent.pls
(normalized entropy of time spent at significant places), and
perc.home (percentage of time spent at home). Of the three,
num.pls and ent.pls were significantly lower in the post-outbreak
group with p-values both lower than 0.001. Participants in the
post-outbreak group on average visited one less significant place
during their days compared to their pre-outbreak counterparts
[1.73 post vs. 2.73 pre, illustrated on a day-to-day basis in
Figure 4; note the drastic drop in March in the pre-outbreak
group, coinciding with the declaration of pandemic by the
then-president of the United States on March 13, 2020 (22)].
The percentage of time spent at home, on the other hand, is
significantly higher in the post-outbreak group than the pre-
outbreak group (20.8% post compared to 16.3% pre). These
contrasts suggest that in the post-outbreak group participants
were more home-bound and ventured outside less than before
the pandemic.

As for performance of the predictive modeling tasks targeting
severe sadness experience, the area under ROC value for the
pre-outbreak group was 0.71 with a standard deviation of
0.13 whereas it was 0.68 for the post-outbreak group with
the same standard deviation of 0.13. The direction of this
difference is expected because we hypothesized that due to
systematically altered mobility pattern in the post-outbreak
group, the pre-established (by studies conducted during normal
times) correlation between mobile sensed mobility pattern
and mental health symptoms should be lower. However, the
difference is not statistically significant in our experiment (p =

0.38), possibly due to the relatively small number of participants
tested upon.

5. DISCUSSION

Some of our findings such as the significantly increased at-
home time in the post-outbreak group is consistent with
findings in similar studies with entirely different participant
cohorts (8). Compared to current literature, our findings offer
new insights into the intradaily mobility patterns of college
students during the pandemic, such as the reduced number
of significant places visited during a day, the reduced Relative
Amplitude in daily displacement profile from our circadian
rhythm analysis, and the shifted temporal distribution of daily
movement over different hours as revealed by our Principal
Component Analysis.

One limitation of our study is the potential confounding
factor that is the eventual overlap between summer time
and the timeline of the post-outbreak study period. Without
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FIGURE 3 | Daily mean value of Principal Component No.4 (PC4) over the two study periods. The red and blue dashed lines indicate the average value from the pre-

and post-outbreak group, respectively.

FIGURE 4 | Daily mean value of the num.pls, number of significant places visited, over the two study periods. The red and blue dashed lines indicate the average

value from the pre- and post-outbreak group, respectively. Note the drastic drop in March in the pre-outbreak group, coinciding with the declaration of pandemic in

the US on March 13, 2020.

data from a similar period pre-COVID, it is difficult to
know what the “normal” pattern of activity change would
be, between a college semester and summer break. However,

with generally fewer constraints of academic activities, college
students might tend to be more active during summer
time. If this is the case, then we believe our findings
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regarding reduced movement in our post-outbreak group
would accentuate the effect of the pandemic on student
mobility patterns.

6. CONCLUSION

In this paper we presented our findings from a two-
period smartphone sensing study we conducted using college
student participants at a major US public university before
and during the COVID-19 pandemic. We focused on the
mobility patterns revealed by the GPS data collected from the
students’ smartphones and applied three analytical methods,
namely principal component analysis, circadian rhythm analysis,
and digital phenotyping, to characterize the differences in
intradaily movement patterns between the two groups. Our
findings suggest that compared to the pre-COVID group,
students in the mid-COVID group 1) registered significantly
more movement during the day rather than in the morning
(8–10 a.m.) and in the evening (7–9 p.m.); 2) exhibited
significantly less intradaily variability in their daily movement;
3) visited less places and stayed at home more everyday,
and; 4) had a significant lower correlation between their
mobility patterns and their depression symptoms. These findings
together portray a less active, less structured, and more home-
bound daily movement routine of college students in the
post-outbreak group and deepen our understanding of the
ways college students’ daily lives have been affected by the
COVID-19 pandemic.
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