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Abstract: A new Lagrangian–Eulerian method for the simulation of viscoelastic free surface flow
is proposed. The approach is developed from a method in which the constitutive equation for
viscoelastic stress is solved at Lagrangian nodes, which are convected by the flow, and interpolated to
the Eulerian grid with radial basis functions. In the new method, a backwards-tracking methodology
is employed, allowing for fixed locations for the Lagrangian nodes to be chosen a priori. The proposed
method is also extended to the simulation of viscoelastic free surface flow with the volume of fluid
method. No unstructured interpolation or node redistribution is required with the new approach.
Furthermore, the total amount of Lagrangian nodes is significantly reduced when compared to the
original Lagrangian–Eulerian method. Consequently, the method is more computationally efficient
and robust. No additional stabilization technique, such as both-sides diffusion or reformulation
of the constitutive equation, is necessary. A validation is performed with the analytic solution for
transient and steady planar Poiseuille flow, with excellent results. Furthermore, the proposed method
agrees well with numerical data from the literature for the viscoelastic die swell flow of an Oldroyd-B
model. The capabilities to simulate viscoelastic free surface flow are also demonstrated through the
simulation of a jet buckling case.

Keywords: viscoelastic flow; computational fluid dynamics; volume of fluid; immersed boundary
methods

1. Introduction

Viscoelastic free surface flows are of significant importance for many industrial pro-
cesses. This includes polymer extrusion, additive manufacturing, seam sealing, and
adhesive joining. In such processes, the viscoelastic properties of the flow, such as the
flow history, can have major influence on the quality of the final product. Furthermore,
production time and raw materials may be subject to a large cost. Therefore, extensive
manual effort and physical testing may be necessary to optimize the process in terms of
product quality, material consumption, and production cycle time.

Numerical tools can be helpful in reducing the manual preparation time, as they offer
the possibility to replace a significant part of the physical testing with computer simulation.
Furthermore, numerical simulations may enable testing early in the design phase. For
many complex industrial applications, a large demand for suitable numerical simulation
tools therefore exists. Furthermore, for such tools to be useful, high demands are put on
accuracy, robustness, and computational efficiency.

A common approach for simulating viscoelastic fluid flow is to discretize the govern-
ing equations in the Eulerian frame of reference with the finite volume method (FVM) [1–3]
or the finite element method (FEM) [4,5]. The Eulerian frame of reference is suitable for
diffusion-dominated problems, including viscous fluid flow as well as heat and mass
transfer. On the other hand, viscoelastic constitutive equations are typically hyperbolic
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and they involve no physical diffusion term. Thus, in this sense, the Lagrangian frame of
reference is a more natural description for the constitutive equation. Therefore, Lagrangian
or semi-Lagrangian methods are appealing as alternative approaches to the Eulerian frame.

Rasmussen and Hassager [6] developed a Lagrangian finite element method in order
to calculate the flow of an upper convected Maxwell (UCM) fluid. The entire flow history
was stored and re-meshing was required, due to deformation. Harlen et al. [7] proposed a
split Lagrangian–Eulerian method for viscoelastic Stokes flow. The constitutive equation
was solved at the nodes of a co-deforming mesh, while the momentum and continuity
equations were solved with an Eulerian finite element method. Re-meshing due to mesh
distortion was also used in their method. Halin et al. proposed the Lagrangian particle
method (LPM) [8]. In their method, the momentum and continuity equations were solved
with the Eulerian finite element method. The constitutive equation was solved along the
trajectories of massless Lagrangian particles. The stresses in the particles were then fitted
to local polynomial expressions in order to enable the evaluation of the corresponding
finite element integrals in the momentum. Hence, a minimum of three particles per two-
dimensional element was required for the polynomial approximations to be feasible. Later
on, the adaptive Lagrangian particle method (ALPM) [9] was proposed, utilizing adaptive
addition and the deletion of particles. However, a fairly large number of particles was
required for the simulations to produce stable transient results. Furthermore, Wapperom
et al. [10] proposed the backward-tracking Lagrangian particle method (BLPM), in which
backwards integration of the velocity field allowed for the choice of fixed particle locations
a priori, increasing the efficiency of their particle tracking approach.

The simulation of viscoelastic free surface flow has been approached with different
methods. For example, Crochet and Keunings [11] simulated the viscoelastic die swell
effect of an Oldroyd-B fluid with a mixed finite element method as early as 1982. More
recent similar examples of finite element methods on non-stationary grids can be found
in Balemans et al. [12] and Spanjaards et al. [13]. The marker-and-cell (MAC) approach is a
method that has been used quite extensively for simulation free surface flows [14–20], in which
the governing equations discretized with finite differences and the free surface is tracked
while using marker particles. The method has been successfully used for the simulation, for
example, of the die swell and viscoelastic jet buckling with a variety of constitutive models.
The simulations are typically performed on staggered, uniform grids, which has certain
limitations for complex simulation geometries and in terms of computational efficiency
when high resolution is required. Furthermore, the existence of a gas phase surrounding
the viscoelastic fluid is not taken into account, which may be required for some cases. The
front-tracking method is another similar method [21].

The volume of fluid (VOF) method is a popular method for the simulation of Newto-
nian as well as viscoelastic free surface flow with finite volume discretization. VOF is a
diffuse–interface method, in which the presence of two or more fluid phases is represented
by their corresponding volume fractions, advected with geometric or algebraic schemes. A
sharp fluid interface may then be reconstructed from the solution. A single set of momen-
tum, continuity equations are then solved for the whole domain, and the fluid properties
are locally averaged with the fluid volume fraction. Furthermore, the transport of the
volume fraction may be solved with the same spatial grid as the momentum and continuity
equation, which makes the method suitable for finite volume simulation of free surface
flow. Some examples follow.

Habla et al. [22] developed a VOF-solver for viscoelastic free surface flow that is based
on the open source solver OpenFOAM [23]. The simulations were stabilized by reformulat-
ing the viscoelastic constitutive equations with the log-conformation representation (LCR)
and with both-sides diffusion (BSD) in the momentum equation. Comminal et al. [24]
simulated the viscoelastic die swell effect for Oldroyd-B and Giesekus fluids with the
VOF method, combined with two different schemes for the convection of the fluid vol-
ume fraction, a geometric scheme, as well as an algebraic scheme that directly solved the
transport equation for the volume fraction. Furthermore, their methods were compared
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to the VOF solver that is available in RheoTool [25], which is an open source toolbox for
viscoelastic flow that is based on OpenFOAM. The constitutive equation was also refor-
mulated with LCR in their study. Bonito et al. [26] reported a related method, using a
mathematical formulation that is similar to the volume of fluid method, while solving
the governing equations with a piecewise linear finite element method, contrary to finite
volume discretization.

In previous work, a Lagrangian–Eulerian framework for viscoelastic flow has been
proposed [27,28]. In the method, the constitutive equation is solved at Lagrangian nodes,
which are convected by the flow. The momentum and continuity equations are discretized
with the finite volume method on an Eulerian octree grid and then solved with SIMPLEC
iterations [29]. Boundary conditions that are imposed by objects in the domain are treated
using implicit immersed boundary methods [30,31]. The contribution to the momentum
equation from the viscoelastic stress is established through the unstructured interpolation
of the stress tensors from the Lagrangian nodes to the cell centers of the Eulerian grid while
using the radial basis function.

The ability to efficiently simulate industrial applications, such as adhesive extrusion,
parts assembly, and additive manufacturing, is a main motivator to develop the new
method. For this purpose, it is necessary that the numerical method is accurate, computa-
tionally efficient, and robust. The ability to model viscoelastic free surface flow in complex
geometry with moving objects is also necessary. The proposed method was shown to
produce results in good agreement with available analytic and numerical data from the
literature [27]. It has also been shown that the Lagrangian formulation of the constitutive
equation allows for the efficient parallelization of the viscoelastic stress calculation, which
makes the method highly suitable for GPU-acceleration [28]. Furthermore, the use of an
immersed boundary method in combination with the automatically generated grid enables
simulation on arbitrary geometry with minimal pre-processing.

In the previous studies [27,28], the proposed Lagrangian–Eulerian method has been
validated for single-phase flows with uniform grids. The natural next steps include en-
abling the simulation of free surface flow as well as simulation on refined grids. Therefore,
in the current work, the proposed method is further developed in these two aspects. Firstly,
the framework is extended for simulation of viscoelastic free surface flows with the volume
of fluid method. Secondly, a backwards-tracking procedure is introduced to the solution of
the constitutive equation, partly inspired by the backward-tracking Lagrangian particle
method by Wapperom et al. [10]. The result is a more robust method, due to the structured
relation between the Lagrangian nodes and the Eulerian grid. No stabilization method,
i.e., neither both-sides diffusion nor reformulation of the constitutive equation, is required
for the studied flows. Furthermore, the computational cost as compared to the original
Lagrangian–Eulerian method is reduced, since no unstructured interpolation or node redis-
tribution is needed and because the total number of Lagrangian nodes decreased. In the
context of multiphase flows, the viscoelastic constitutive equation is only solved inside the
viscoelastic phase, which further increases the computational performance.

The rest of the paper is structured, as follows. In the next section, the governing
equations are presented, followed by a detailed description of the proposed numerical
method. In the results section, the new method demonstrated and validated with analytic
solutions and numerical data from the literature. Finally, conclusions are drawn and future
work is outlined.

2. Governing Equations

Viscoelastic fluid flow is described by the incompressible momentum and continuity
equations

ρ

(
∂u
∂t

+ u · ∇u
)
= −∇p +∇ · (2µS + τ) + f, (1)

∇ · u = 0, (2)
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where ρ is the density, u velocity, µ the solvent viscosity, S = 1
2 (∇u + (∇u)T) the strain

rate tensor, τ the viscoelastic stress tensor, and f a body force. The viscoelastic stress is
governed by a constitutive equation of the general form

λ
5
τ + F(τ)τ = 2ηS, (3)

where λ is the relaxation time, η polymeric viscosity, and F a scalar-valued function. The

operator
5
(•) denotes the upper-convected derivative of τ, which expands to

5
τ =

Dτ

Dt
− (∇u)T · τ − τ · ∇u, (4)

where
Dτ

Dt
=

∂τ

∂t
+ u · ∇τ, (5)

is the Lagrangian, or material, time derivative of τ. The Lagrangian time derivative de-
scribes the rate of change of τ in an infinitesimal material element, which moves with

the flow. Convected time derivatives, such as
5
(•), appear in viscoelastic constitutive

equations and they ensure frame-invariance for the transport of tensorial properties. It is re-
marked that, while the form of (3) is not applicable for all available differential constitutive
equations, it covers the constitutive models discussed in this work.

In general, the viscoelastic stress tensor may be modeled as a sum of the contribution
of N modes as

τ =
N

∑
k=1

τk, (6)

where τk is the stress tensor that corresponds to the kth mode. Each stress tensor τk is then
governed by a constitutive equation on the form of (3) with an individual set of model
parameters.

3. Numerical Method

The momentum Equation (1) and the continuity Equation (2) are discretized on a
collocated Eulerian grid with the finite volume method. The pressure–velocity coupling
is accomplished by solving the momentum and continuity equations with SIMPLEC
iterations [32]. An octree grid is used, in which the cells can be refined in desired locations
by recursively dividing them into smaller cells to a given refinement level. The refinements
may be static or adaptively updated, typically around moving objects or fluid interfaces.
Figure 1 displays an example grid in two dimensions with one refinement level, showing
the cell centers and the grid nodes. The grid, including the adaptive refinements, is
automatically generated by the solver.

× ×

×
× ×

× ×

Figure 1. Two-dimensional grid with one refinement level, showing cell centers (×) and grid
nodes (•).
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Boundary conditions from objects in the domain are imposed while using the mirror-
ing immersed boundary method [30,31]. The velocity field is implicitly mirrored across the
immersed boundary surface, such that the imposed boundary condition is satisfied for the
converged solution. Surface triangulations represent the geometrical objects.

The viscoelastic constitutive equation is solved in the Lagrangian frame of reference
in material elements that are represented as Lagrangian nodes. From (3) and (4), it follows
that the stress in a Lagrangian node is described by the ordinary differential equation
(ODE)

Dτ

Dt
=

2η

λ
S− 1

λ
F(τ)τ + (∇u)T · τ + τ · ∇u. (7)

Furthermore, the trajectory of the node must be known when solving (7), as it involves the
local velocity gradient ∇u . The trajectory of the node is given by the ODE

Dx
Dt

= u, (8)

where x is the position of the node.
Given an initial stress state in a set of Lagrangian nodes, a straightforward approach

to obtain the stress state at a future time is to simultaneously solve (7) and (8) forwards
in time. Indeed, this method has been successfully employed in previous work [27,28].
Lagrangian nodes were then initialized with a given distribution density at the start of
the simulation. The distribution was maintained in each time step by adding or deleting
nodes, if necessary. After solving the constitutive equation at the Lagrangian nodes, the
viscoelastic stress was interpolated to the Eulerian cell centers while using radial basis
functions (RBF).

In this work, the method is further developed by introducing the concept of backwards-
tracking. The key idea is to choose the locations of the Lagrangian nodes a priori, at which
the viscoelastic stresses are then stored, and then track them backwards in time in order
to obtain their initial location in each time step. The constitutive equation may then be
solved forwards in time such that the stresses are obtained at for the next time step at the
chosen locations. Different choices for the locations are conceivable. In the current work,
the locations of the Lagrangian nodes are chosen to be at the Eulerian grid nodes.

Consider the calculation of the viscoelastic stress for the nth simulation step, which
corresponds to the time interval In = [tn, tn+1]. At this point, it is assumed that momentum
equation has been solved, such that the velocity field is known for t ∈ In.

The Lagrangian constitutive equation is solved along the trajectories of Lagrangian
nodes. For a Lagrangian node, the trajectory x(t) can be expressed in terms of the position
at the end of the time step, as

x(t) = x(tn+1)−
∫ tn+1

t
u(t′, x(t′))dt′, t ∈ In, (9)

where x(tn+1) is the predefined final location of the Lagrangian node which. The trajectory
x(t) for t ∈ In is first calculated by solving (8) backwards in time. Subsequently, when the
trajectory is known, the viscoelastic stress τ(tn, x(tn)) is interpolated from the viscoelastic
stresses from the solution of the previous simulation step. The Lagrangian constitutive
Equation (7) is then solved forwards in time and the viscoelastic stress is thus obtained at
the final location x(tn), i.e., at the predefined location.

Generally, the choice of locations for the Lagrangian nodes is somewhat arbitrary.
However, by choosing the locations of the Eulerian grid nodes, the connectivity and
structure of the octree grid may be utilized when the stress at time tn is interpolated to
the position of a Lagrangian node x(tn). The stress at the node at time tn is obtained
through bilinear or trilinear interpolation, respectively, for two-dimensional (2D) and
three-dimensiona (3D). Furthermore, the viscoelastic stress contribution to the discretized
momentum equation may be calculated directly from node stresses. Therefore, no unstruc-
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tured interpolation of viscoelastic stresses is necessary. The calculation of this contribution
is described in detail further on in this section.

Figure 2 shows a schematic description of the steps that are involved in the algorithm.
In summary, the performed steps are:

(a) Calculate the Lagrangian node trajectory by solving (8) backwards in time, starting at
the predefined location x(tn+1).

(b) Interpolate the stress τ(tn, x(tn)) to the Lagrangian node from the known node values
at time tn.

(c) Solve (7) forwards in time along the trajectory x(t), t ∈ In.

x(tn+1)

x(tn)

(a) Backwards-tracking

τ(tn)

(b) Interpolation

τ(tn+1)

τ(tn)

(c) Forwards-solving
Figure 2. Schematic description of the steps that are involved in the backwards-tracking algorithm.

The ordinary differential Equations (7) and (8) may be solved with any appropriate
choice of ODE solution algorithm. In this work, the fourth order Runge–Kutta method,
which is commonly referred to as the RK4 method [33], is used. Furthermore, Nsub equally
sized substeps of length ∆tsub are used, being defined, such that Nsub∆tsub = ∆t =
tn+1 − tn. In the current work, Nsub = 3 is used.

When solving (7) and (8), local quantities that are stored on the Eulerian grid are
required along the trajectory of the Lagrangian nodes. More specifically, the velocity u is
needed for the backwards-tracking and the velocity gradient ∇u is needed to solve the
constitutive equation. The velocities are stored at the Eulerian cell centers. When the local
velocity is required, the cell centers containing the Lagrangian node are identified and
the velocity is interpolated to its location while using bilinear or trilinear interpolation,
respectively, for 2D and 3D. When the velocity gradient is required, it is calculated from
the bilinear or trilinear interpolation formula using the same interpolation basis.

For the interpolation of a field φ to a location within a box spanned by the corners
(xi, yj, zk), i, j, k ∈ {0, 1}, the trilinear interpolation formula in order to calculate the inter-
polant φ̂ reads

φ̂ =
1

∑
i=0

1

∑
j=0

1

∑
k=0

ci
xcj

yck
zφijk, (10)

where φijk is the value of φ at the corner (xi, yj, zk) and with the coefficients

ci
l =

{
1− x̄l/∆xl , i = 0

x̄l/∆xl , i = 1
, l = x, y, z, (11)

where x̄l is the lth coordinate of the interpolation position relative to the lower corner of
the box and ∆xl is the size of the box that coordinate direction. The gradient of φ̂ follows
from (10) and (11), as

∂φ̂

∂x
=

1

∑
i=0

1

∑
j=0

1

∑
k=0

(
∂ci

x
∂x

)
cj

yck
zφijk, (12)

∂φ̂

∂y
=

1

∑
i=0

1

∑
j=0

1

∑
k=0

ci
x

(
∂cj

y

∂y

)
ck

zφijk, (13)



Appl. Sci. 2021, 11, 439 7 of 25

∂φ̂

∂z
=

1

∑
i=0

1

∑
j=0

1

∑
k=0

ci
xcj

y

(
∂ck

z
∂z

)
φijk, (14)

where the derivatives of the coefficients read

∂ci
l

∂xl
= ∓ 1

∆xl
, i = 0, 1, l = x, y, z. (15)

The corresponding formulas for bilinear interpolation in two dimensions are obtained by
letting the coefficient ck

z = 1 and, thus, ∂ck
z/∂z = 0, and skipping the summation over k.

When interpolating to a Lagrangian node near fluid grid refinements the smallest
local cell size is used in order to form the interpolation box. Furthermore, not all corners of
the interpolation box coincide with a cell center. The velocities at such corners are obtained
through least squares interpolation, by fitting a first order polynomial from the centers of
the cells that intersect the interpolation box. The interpolation box is visualized in Figure 3.

×

×

×

×
x

(a) Uniform

×

◦

◦

×

×
x

(b) Refined
Figure 3. Basis for interpolating properties stored at the fluid grid to Lagrangian nodes in areas with uniform grid spacing
(a) and near refinements (b).

The volume of fluid (VOF) method is used to model the presence of a viscoelastic fluid
phase and a Newtonian phase. A color function ξ, is then defined, such that

ξ =

{
1 In the viscoelastic phase
0 In the Newtonian phase

}
. (16)

The discrete counterpart of ξ is the fluid volume fraction α ∈ [0, 1], which is the local
volume average of ξ in an Eulerian cell. The transport of α is described by the convection
equation [34]

∂α

∂t
+ u · ∇α = 0. (17)

By definition, α is the local volume fraction of the viscoelastic phase in a control
volume. Hence, if α = 1, the control volume is filled with the viscoelastic fluid and if
α = 0 with the Newtonian fluid. If α ∈ (0, 1), this is interpreted as that the control volume
intersects the interface between the fluid phases. The transport Equation (17) is discretized
with the finite volume method on the Eulerian octree grid. In order to minimize the
numerical diffusion of α and, thus, avoid smearing the fluid interface, the convection term
in (17) is discretized with the compact CICSAM scheme [35].

A single set of the Equations (1)–(3) is solved for the whole computational domain.
Fluid properties are locally averaged as

φ = αφ1 + (1− α)φ2, (18)

where φv and φN are the properties of the viscoelastic and the Newtonian phase, respec-
tively. The averaging is applied for ρ, µ, η, and λ, as well as for τ when calculating the
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contribution to the momentum equation. When α is needed at a Lagrangian node, it is
interpolated with the same method as used for velocity.

Special care for the viscoelastic stress in the interface region α ∈ (0, 1) is necessary
due to the non-sharp interface nature of the VOF method. A brief motivation for this
follows. In many examples of viscoelastic free surface flow, the viscosity of the Newtonian
fluid may very well be on the order of 10−5 of that of the viscoelastic phase. Hence,
the average velocity gradient in the Newtonian phase may be much larger than in the
viscoelastic phase. Consequently, if the velocity gradient of the Newtonian phase is allowed
to have large influence on the constitutive equation in the interface region; this can result
in unphysically large stresses. This is especially the case if not all velocity and length scales
in the Newtonian phase are resolved near the interface. Thus, a means of reducing this
effect around the free surface is proposed.

A threshold volume fraction is used, such that Lagrangian nodes are only created
inside the viscoelastic phase, which are defined by the condition α ≥ αlim = 0.1. Thus, the
constitutive equation is only solved in the viscoelastic part of the computational domain
and the stress is assumed to vanish outside the viscoelastic phase. Furthermore, when the
velocity gradient is calculated at a Lagrangian node, the corners of the interpolation box at
which α < 0.1 · αlim are also considered to be outside the viscoelastic phase. The velocities
at such corners are excluded from the gradient calculation and they are replaced by 0th
order extrapolation from the corners which are inside the viscoelastic phase.

It is remarked that, apart from numerical stability, the described approach is advanta-
geous in terms of computational efficiency, since the constitutive equation only needs to be
solved in part of the domain.

When the stress field has been calculated, the term ∇ · (ατ) is integrated and then
added to the right hand side of the discretized momentum equation. At this stage, the
product rule is applied, such that

∇ · (ατ) = α∇ · τ + τ · ∇α, (19)

which can be seen as separating the pure interfacial contribution of the viscoelastic stress to
the fluid momentum from the remainder part [36]. The formulation of (19) is used, since it
was found to enhance numerical stability. The first term of (19) is integrated over the cells
with Gauss’ divergence theorem, as∫

c.v.
∇ · τdV =

∫
c.s.

n̂ · τdS = ∑
f

∫
f.s.

n̂ f · τdA, (20)

where c.v. denotes the cell volume, c.s. the cell surface, f.s. the surface of cell face f , and the
vector n̂ denotes the surface normal pointing outwards from the cell. In the second step of
(20) the surface integral is divided into a sum of the integrals over the respective surface
faces of the cell, for which the normal vectors n̂ f are constant. The integral over each face
is approximated with the trapezoidal rule while using the stresses at the Eulerian grid
nodes. If a cell has neighbors that have a higher refinement level, e.g. in the case shown
in Figure 1, the face to each smaller neighbor cell is individually integrated, such that the
stress contribution from each grid node is included correctly.

The volume integral of the second term of (19) is approximated with the cell average
stress and volume fraction gradient, as∫

c.v.
(τ · ∇α)dV ≈ (τ · ∇α)∆V, (21)

where ∆V is the cell volume and (•) denotes volume average. The cells where α < 0.1 · αlim
are assumed to be outside the viscoelastic phase and the stress contribution is instead set
to zero.

The full algorithm for viscoelastic free surface flow can be summarized, as follows,
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1. Calculate and add the viscoelastic stress contribution to the discrete momentum
equation.

2. Solve velocity and pressure fields u, p from the momentum Equation (1) and continu-
ity Equation (2) while using SIMPLEC iterations.

3. Solve the transport of the fluid volume fraction α from (17)
4. Solve the viscoelastic stress from the constitutive Equation (3) to the new time while

using the backwards-tracking procedure.

When compared to the original version of the Lagrangian–Eulerian framework that
was proposed in Ingelsten et al. [27], the new method is expected to be more robust due
to the structured nature of the Lagrangian nodes as well as the staggered arrangement
between the storage locations of the velocity and the viscoelastic stress. Although the
computational efficiency is not assessed in detail in this work, the computational cost is, in
fact, reduced. As a reference, the computational performance of the original Lagrangian–
Eulerian method was studied for the flow of a four-mode PTT fluid over a confined
cylinder [27]. Four Lagrangian nodes per fluid cell were initialized for the node set. Out of
the total stress calculation time, approximately 50% was spent on solving the ODE systems,
30% on the unstructured interpolation, and 10% on the redistribution of the Lagrangian
node set. In the new method, the unstructured interpolation, as well as the redistribution,
is completely removed. Furthermore, the number of Lagrangian nodes is reduced to be on
the same order as the number of Eulerian cells. Thus, a large reduction in computational
time should be expected.

The proposed method is implemented in the software IBOFlow® [37], an in-house
CFD code that was developed at the Fraunhofer–Chalmers Research Institute for Industrial
Mathematics in Gothenburg, Sweden. In addition to viscoelastic flow, the solver has
previously been employed to simulate conjugated heat transfer [38–40], and fluid-structure
interaction [41], as well as free surface flow of shear-thinning fluids with applications for
seam sealing [42,43], adhesive application [44], and 3D-bioprinting [45].

4. Results

In this section, the proposed method is evaluated for three different flow cases. First, a
basic validation is carried out by comparing the numerical results with the analytic solution
for a transient channel flow. The method is then compared to the numerical results from
the literature for simulations of the viscoelastic die swell effect. The capability to simulate
viscoelastic free surface with adaptive mesh refinement is demonstrated for simulations of
viscoelastic jet buckling.

The test cases that are reported in this section are simulated while using a single-mode
Oldroyd-B model, which has the constitutive equation

λ
5
τ + τ = 2ηS, (22)

corresponding to F(τ) = 1 in (3). Furthermore, a viscosity ratio β is defined as

β =
µ

µ + η
. (23)

By definition of the total viscosity ηt = µ + η, it follows from (23) that µ = βηt and
η = (1− β)ηt.

Note that the Lagrangian–Eulerian method that is proposed in this work is by no
means limited to the Oldroyd-B model. All of the constitutive equations in the form of (3)
are supported by the framework.

4.1. Planar Poiseuille Flow

A basic validation of the proposed method is performed for a viscoelastic planar
Poiseuille flow. The numerical results for the transient as well as the steady flow are
compared to the corresponding analytic solution.
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The computational domain has height and length h and it is shown in Figure 4. The
upper boundary is treated as a wall with the no-slip condition u = 0 and the lower
boundary has a symmetry condition. At the left and right boundaries, the Dirichlet
conditions p = ∆p and p = 0 are imposed, respectively, while the cyclic conditions are
used for the velocity and viscoelastic stress. Thus, the numerical model represents an
infinitely long channel of height 2h, which is subjected to a constant pressure drop ∆p. The
simulation starts from rest, with velocity and viscoelastic stress equal to zero.

p = ∆p p = 0

y

x

h

h

∆x

Figure 4. Schematic of the planar Poiseuille flow.

A Weissenberg number for the flow is defined as Wi = λU/h, where U is the mean
steady flow velocity, and a Reynolds number as Re = 2ρUh/(µ + η). The flow is simulated
for β = 1/9, 1/18, 1/27 and Wi = 0.1, 1. Here, U = 0.1 m/s, ρ = 1 kg/m3 and η = 1 Pas are
constant, while Wi and β are varied, respectively, by changing λ and µ between simulations.

In order to ensure sufficient temporal resolution, the flow is simulated using different
time step lengths. These simulations are performed for the lowest viscosity ratio β = 1/27,
for which the transient variations are the largest. A uniform Eulerian grid with the cell size
∆x = H/20 is used.

In Figure 5, the simulated centerline velocity, i.e., at x = h/2, y = 0, obtained with the
time step lengths 10−4 s, 10−5 s and 10−6 s, are shown for Wi = 0.1 and Wi = 1. The velocity
that si obtained with the longest step length is clearly different from those obtained with the
two shorter step lengths. However, the two shorter lengths produce results that practically
overlap on the scale of comparison. Thus, the step length ∆t = 10−5 s is considered to be
sufficiently small and it is used to obtain the remaining results reported in this section.
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Figure 5. Centerline velocity in channel flow simulated using different time steps.

Xue et al. presented an analytic solution of the transient solution for the flow consid-
ered [46]. In Figure 6, the obtained centerline velocities for the β = 1/9, 1/18, 1/27 are
shown for Wi = 0.1 and Wi = 1 and compared to the analytic solution. The results demon-
strate the strong influence of the relationship between the solvent viscosity and polymeric
viscosity on the transient flow. The numerical results overlap the analytic solution, showing
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that the proposed method treats the transient flow dynamics correctly. Furthermore, the
results confirm that the spatial resolution ∆x/h = 20 is sufficient for this case.
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(b) Wi = 1

Figure 6. Centerline velocity in channel flow simulated using viscosity ratios β.

In order to assess grid dependency in more detail, the flows for β = 1/27 and
Wi = 0.1, 1 are simulated until a steady flow is reached while using varying spatial
resolution. The flow being steady is ensured through the condition

||φn−1 − φn||L2

||φn||L2

< 10−10, (24)

where ||•||L2
denotes the L2-norm over the cells of the Eulerian grid, φ is velocity or

viscoelastic stress, and the subscript n denotes the quantity at the nth time step.
The error measurements with respect to the analytic steady state solution are calculated

as

Eφ =
||φs − φa||L2

||φa||L2

, (25)

where φs and φa denote the simulated and analytic solution, respectively. The computed
errors for velocity and viscoelastic normal stress are shown as a function of grid size in
Figure 7. The errors decrease with second order slope with grid refinements, which is
coherent with the second order accuracy that was observed for the original Lagrangian–
Eulerian method [27,28].
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Figure 7. Computed errors with respect to the analytic solution for velocity (a) and viscoelastic normal stress (b).
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4.2. Die Swell

The die swell effect is a phenomenon that occurs for the free surface flows of vis-
coelastic fluids flowing in a pipe or channel and exiting through circular or slit dies.
Barnes et al. [47] described the origin of the die swell effect by viewing the viscoelastic fluid
as a bundle of elastic threads. In the channel flow, the threads are stretched by the normal
stress component τxx, where x is the flow direction. When the fluid exits the channel,
the threads are allowed to relax and shorten in length. Consequently, the diameter of the
emerging fluid increases.

Flows that exhibit the die swell effect are commonly used to benchmark and validate
numerical methods [11,13,14,16–20,22,24]. In addition to the free surface, the flow has
extensional characteristics around the channel exit as well as a stress singularity at the
channel exit corner. These flow features make the flow suitable for testing robustness and
accuracy of new numerical methods. Therefore, in this work, a planar die swell flow is
simulated. The case parameters are selected to allow for a meaningful comparison with
numerical data from the literature.

A schematic description of the computational domain can be found in Figure 8.
A channel of height 2h and length 10h is considered. A symmetry boundary condition is
used at y = 0, such that effectively half of the domain is simulated. The expansion zone is
5h high and 12h long, giving the domain a total length of 22h. The length of the channel
and size of the expansion zone are chosen to be sufficiently large for boundary effects not
to affect the flow near the channel exit.

The exterior boundaries of the expansion zones are treated as outlets with the pressure
condition p = 0, and an immersed boundary is used to impose the no-slip condition for
the channel walls. Gravity is neglected.

Outlet

Inlet h hmax

5h

10h 12h

x

y

Figure 8. Die swell domain.

The viscoelastic fluid in the channel is an Oldroyd-B fluid with the viscosity ratio
β = 1/9. The surrounding fluid is a Newtonian fluid with much lower viscosity and
density than the viscoelastic fluid. In this work, these parameters are set to µair = 10−6µ
and ρair = 10−3ρ, respectively. Comminal et al. used a similar definition [24], but with
ρair = 10−2ρ.

The simulation of the flow starts from rest, with the channel filled with viscoelastic
fluid. Transient flow is simulated for a sufficiently long physical time for the flow in the
channel and the expansion region to fully develop, as well as for the free surface flow to
exit through the outlet with a uniform velocity profile.

At the inlet, fully developed flows are imposed for the velocity and viscoelastic stress.
For fully developed channel flow of an Oldroyd-B fluid, it can be shown that

u(y) =
3
2

U
(

1− y2

h2

)
, (26)

∂u
∂y

= −3Uy
h2 , (27)
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τxy(y) = η
∂u
∂y

, (28)

τxx(y) = 2λτxy(y)
∂u
∂y

= 2λη

(
∂u
∂y

)2
, (29)

where U is the mean velocity. A derivation of the expressions can be found in Appendix A.
The channel half height h and velocity U are taken as characteristic length and velocity

scales for the flow. Thus, a Weissenberg number for the flow may be defined as

Wi =
λU
h

, (30)

and a Reynolds number as

Re =
2ρUh
µ + η

. (31)

A dimensionless time is also defined as t∗ = tU/h.
The swell ratio Sr = hmax/h is the main quantity of interest, in terms of validation by

comparison. The swell ratio is a function of the so-called recoverable shear SR, which is
defined as [11]

SR =

∣∣∣∣ N1

2τxy

∣∣∣∣
y=h

=

∣∣∣∣τxx − τyy

τxy

∣∣∣∣
y=h

=
3λU

h
= 3Wi, (32)

where N1 = τxx − τyy is the first normal stress difference. In the simulations that are
reported in this section, the quantities U, η, µ, and ρ are constant, while SR is varied by
changing λ between simulations. The Reynolds number is Re = 0.5 for all simulations.

Tanner [48,49] developed a theoretical solution for the amplitude of the die swell as
a function of the recoverable shear. For an Oldroyd-B channel emerging from a slit the
solution reads

Sr = 0.19 +

(
1 +

SR
2

3

) 1
4

. (33)

The theory does not take the stress singularity at the channel exit corner into account
and is, therefore, only expected to yield a good approximation of the swell ratio when
the influence of elasticity is small, i.e., for small Wi. Nevertheless, it is often included for
comparison in numerical studies of the die swell effect and it is included in this study.

The influence of the spatial discretization on the numerical results is assessed through
a grid dependence study and the flow is simulated for SR = 2.5 with three different grids,
denoted as M1, M2, and M3. A grid is defined by a base cell size ∆xbase and a set of
refinements, as described in Section 3. The grids M1, M2, and M3, respectively, have the
base cell sizes ∆xbase = h/5, h/10, h/20. The largest cells are located in the expansion zone,
far from the channel exit. One level of refinement is used in the channel and around the
channel opening and two levels of refinement near the exit corner. As an example, grid
M1 is shown in Figure 9. The area around the channel exit corner has been zoomed for
clarity. Table 1 summarizes the grids used. A constant time step length is used, such that
U∆t/∆xmin = 0.01, where ∆xmin is the smallest cell size of the grid.

Table 1. Summary of grids that are used to study the grid dependence of the die swell simulations.

Grid h/∆xbase h/∆xchannel h/∆xcorner Num. Cells Total.

M1 5 10 20 4829
M2 10 20 40 19,685
M3 20 40 80 78,740
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Figure 9. Grid M1 used in the grid dependence study, as defined in Table 1.

First, the velocity as well as the viscoelastic normal and shear stress are compared to
the analytic steady solution inside the channel. In Figure 10, the corresponding profiles
obtained using grid M1 across the channel at x/h = 5, halfway from the inlet to the channel
exit. Already at the lowest grid resolution, the simulated profiles overlap the analytic
solution. The results that are obtained with M2 and M3 are visually the same and the
figures are, therefore, omitted. The results validate that the constitutive equations are solved
correctly and that the immersed boundary method used to impose the boundary conditions
at the channel wall works as intended for the solution algorithm for the viscoelastic stresses.
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Figure 10. Simulated profiles for SR = 2.5 across the channel at x = 5h, obtained with grid M1, compared to the
analytic solution.

In Figure 11, the position of the free surface that is visualized by the contour α = 0.5 is
shown for SR = 2.5 for the grids that are defined in Table 1. Some small surface oscillations are
observed in the results from the two finer grids M2 and M3 in the region x/h < 2. As reference,
Comminal et al. [24] reported similar behavior for their corresponding simulations. In
their simulations, small self-sustained surface oscillations appeared at a certain level of
recoverable shear, in their case SR > 1.5 for the Oldroyd-B fluid, and for sufficiently high
resolution. Similar observations were also made for simulations with the Giesekus model
in their study. The oscillations were damped out further downstream and they did not
influence the calculated swell ratio hmax/h. Similar characteristics are observed in the
current work, as in Figure 11. Comminal et al. attributed the oscillations to numerical
difficulties around the free surface due to the nature of the non-sharp interface in the VOF
method.

In the light of this discussion, the results that are obtained on grid M2 and M3 are
in relatively good agreement. This is particularly true far downstream of the channel
exit, where the free surface produced by M2 and M3 are very close, while M1 produces a
different result. The results indicate that M2 is of sufficient spatial resolution to predict the
swell ratio Sr. Therefore, the results presented in the remainder of this section have been
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obtained while using grid M2. In addition, the simulation with grid M2 has been repeated
with half the time step size, such that U∆t/∆xmin = 0.005, which produced equivalent
results.

0 1 2 3 4 5 6

x/h

1.00

1.25

1.50

1.75

y
/h

M1
M2
M3

Figure 11. Free surface position in the expansion zone of the die swell geometry, simulated for grids M1, M2, and M3 for
SR = 2.5.

The simulations are repeated with grid M2 for SR ∈ {1.0, 1.5, 2.0, 2.5}. In Figure 12, the
contour α = 0.5 is shown for SR = 1 at different times. Figure 13 shows the corresponding
results for SR = 2.5. Similar behavior is observed in both cases. The emerging viscoelastic
fluid increases in diameter directly upon exiting the channel. The magnitude of the increase
is strongly influenced by the level of elasticity, as qualitatively predicted by Tanners theory.
At a certain distance from the channel exit, approximately for x/h > 3, the emerging
viscoelastic fluid reaches a terminal diameter.

The swell ratio is calculated for the simulations as Sr = hmax/h, where hmax is taken
as the position of the free surface at x/10. The calculated swell ratios that were obtained
with the proposed method are compared to available numerical data from the literature.
The data used are the original FEM simulations reported by Crochet and Keunings [11],
the marker-and-cell simulations by Tomé et al. [14], the pseudo-VOF simulation by Habla
et al. [22], and the three different VOF methods used by Comminal et al. [24]. Table 2 briefly
summarizes the data. For a full description of the cases and numerical methods, the reader
is referred to the respective studies. However, a brief discussion concerning the differences
between the results is given below.
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Figure 12. Snapshots of die swell simulation with SR = 1.0, interface between viscoelastic phase (green) and Newtonian
phase (white) visualized by α = 0.5.
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Figure 13. Snapshots of die swell simulation with SR = 2.5, interface between the viscoelastic phase (green) and Newtonian
phase (white) visualized by α = 0.5.

Table 2. Summary of numerical data as compared for the die swell flow.

Work Method Re

Current work VOF, Lagrangian-Eulerian 0.5
Crochet & Keunings [11] Mixed FEM 0
Tomé et al. [14] GENSMAC 0.5
Habla et al. [22] pseudo-VOF 0.5
Comminal et al. [24] (CCU) VOF, Geometric scheme 0
Comminal et al. [24] (HRIC) VOF, Algebraic scheme 0
Comminal et al. [24] (RheoTool) VOF, Algebraic scheme (MULES) 0.01

The calculated swell ratios as a function of the recoverable shear for the flows simu-
lated with the proposed method are compared to the results from the literature in Figure 14.
It is remarked that Comminal et al. employed a different definition of the Weissenberg
number and swell ratio. However, all of the data that are presented in Figure 14 have been
adopted to the definition used in the current work.

Indeed, a certain spread among the data is observed. The differences are not unex-
pected, though, as there are slight differences between how the different data have been
obtained. This is in terms of the numerical method used as well as the simulation setup.
Furthermore, Comminal et al. even obtained different results while using three slightly
different numerical methods for exactly the same flow.

Crochet and Keunings and Tomé et al. did not consider a fluid surrounding the
viscoelastic phase, as the per construction of their numerical methods. Comminal et al.
used a similar definition of the surrounding fluid as in the current work, but with larger
density. Habla et al. stated that the surrounding fluid is treated as air with µair → 0 and
ρair → 0, but the magnitudes were not reported. Furthermore, the value of viscosity ratio
of the viscoelastic fluid β varied between their simulations. This is in contrast to a constant
β = 1/9, which has been used in the other simulations included in this work.

Given the above discussion, a certain variance in the data is to be expected. However,
the different results do follow the same general trend, including the swell ratios predicted
with the proposed Lagrangian–Eulerian method.

Another aspect is that of grid dependence. The simulation performed by Crochet and
Keunings had a grid resolution which, by today’s standards, was very coarse. They used
six triangular finite elements across the half-width of the channel. Therefore, the resulting
swell ratios should be treated with caution when comparing to more recent results. Tomé
et al. used a uniform grid of ∆x/h = 1/10 which is on the order of the coarse grid M1.
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Habla et al. reported the number of control volumes to be 4165, but did not specify the local
cell sizes in detail. The number of control volumes is again comparable to grid M1 in the
current work. Comminal et al. did conduct a grid dependence study with three different
grids. Their finest cells were closer to the grids that were used in this work as compared to
the other authors. Therefore, could be expected for the results reported in this work to be
closest to the results of Comminal et al. given the similarities in grid resolution as well as
the use of the VOF method. Their computed swell ratios are generally larger than the other
literature results, with the exception of those from Crochet and Keunings. The same is also
true for the swell ratios that were computed with the proposed method, particularly for
increasing SR.

In conclusion, while there is a spread between the data that are produced in different
numerical studies, they follow the same general trend. The results that were obtained
with the method proposed in this work follow the same trend and with the swell ratios
comparable to the earlier published works.
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Figure 14. Simulated swell ratio compared to data from the literature.

4.3. Jet Buckling

The simulation of jet buckling is a common flow case for testing the capabilities of nu-
merical methods for free surface flow. The phenomenon has been numerically investigated
for different viscoelastic constitutive models by several authors [14–18,20,26].

The phenomenon occurs for a fluid jet that flows onto a rigid plate under certain
conditions. Cruickshank [50] proposed a condition that is based on experimental and
theoretical observations, stating that a planar Newtonian jet will buckle if H/D > 3π
and Re < 0.56, where H is the distance from the inlet to the plate, D the inlet width, and
Re = ρUD/µ, where U is the inlet velocity. A modified yet approximate condition, based
on numerical investigation, was later proposed by Tomé and McKee, stating that buckling
should occur if

Re2 ≤ 1
π

(H/D)2.6 − 8.82.6

(H/D)2.6 . (34)

It is remarked that, in simulations, numerical round-off errors are responsible for triggering
the buckling, since the flow setup itself is actually symmetric.

Figure 15 shows a schematic of the fluid jet buckling domain that is used for simulation
with the Lagrangian–Eulerian method proposed in this work. The domain is 50 mm wide
and 100 mm high. An inlet of width D = 5 mm is located at the center of the upper
boundary. At the inlet, a uniform velocity U = 0.5 m/s is imposed. The upper boundaries
to the left and right, respectively, are outlets with the Dirichlet pressure condition p = 0.
The remaining domain boundaries are treated as walls by imposing the no-slip condition.
Gravity is acting in the negative y-direction with g = 9.81 m/s2.



Appl. Sci. 2021, 11, 439 18 of 25

The viscoelastic fluid is a single-mode Oldroyd-B fluid with the viscosity ratio β = 0.1,
density ρ = 1000 kg/m3, and the total viscosity ηt = 10 Pa · s. The surrounding Newtonian
viscosity is air with viscosity µair = 1.8205× 10−5 Pa · s and density ρair = 1.204 kg/m3.

The Reynolds number for the flow is defined as Re = ρUD/(µ + η), which, for the
chosen parameters, yields Re = 0.25. A Weissenberg number is defined as Wi = λU/D.
The flow is simulated for the Oldroyd-B fluid with λ = 0.1 s, corresponding Wi = 10. As
reference, a simulation is also performed with a Newtonian fluid, for which β = Wi = 0.

D

20D

10D

x

y

Figure 15. Viscoelastic fluid buckling domain.

In the viscoelastic jet buckling simulations that were performed in this work, the
octree grid is adaptively refined with two levels around the viscoelastic fluid phase. As the
simulation progresses, the grid is therefore updated and the cells are refined and coarsened,
where needed. A grid dependence study is performed while using three adaptive grids of
increasing resolution. The grids have the respective base cell sizes ∆xbase = D/2, D/4, D/8,
which correspond to the finest cell sizes ∆xmin = D/8, D/16, D/32. The simulations are
performed with a constant time step ∆t satisfying ∆tU/∆xmin = 0.08.

The grid dependence is evaluated with respect to two simulation properties. Firstly,
the free surface α = 0.5 is compared for the three adaptive grids. The first normal stress
difference N1 = τyy − τxx along the jet at x = 5D is also compared. Because the buckling
itself is triggered by numerical round-off errors, the exact conditions at which the buckling
starts in the simulations may vary between grids. Therefore, the grid study comparison is
made at a simulation time before buckling is initiated.

In Figure 16, the free surface is compared for the three grids at the simulation times
t = 130 ms and t = 140 ms. The results obtained with the three grids are in relatively good
agreement, particularly those that are obtained with the two finer grids. In Figure 17, the
first normal stress differences along the jet are compared at the same simulation times.
These results indicate even more strongly that the two finer grids produce stresses that are
very close, while a slight discrepancy for the coarsest grid is observed. The remainder of
the results reported in this section have been obtained while using ∆xmin = D/16.
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Figure 16. Isosurface α = 0.5 in viscoelastic jet buckling simulation with λ = 0.1 s and Wi = 10 obtained with the finest cell
sizes ∆xmin = D/8, D/16, D/32.
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Figure 17. First normal stress difference N1 = τyy − τxx along the line x/D = 5 in viscoelastic jet buckling simulation with
λ = 0.1 s and Wi = 10 obtained with the finest cell sizes ∆xmin = D/8, D/16, D/32.

In Figures 18 and 19, a series of snapshots from the simulation of the Newtonian and
the viscoelastic jets are shown, respectively. For the Newtonian case, only a very slight
tendency to buckle is observed as a slight asymmetry in the fluid on the rigid surface.
However, for the viscoelastic fluid, the buckling phenomenon is very apparent. When the
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viscoelastic jet impacts the rigid surface, the material first builds upwards until, inevitably,
the buckling is initiated. The results demonstrate the strong influence of elasticity to the
fluid jet buckling phenomenon. Furthermore, it confirms the capability of the proposed
method to capture the viscoelastic effects and predict the phenomenon.
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Figure 18. Newtonian jet buckling simulation.
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Figure 19. Viscoelastic jet buckling simulation with λ = 0.1 s.

5. Conclusions

In this work, a new Lagrangian–Eulerian method for the simulation of viscoelastic
free surface flow has been proposed. The method was developed from a previously
proposed method, in which the fluid momentum and continuity equations were solved on
a stationary Eulerian octree grid, while the viscoelastic constitutive equation was solved
along the trajectories of Lagrangian nodes which were convected by the flow. The main
improvements in this work was the introduction of a backwards-tracking procedure for
solving the viscoelastic constitutive equation, as well an extension to the simulation of
viscoelastic free surface flow with the volume of fluid method.

The backwards-tracking procedure allowed for the storage of the viscoelastic stresses
in a structured arrangement. Consequently, the unstructured interpolation of stresses as
well as the addition and deletion of Lagrangian nodes, which was required in the previous
method, was eliminated in favor of a significant reduction of the computational cost and
increased robustness. Furthermore, no additional stabilization method, such as both sides



Appl. Sci. 2021, 11, 439 22 of 25

diffusion or reformulation of the constitutive equation, was employed for any of the flows
studied in this work.

The proposed method was validated with analytic solutions for a planar Poiseuille
flow of Oldroyd-B fluids. The transient, as well steady flow, solutions were in excellent
agreement with analytic solutions and the steady solution converged to the analytic solution
with second order accuracy. Furthermore, the proposed method was evaluated for two
types of viscoelastic free surface flow. The viscoelastic die swell effect was simulated with
the Oldroyd-B model and the predicted swell ratios were in good agreement with the
numerical data from the literature. Planar jet buckling of a highly viscoelastic fluid was
also simulated, demonstrating the capability of the method for an additional flow case as
well as the use of adaptive grid refinements.

The computational performance was not subject to detailed study in this work. How-
ever, as per the construction of the new method, the computational cost for the viscoelastic
stress calculation was significantly reduced when compared to the previous Lagrangian–
Eulerian method. Furthermore, it has previously been shown that the Lagrangian formula-
tion of the constitutive equation is highly suitable for parallel calculations, including for
GPU-acceleration. This also applies for the new method.

In conclusion, the new method is an important step in the development of efficient
and useful tools for simulating industrial processes involving viscoelastic fluids. In future
research, the proposed Lagrangian–Eulerian method will be used for the numerical inves-
tigation of viscoelastic free surface flows with moving objects, including for viscoelastic
adhesive application and parts assembly, as well as for additive manufacturing processes.
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Appendix A. Oldroyd-B Fluid Fully Developed Channel Flow

Assuming steady two-dimensional, fully developed channel flow, the constitutive
equation reduces do

τxy = η
∂u
∂y

, (A1)

τxx − 2λτxy
∂u
∂y

= 0, (A2)

τyy = 0. (A3)

Insertion of τxy from (A1) into (A2) gives

τxx = 2λη

(
∂u
∂y

)2
, (A4)

The momentum equation in the flow direction reduces to
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∂p
∂x

= µ
∂2u
∂y2 +

∂τxy

∂y
, (A5)

which by insertion of τxy from (A1) becomes

∂p
∂x

= µ
∂2u
∂y2 +

∂

∂y

(
η

∂u
∂y

)
= (µ + η)

∂2u
∂y2 , (A6)

Integration of (A6) with respect to y once yields

y
∂p
∂x

= (µ + η)
∂u
∂y

+ C1, (A7)

where C1 is an integration constant. Due to the symmetry condition ∂u
∂y |y=0 = 0, which by

insertion of y = 0 into (A7) leads to C1 = 0. Inserting C1 = 0 to (A7) and integrating in y
again yields

y2

2
∂p
∂x

= (µ + η)u + C2 (A8)

where C2 is an integration constant. Using the no-slip condition uy=h = 0 gives

C2 =
h2

2
∂p
∂x

, (A9)

which inserted to (A8) after some rearrangement gives

u(y) = − 1
2(µ + η)

∂p
∂x

(
h2 − y2

)
, (A10)

or, simply,

u(y) = A(h2 − y2), (A11)

where a is a constant.
Now, the mean velocity U can be calculated as

U =
1
h

∫ h

0
u(y)dy =

A
h

∫ h

0
(h2 − y2)dy = . . . =

2
3

Ah2, (A12)

such that A = 3U/(2h2). The velocity can then be expressed in terms of the mean velocity
as

u(y) =
3U
2h2 (h

2 − y2) =
3U
2

(
1− y2

h2

)
. (A13)

Hence, the velocity gradient reads

∂u
∂y

= −3Uy
h2 , (A14)

which gives the final expressions for τxy and τxx.
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