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Abstract: Over the past decade, chaotic systems have found their immense application in different
fields, which has led to various generalized, novel, and modified chaotic systems. In this paper, the
general jerk equation is combined with a scaled sine map, which has been approximated in terms
of a polynomial using Taylor series expansion for exhibiting chaotic behavior. The paper is based
on numerical simulation and experimental verification of the system with four control parameters.
The proposed system’s chaotic behavior is verified by calculating different chaotic invariants using
MATLAB, such as bifurcation diagram, 2-D attractor, Fourier spectra, correlation dimension, and
Maximum Lyapunov Exponent. Experimental verification of the system was carried out using
Op-Amps with analog multipliers.

Keywords: chaos; jerk equation; sine map; bifurcation; Lyapunov exponent; Poincare section;
correlation dimension

1. Introduction

Chaos theory focuses on the fact that a complex system’s solutions are not really
because of the noise or the irregularities that appear, instead because of the interaction of
the system components. Chaos can be loosely defined as a fascinating intermediate state
between randomness and steady behavior, and it has been a subject of growing research
over the last decade [1]. Chaotic systems are characterized by their sensitive dependency on
the initial conditions, which leads to deterministic aperiodic bounded behavior impossible
to predict in the long term [2]. These characteristics find their application in various
practical systems such as biology, chemistry, secure communications [3], bits generators,
cryptography [4], mechanical engineering [5,6], machine drives [7], and ecology. Being
able to mathematically describe a system that negates the scientific viewpoint about the
practical systems and can depict chaos is an accomplishment of science [8].

A continuous chaotic system defined in terms of differential equations usually sur-
passes the discrete chaotic system defined in terms of difference equations because of the
added complexity and chaotic dynamics. Because of the growing demands of finding a
more generalized chaotic system, researchers are comparing the merits and demerits of
these systems. Few attempts are made to combine both these classes of system ideas and
develop a better solution in terms of easy implementation using simple Op-Amps [9].

The qualitative nature of the solutions of a dynamical system described by a simple
ordinary differential equation (ODE) depends on the dynamical system’s degree. As the
degree increases, the solutions start to arrange themselves on a strange attractor in phase
space [10]. The minimum degree required to get a strange attractor is three, as studied
in [11]. Although a simple jerk equation with one nonlinear function provides an appropri-
ate framework for visualizing chaotic behavior, the necessary conditions for the onset of
chaos in an autonomous dynamical system of ODEs are still unknown [12].

Appl. Sci. 2021, 11, 437. https://doi.org/10.3390/app11010437 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2036-1642
https://orcid.org/0000-0003-0538-8772
https://orcid.org/0000-0001-5292-6938
https://doi.org/10.3390/app11010437
https://doi.org/10.3390/app11010437
https://doi.org/10.3390/app11010437
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11010437
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/1/437?type=check_update&version=4


Appl. Sci. 2021, 11, 437 2 of 16

Despite the fact that non-autonomous and autonomous systems have become in-
creasingly straightforward over the last three decades, they have remained predominant
models for studying different bifurcation diagrams and aperiodic deterministic behavior in
nonlinear dynamics [12,13]. Many simple nonlinear electronic circuits capable of showing
this erratic behavior have been proposed in the literature [14–17]. These systems can be de-
scribed in terms of ordinary differential (or difference) equations; examples of such systems
are the Colpitts oscillator [18,19], Chua’s circuit [20,21], Jerk circuit [22,23], and many more.
These circuits use one or more nonlinear elements with an active component for exhibiting
chaos while allowing one or more control parameters to control this behavior’s intensity.

The most prominent of the autonomous chaotic systems is Chua’s circuit and Jerk
circuit. Initially, the most popular way of generating chaos was to enforce a nonlinear
function in the system capable of creating different equilibrium points by varying one
of the non-linearity parameters introduced in the system. This method resulted in many
practically unrealistic dynamical systems. To ensure the realistic analog/digital implemen-
tation of the chaotic circuit, Randwan et al. proposed a chaotic circuit where a digitally
controlled MOS-transistor acted as a source of non-linearity and was capable of generating
multi-scroll attractors [24]. In 2011, Bao et al. replaced the nonlinear part of Colpitts
oscillator with a more practical triangular function and validated their proposed circuit
numerically and experimentally [25]. In [26], the use of staircase nonlinear term for chaos
generation was studied by Zidan et al. C. Sanchez et al. proposed a saturated nonlinear
function series (SNFSs) and modified the generic Chua’s circuit to form a chaotic circuit for
producing chaotic oscillations at high frequency [27,28]. The experimental validation for
SNFSs was carried out in [29] by Ortega et al. later on. Sprott studied different variants
of the jerk equation using simple nonlinear terms [11,30] that could be easily practically
realizable compared to the nonlinear component of the Chua’s circuit [31,32]. The jerk
equation has the third derivative of ‘x’ (position), where the 1st derivative is the velocity,
the 2nd derivative is the acceleration, and the 3rd derivative is the Jerk. A detailed analysis
for the family of jerky equations to exhibit chaotic behavior was done in [33].

In the last decade, many researchers have proposed their chaotic circuit based on a
jerk equation. The simplest of all was reported in [22], which utilized a single Op-Amp
circuit with a FET operating in the triade mode as a source of non-linearity. Other notable
contributions were from J. Kengne et al., who used hyperbolic and exponential nonlinear
terms with the jerk equation [34,35]. Recently R. Tange et al. introduced a more generalized
exponential non-linearity φk(x) = 0.5(exp(kx)− exp(−x)), which reduces to hyperbolic
sine function for k = 1, with jerk equation for producing chaos.

Although in most of the literature reported, authors have used nonlinear function
with the jerk equation. Still, only a single effort has been reported where a discrete chaotic
map is used with the jerk equation as a nonlinear function [9]. In this paper, a discrete sine
map is added as a nonlinear function in the jerk equation to get the single scroll chaotic
attractor. The proposed system is vibrant in terms of chaotic behavior and can be easily
implemented using any generic Op-Amp with very little hassle.

The rest of the paper is organized as follows: Section 2 outlines the problem de-
scription; Section 3 briefly discusses the proposed methodology. In Section 4, eigenvalue
analysis for the proposed chaotic system is carried out; Section 5 summarizes the detailed
numerical simulations for the proposed system, Experimental validation is mentioned in
Section 6, discussion and conclusion are summed up in Sections 7 and 8.

2. Problem Description

The jerk equation has been an extensive research topic for the last four decades for the
scientific community. The general form of this equation is

...
x + αẍ + βẋ + f (x) = 0 (1)
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where, f (x) corresponds to added non-linearity. This third-order differential equation
can be transformed into a system of three first-order differential equations by simple
substitution [36].

ẋ1 = x2 (2)

ẋ2 = x3 (3)

ẋ3 = −αx3 − βx2 − f (x) (4)

It is to be noted that the added non-linearity can be a function of any state (x1, x2, x3).
In this paper, the nonlinear term added is the function of the first state i.e., f (x) = f (x1).
The choice of f (x1) can lead to a new jerk based chaotic system. Here, the discrete sine
map is integrated with the above jerk equation to get a novel jerk based chaotic system.

3. Proposed Methodology

The simple sine map given in Equation (5) has been a part of literature for quite some
time [37].

xn+1 = R× [sinπxn] (5)

here, ‘R’ is called the control parameter
Using the Taylor series expansion, it can be approximated as follows

xn+1 = R×
[

πxn −
(πxn)

3

6
+ H.O.T

]
(6)

By ignoring the higher-order terms (H.O.T.), the approximated sine map can be easily
realized using Op-Amps which produces comparable results. The effect of the control
parameter (R) variations for this approximated discrete sine map is further characterized
by finding the bifurcation diagram, maximum Lyapunov exponent, cobweb plot and time
series plot as shown in Figure 1.

This approximated map is added as a nonlinear function of the state x1 i.e., f (x1) in
the Equation (4) to get the modified jerk based chaotic system

ẋ1 = x2 (7)

ẋ2 = x3 (8)

ẋ3 = −αx3 − βx2 − R×
[

πx1 −
(πx1)

3

6

]
(9)

Defining Rπ = σ and R(π)3 = γ, Equation (9) becomes

ẋ3 = −αx3 − βx2 − σx1 +
γx3

1
6

(10)

The control parameters (α, β, σ, and γ) can be varied to get different strange attractors.
The proposed discrete-time map based jerk system is the simplified autonomous chaotic
system capable of depicting different periodic and chaotic attractors.
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Figure 1. Chaotic invariants for approximated discrete–time Sine Map: (a) Bifurcation Diagram,
(b) Lyapunov Exponent, (c) Cobweb Plot, (d) Pseudo Space Trajectory, (e) Time Series.

4. Eigenvalue Analysis

The eigenvalue analysis of the proposed jerk chaotic system is carried out to find the
stability of the equilibrium points of the system and also to establish the route to chaos
with the change in control parameters. To find the eigenvalues, first the Jacobin of the
system is calculated given as

J =

 0 1 0
0 0 1

0.5γx2 − σ −β −α

 (11)

Finally, the eigenvalues are calculated by solving the associated characteristic equation
of the system i.e.,

det|J− λI| = 0 (12)

⇒ λ3 + αλ2 + βλ− 0.5γx2 + σ = 0 (13)

It can be concluded from the Equation (13) that E0(0, 0, 0) is always unstable, whereas
the stability of points of the form E1,2(±1, 0, 0), E1,2(0,±1, 0), E1,2(0, 0,±1) depends on
the four parameters of the system, i.e., (α, β, γ, and σ). In this paper, the control parameters
(α, γ, and σ) are kept constant while β is varied to establish the bifurcation route to chaos
of the proposed jerk based chaotic system.

5. Numerical Simulation & Results

Extracting nonlinear measures from time-series is a multifaceted problem, and care
must be taken to elucidate its outcomes. Various theoretical measures like Lyapunov
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exponent and fractal dimension are used to quantify the chaotic time-series as they are
invariants of the attractor. These quantifiers turn a time-series into a single number, which
is handy for highlighting important information about the system complexity and degree
of freedom (DOF). Chaotic invariants are usually found to validate the presence of chaos,
and ensure that the results obtained show sensitive dependence on the initial condition
and are not just random white noise. To validate the route to chaos in the proposed
system, numerical simulations were carried out in MATLAB. Runge-Kutta method was
used to solve the system of Equations (7), (8) and (10). A step-size of 4t = 0.08 was
used. The values of fixed control parameters α, γ, and σ are set to 1, -6, and -6 respectively,
throughout the simulations.

Figure 2 shows the resulting time series for x3 with its values on the y-axis and no. of
samples on the x-axis for different values of β. The light green line is for ‘β = 9’ which
shows a period 1 behavior (limit cycle), the blue line is for ‘β = 6’ which corresponds to
period 2 behavior; the black line is for ‘β = 5.82’ corresponding to period 4, and the red
line for ‘β = 5.535’ shows more interesting aperiodic time series also known as chaotic
time series.
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3

Limit Cycle

Period 2
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Figure 2. Time Series for for x3: Presence of multiple attractors in the proposed discrete-time map
based chaotic jerk system.

The presented system shows the infamous sensitive dependence on the initial condi-
tions of the system. Figure 3 shows the phase portrait between x2 & x3 for two different
sets of initial conditions for (x1, x2, and x3).
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Figure 3. Sensitivity dependence on the initial conditions: Two sets of initial conditions (0.1, 0.1, 0.5)
& (0.5, 0.5, 0) with β = 5.535.

5.1. Lyapunov Exponent Test

Lyapunov Exponent test is commonly used for checking the existence of chaos in
dynamical systems. If for any dynamical system, one of the Lyapunov exponents is pos-
itive, it indicates chaos. There are various algorithms available to find the Maximum
Lyapunov Exponent (MLE) spectrum of a system described by differential (or difference)
equations [38,39]. The basic equation for finding the Lyapunov exponents is given be-
low [40].

λ(xi) = lim
n→∞

1
n

n−1

∑
i=0

ln
(

f
′
(xi)

∣∣∣ (14)

where, xi is the time series for the ith ODE.
The dynamic Lyapunov spectrum of the proposed system, calculated using Wolf’s

algorithm, for the control variable ‘β = 5.535’ (chaotic case) is shown in Figure 4.
From Figure 4, it can be concluded that one of the Lyapunov spectra is positive. Since

the positive Lyapunov exponent implies chaos, the system trajectory will diverge only in
one direction, thereby confirming the single scroll attractor shown in Figure 3.
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Figure 4. Maximum Lyapunov Exponent spectrum for the proposed discrete–time map based chaotic
jerk system.

5.2. Bifurcation Diagram

The bifurcation diagram of the proposed system was found by varying control parame-
ter ‘β’ from 5 to 12 with a step size of 0.01. The initial conditions were set to x0 = [0.5 0.5 0]′,
and the period-doubling route to chaos was plotted in Figure 5 for all three states of
the system.
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Figure 5. Bifurcation Diagram: (a) local maxima of x1 vs. Control Parameter β, (b) local maxima of x2 vs. Control
Parameter β, (c) local maxima of x3 vs. Control Parameter β.



Appl. Sci. 2021, 11, 437 8 of 16

It is to be noted that for β = 18, the system has no oscillation, and this value is termed
as the critical value. As β starts to decrease from 12 onward, the jerk based system starts to
bifurcate from stable period 1 to period-doubling route to chaos shown in Figure 5.

5.3. Correlation Dimension

Every chaotic attractor has a fractal structure [41] and exhibits self-similarity (scale-
invariance) quantified by computing fractal dimensions. Fractal dimension is a non-integer
value that gives insights about the geometric form of the attractor. Correlation dimension
provides a good estimate of the fractal dimension of the chaotic attractor. The correlation
dimension can be found as

Dcor =
log(Cr)

log(r)
(15)

where, Cr is called the correlation sum and is defined as

Cr =
2

N (N − 1)∑
N
i=1 ∑N

i=j+1 Θ
(
r−

(
xi − xj

))
(16)

here, ‘Θ’ is the heavy-side step function, ‘r’ is the radius, and N is the sample length.
Figure 6 shows the graph between log(Cr) vs. log(r), the slope of which gives the correlation
dimension approximately equal to 1.87.
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Figure 6. Cr vs. ln(r) plot for calculating the Correlation Dimension.

5.4. Frequency Spectra

Frequency spectra is an essential visual tool to study chaos in a system. Many re-
searchers have also used wavelet transform instead of frequency spectra as it can not
only show the change in the system dynamics but also can point out the time at which
such a change has occurred [42]. However, the size of the window plays a pivotal role in
getting better visualization in the wavelet transform method. Frequency spectra method
was preferred in this paper as it broadly illustrates the frequency dispersion distribution
present in the system dynamics, which is enough for the visualization of chaos. Because of
the highly chaotic region (5–5.5) in the bifurcation diagram Figure 5, the Fourier power
spectrum was calculated only for four different cases. With every variation in the control
parameter β, the presence of different attractors with the corresponding Fourier power
spectrum is shown in Figure 7.
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Figure 7. Attractor (left), Frequency Spectrum (center), & Poincare Section: (right) (a–c) Period 1 or Limit Cycle Attractor
case for β = 9, (d–f) Period 2 Attractor case for β = 6, (g–i) Period 4 Attractor case for β = 5.84, (j–l) Chaotic Attractor case
for β = 5.535.

Clearly, one can see by visual inspection that there are 1, 2, and 4 periodic peaks
in Figure 7b,e,h respectively corresponding to period 1, period 2 and period 4 attractors
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shown in Figure 7a,d,g. Also, an aperiodic power spectrum related to the chaotic attractor
shown in Figure 7j is given in Figure 7k.

5.5. Poincare Section for Different Attractors

In certain cases, a periodic orbit can be confidently identified from a two-dimensional
projection of an attractor (phase portraits). Nevertheless, this process typically does not
help in yielding a convincing inference between quasi-periodic and strange attractors.
The Poincare section, a two-dimensional plane intersecting the steady-state trajectories as
seen in Figure 8, offers a better understanding of the periodicity. It transforms a continuous
flow into a discrete mapping of time (Poincare map). Usually, only one direction of the
crossing of the trajectory is considered. It is also possible to classify the behavior of the
system by analyzing the stroboscobic distribution of the distinct points in the Poincare
section. A finite number of points on the Poincare section which adequately represent the
periodicity of the motion are observed for a periodic motion. For a quasi-periodic motion,
a continuous line in the Poincare map is observed. If the motion is chaotic, because of the
fractal character of the chaotic attractors, many irregularly points will be seen on the plane.

x

z
y

Poincare

Section

Figure 8. Graphical representation of calculating stroboscopic distribution by finding the points of
intersection of the phase trajectories with the Poincare Section.

For visualization of the Poincare map for the proposed system, the plane x2 = 0
was taken as a Poincare section and the trajectories that crosses this section from x2 < 0
or x2 > 0 were recorded. Figure 7 shows the Poincare section for a different variation
of the control parameter β. In Figure 7c, the trajectories cut the section in a single line
(positive section of the grid), characterized by the quasi period-1 attractor given in Figure 7a.
Similarly, the Poincare section for quasi period-2 and quasi period-4 are given in Figure 7f,i,
characterized by the two or four straight lines in the Poincare section. Finally, in Figure 7l,
the points are located irregularly on the Poincare section, the behavior of the system can be
termed as chaotic as evident from the phase portrait given in Figure 7j.

6. Experimental Setup

To validate the numerical results of the proposed discrete map based jerk chaotic
system, an electrical circuit was made. Op-Amps were used to implement the system of
ODEs given by Equations (7), (8) and (10) [38]. Two analog multipliers ICs (AD633JR) were
required in series to get the cubic term in Equation (10). It has four inputs (X1, X2, Y1 & Y2)
and two outputs (W & Z). The output is given as W = (X1 − X2) ∗ (Y1 − Y2)/10 + Z. It
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can be shown that the Equations (7), (8) and (10) [38] can be easily transformed into the
following set of Equations (17)–(19).

dX1

dt
=

X2

RC
(17)

dX2

dt
=

X3

RC
(18)

dX3

dt
=

X1

R1C
− X2

R2C
− X3

R3C
−

X3
1

600R4C
(19)

Using a time constant of 1× 10−4, the control parameters in terms of resistance and
capacitor can be calculated from the following relations while maintaining the critical
relation of R4 = R/100

α =
1× 10−4

R1C
= 1, β =

1× 10−4

R2C
= Variable, (20)

σ =
1× 10−4

R3C
= 6, γ =

1× 10−4

600R4C
= 6 (21)

NI Multisim was used to simulate the electrical circuit before implementing it on the
breadboard. The schematic of the proposed circuit is shown in Figure 9.

Figure 9. The circuit schematic for the proposed discrete–time map based jerk chaotic system.

Using appropriate time scaling, the output voltage of U1 A (x3) and U3 A (x2) are
directly monitored using a two-channel digital oscilloscope shown in Figure 10.
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Figure 10. NI Multisim’s digital oscilloscope output for the proposed circuit with R6 = 1807 Ω.

Experimental Verification

The circuit schematic, given in Figure 9, was implemented on a breadboard by using
TL074CN fast switching Op-Amps with high precision resistors, as shown in Figure 11.
The values for the components of the circuit are tabulated in Table 1. Variable resistor ‘R6’
is used to replicate the effect of change of β in the numerical simulations. The proposed
system shows period-doubling route to chaos as the value of R6 increases beyond 1 kΩ.
Table 2 summarizes the various attractor obtained by changing the control resistance ‘R6’.

Figure 11. Experimental Setup: (a) Oscilloscope, (b) Controlled DC Power Supply, (c) Breadboard Im-
plementation.

Table 1. Parameters of Experimental Setup.

Parameter Value Unit

R1–R5, R8–R9 10 k Ω
R7 1.67 k Ω

R10 100 Ω
C1–C3 10 n F
VDD 15 V
VEE –15 V
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Table 2. Summary of Different Attractor with the variation of Control Resistance R6.

Sr. No. Value of R6 Attractor Type

1 1112 Ω Period 1
2 1667 Ω Period 2
3 1715 Ω Period 4
4 1807 Ω Chaotic Attractor

Figure 12 shows a comparison between the numerical (left) and hardware (right)
results. Period 1 (limit cycle) attractor was obtained by setting the control resistor R6
to 1112 Ω, similarly increasing the value of R6 to 1667 Ω gives the period 2 attractor,
R6 = 1715 Ω corresponds to period 4 attractor finally, R6 = 1807 Ω gives the chaotic attractor.
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Figure 12. Cont.
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Figure 12. Numerical (left) vs. Experimental (right) results: (a,b) Period 1 or Limit Cycle Attractor case for β = 9 &
R6 = 1112 Ω, (c,d) Period 2 Attractor case for β = 6 & R6 = 1667 Ω, (e,f) Period 4 Attractor case for β = 5.84 & R6 = 1715 Ω,
(g,h) Chaotic Attractor case for β = 5.535 & R6 = 1807 Ω.

7. Discussion

Nonlinear dynamical systems with complex and irregular behavior can be charac-
terized using chaotic time-series analysis. This method aims to study characteristics of
the deterministic dynamical systems with different tools, describe them with a proper
model, and predict future values. Since all practical systems are nonlinear, the analysis
of a nonlinear dynamical system involves linearization. But, these hidden non-linearities
produce strange behavior. Most of the engineering curriculum emphasizes the analysis of
a system based on linear system theory [36], thereby oversimplifying the wide range of
fascinating dynamic responses.

During the last century, many chaos theorists highlighted the educational importance
of chaotic dynamical systems to pay off the conventional linear thinking established
through prolonged learning techniques [43–45]. Nonlinear systems can exhibit complicated
dynamics that disobey almost every law studied under linear systems. Because of several
equilibrium points for different initial conditions, it becomes impossible to predict their
long-term behavior. This property of the nonlinear system, which happens to be considered
noise as it appears random in the time domain, can find its application in almost every
scientific field. Overall, chaos theory enables us to embrace all the weirdness of life rather
than suppressing it.

In this paper, a novel chaotic system is presented based on the simple jerk equation.
The discrete sine map was added as a nonlinear function to the jerk equation and approxi-
mated using the Taylor series expansion. The proposed system simulation was carried out
in MATLAB/NI Multisim first and later verified by hardware implemented using simple
Op-Amps with analog multipliers.

8. Conclusions

This paper studied a simple nonlinear dynamical system based on a jerk equation with
a discrete-time map. The system can show periodic as well as aperiodic behavior based on
the value of the control parameter. MATLAB simulations were used to verify the theoretical
aspects of the proposed system. An electronic circuit of the nonlinear system was made in
NI Multisim using basic electrical engineering knowledge. Further, it was implemented in
real-time on a breadboard to verify the system’s chaotic nature. A fair consensus was seen
between the simulation & experimental results. High frequency range, quasi-periodicity,
autonomous chaotic existence, and low power consumption are some of the important
aspects of the design, which can find applications in cryptography, secure communication,
compressed sensing, biology, weather forecasting, mechanical engineering etc.
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