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Abstract
Effective plasma transport modeling of magnetically confined fusion devices relies on having an
accurate understanding of the ion composition and radiative power losses of the plasma. Generally,
these quantities can be obtained from solutions of a collisional-radiative (CR) model at each time
step within a plasma transport simulation. However, even compact, approximate CR models can
be computationally onerous to evaluate, and in-situ evaluation of these models within a larger
plasma transport code can lead to a rigid bottleneck. As a way to bypass this bottleneck, we propose
deploying artificial neural network (ANN) surrogates to allow rapid evaluation of the necessary
plasma quantities. However, one issue with training an accurate ANN surrogate is the reliance on a
sufficiently large and representative training and validation data set, which can be time-consuming
to generate. In this work we explore a data-driven active learning and training routine to allow
autonomous adaptive sampling of the problem parameter space to ensure a sufficiently large and
meaningful set of training data is assembled for the network training. As a result, we can
demonstrate approximately order-of-magnitude savings in required training data samples to
produce an accurate surrogate.

1. Introduction

The construction of the International Thermonuclear Experimental Reactor (ITER), and its components, is
now well underway and being performed over the world, with the final assembly and operation to take place
in Southern France. ITER will be the world’s largest tokamak, which is a device to magnetically confine a hot
plasma in the shape of a torus with the goal of demonstrating a path to viable fusion energy [1, 2]. With
anticipated experiments to begin in the mid 2020s, there is currently a significant worldwide research effort
taking place to better understand how to efficiently, and safely, operate ITER. Modeling and simulations are a
major tool being used to perform these studies, with many plasma simulation codes coupling multiple
modules to better describe the wide array of physics phenomena taking place within the plasmas being
considered [3–7]. One key component in the plasma simulation cycle is to accurately describe the
collisional-radiative (CR) balance of the plasma, in order to determine impurity ion populations, and the
radiation being emitted by the excited ion populations within the plasma at a given time and location [8–11].

This information is crucial to accurate modeling of a device like ITER given that impurities, other than
the hydrogen-like fuel (H, D, T), will be an inevitable presence in the plasma. Situations of interest include
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alpha particles (helium nuclei, that may recombine to He+ or atomic He) produced via the D-T fusion
reaction [1]

2
1 D+3

1 T→4
2 He+ n0,

containment vessel impurities, such as beryllium or tungsten sputtering into the plasma [12], or
purposefully injected impurities, such as nitrogen [13, 14] or neon [7, 15], to facilitate radiative cooling of
regions of the plasma to control or terminate a plasma following a disruption event [15].

Presently, a major threat to ITER’s safe operation are plasma disruptions [15–17]. A disruption is a
sudden loss of plasma control and stability, and can lead to extreme heat load deposition to the reactor walls,
excessive electromagnetic forces exerted on the reactor structure, and/or relativistic electron beam formation
that could penetrate through reactor walls [16, 17]. In either case, the end result is predicted to be
unacceptable hardware damage, costing exorbitant time and financial resources. Presently, impurity injection
is the reference ITER mitigation strategy, with neon being a likely candidate for injection into the hydrogenic
plasma [17].

Thus, given the motivation for modeling and simulating complex fusion plasma discharges, it is then
paramount to have accurate ion population and radiative power dissipation quantities when simulating the
effects of impurities in the plasma. A general approach to determining these quantities is through CR
modeling, which will be further discussed in section 2. While solution of a CR model will provide accurate
plasma properties as input to subsequent coupled stages of a plasma simulation code, the computational cost
of CR models can be onerous, even when considering relatively simplified models.

Relatively compact approximate CR models, with state vectorsO(101–102) such as that used in this
present work [9, 18], can take up to dozens of seconds to solve. While state-of-the-art, fine structure
O(106–109) CR models can take minutes or hours to obtain a solution [11, 19]. Presently, in order to obtain
these quantities within plasma transport codes the fusion community has resorted to simplified models, in
so called coronal equilibrium or coronal-like limits, that can limit the fidelity of physics retained in the
model [11, 20–22].

In this study we seek an alternative approach to allow rapid evaluation of necessary CR quantities in the
form of an artificial neural network (ANN) surrogate, without sacrificing the fidelity of the physics built into
the CR model, or severely limiting the domain of reasonable input parameters that may be required for
model evaluation. Once trained, given the typical rapid evaluation time of an ANN surrogate, we hope that
coupling a well-trained, accurate ANN surrogate within a plasma simulation framework, in lieu of a CR
model solve, will allow accurate atomic and plasma physics information to be passed to the simulation
platform, without adding the computational burden of numerically solving an unnecessary large non-linear
problem at each time step or iteration.

It is instructive to note that artificial intelligence methods applied to plasma physics problems has a rich
history, dating back to the wave of neural network research in the 1990s [23–25], through to more recent
applications [26–30]. With focus on specific application of ANN towards CR properties as discussed in this
study, pioneering data-driven methods in plasma spectroscopy synthesis can be found from Goldstein,
Larsen, Morgan et al in the early 1990s [31–33]. Notably, this series of studies demonstrated success in
applying relatively simple ANN techniques with limited computational resources available, when compared
to the present day, to streamline the use of fundamental atomic and molecular physics models into a larger
plasma physics workflow. More recently, ANN(s) have been shown to be beneficial in learning surrogates for
non-LTE radiation models in order to aide analysis and direct interpretation of experimental spectroscopy
measurements [34, 35]. Lastly, the recent work of Kluth et al [36] is a notable demonstration of the utility of
employing ANN surrogates of CR models within plasma simulation codes to provide accurate physics
quantities at a fraction of the computational cost of the forward-pass CR model. Generally, previous
applications of ANN surrogates towards the CR problem have not focused on the problem of optimal data
set generation and the associated time required for this. In an effort to address this, we now introduce and
discuss a novel adaptive data generation and training framework that demonstrates approximate order of
magnitude time savings in data acquisition and training, but also provides physics assurances by
systematically sampling representative and meaningful training data.

A standard approach to training an ANN in deep learning is to essentially assemble a large set of data for
training and validation purposes. This generally enables robust learning of the potential mappings between
input variables and output variables. If forward evaluations of the original CR model are quite fast, this is not
a terribly time consuming task. However, depending on the fidelity of the electron energy level description
employed in the CR model, as well as the atomic number of the impurity being considered, the forward pass
evaluation time can become computationally expensive, as previously mentioned. Given this observation, it
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is straightforward to then imagine how training data generation could become a very time consuming part of
constructing a sufficiently accurate surrogate for a CR model.

To address this potential pitfall, beginning in section 3, we present a method to adaptively sample over
the parameter space to autonomously determine where additional sample points are required, generate those
samples, and re-train (and re-sample) the ANN surrogate until a pre-determined accuracy criteria is met. In
this way, we find a time-efficient method to produce a physically representative set of training data, train the
ANN surrogate, and ultimately yield an accurate surrogate, which is shown in section 4 to outperform one
trained on an order of magnitude more data obtained by standard Latin hypercube sampling.

2. CRmodeling and its application

Accurate modeling of fusion plasmas with added impurities is an indispensable resource to understanding
the physics and mitigation plan of tokamak disruptions [16]. In the simplest scenario, a typical tokamak
fusion plasma will be created from hydrogen (deuterium/tritium) gas, which is subject to tremendous
amounts of energy to strip electrons from atoms and produce a fully ionized plasma of electrons, positively
charged ions with a charge of+1, and a minute fraction of neutral atoms.

For simplicity in the remainder of this study we will just refer to a deuterium plasma as intended for
eventual operation of ITER, where the number density of deuterium species is nD, often on the order of
1013–1015m−3 depending on a given device. Densities of the singly charged ion and atom may be referred to
as n+1

D , n0D, where their sum is equal to the total density of deuterium species i.e. nD = n+1
D + n0D. Additional

descriptive variables of a basic fusion relevant discharge are often the density of electrons in the plasma, ne,
and the average temperature of the plasma electrons, Te, which characterizes a Maxwell–Boltzmann
equilibrium energy distribution

fM(E) =
2

T3/2
e

√
E

π
exp

(
−E

Te

)
, (1)

where E is electron energy in electronvolts (eV) [1 eV≈ 1.602× 10−19 J], and Te is the electron average
temperature in eV. Typically fusion plasma temperatures are on the order of 103–104 eV.

When a discharge is composed of purely hydrogenic atoms or ions (with atomic number Z= 1), the
atomic physics considerations are generally much simpler, and one may defer to physically and
computationally simple models to describe the system with reasonable accuracy [20]. However, in recent
times the fusion community has been trialing the addition of impurity gases into the plasma to help control
the stability of the plasma, and act as a safeguard against deposition of intolerably large levels of heat against
the device’s inside walls that contain the plasma [6, 16, 37]. For the purposes of this study, we can
characterize the amount of impurity gas added via a number density, nI. Typical gases in these scenarios
include helium (Z= 2), nitrogen (Z= 7), neon (Z= 10), and argon (Z= 18) and knowledge of the
populations of these atoms and associated ions is crucial to accurately modeling a discharge.

We note that a further consideration of adding the aforementioned impurities to a high temperature
hydrogenic plasma around 103–104 eV is that it will result in cooling of the plasma down to 100–101 eV, and
so a wide range of electron temperatures, Te, must be considered.

So, given some impurity of atomic number Z and density nI, added to a plasma with deuterium density
nD described by an electron temperature Te, the modeling goal is to determine the population densities of
the deuterium atom and ion, as well as the impurity atom and ions, in an equilibrium plasma environment
(i.e. spatially and temporally homogeneous). Given the wide range of possible ion states that can occur in a
plasma, we henceforth will refer to any generic ion level population as nj, and the set of all ion populations,
nj, in a given plasma as n. An additional output variable we seek is the total radiative power loss (RPL),
Prad(n), of the plasma given a certain Te and n. This scalar quantity is a function of n and describes
contributions to radiation being emitted by photons from radiatively decaying excited ion states, electrons
radiatively recombining with ions, and electron Bremsstrahlung radiation [11].

To access the desired populations of all ions in the plasma, n, and the radiation power loss, Prad(n), a CR
model is used to solve for the populations of ions in various excited energy states [11, 18, 38, 39]. A CR
model is formulated as a set of ordinary differential equations for each ion population, nj, that describe
transitions into (i→ j) or out (j→ i) from all other possible ion populations, ni, where 1⩽ i, j⩽ N and N is
the total number of ion populations in the state vector, n. This rate problem can be expressed as

dnj
dt

=
N∑

i=0,i̸=j

Ri→jni −

 N∑
i=0,i̸=j

Rj→i

nj, (2)
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where each Ri→j is a sum over the possible collisional and radiative transitions that can occur in a plasma,
such as excitation or ionization of ions via electron impact collisions, or radiative decay of excited states or
radiative recombination of ions [11, 40]. The rates of these atomic physics events are dependent on the
electron energy distribution present in the plasma, and can add another degree of difficulty to the problem.
As alluded to previously, the Maxwell–Boltzmann equilibrium electron energy distribution (1) is assumed
for the purposes of this study, meaning most rates must be computed for a given plasma temperature, Te.

Given the large number of possible species populations it is natural to form a non-linear rate matrix
problem

dn

dt
= R(n)n, (3)

where R(n) is the rate matrix composed of elements Ri→j and n is the state vector previously discussed.
If the CR relaxation timescale to an equilibrium is faster than plasma transport effects being simulated in

a parent code then it is reasonable to assume a steady-state scenario to determine plasma properties within
such a simulation. In this limit we seek to solve

R(n)n= 0. (4)

In the implementation of most CR models, a range of possible excited quantum states for each ion stage
are specified, n

αj

Zj
where the index Zj denotes an ion charge state, and αj denotes the excited state level of the

jth species in n. Generally, plasma transport models will only require the population of each ion stage,
irrelevant of what excited quantum states are occupied, and so in post-processing the output of a CR model
we will sum over all excited states, αj, to find the population of a given ion stage Zj

nZj =
∑
αj

n
αj

Zj
. (5)

In the application of a CR model, there are many quantities determined by solution of the model that
have use for immediate interpretation of a plasma and its properties, and also use for coupling within a larger
plasma simulation framework, such as a plasma particle transport simulation code. The fundamental output
quantities of a CR model are the ion population densities, nj, that compose the state vector of the CR system,
n. When these ion populations are known, the CR model can then compute the radiation potential of the
plasma, Prad(n).

An important quantity is the free electron density of the plasma, ne, formed as a result of ionization of
atoms and ions in the plasma. In later sections we will use this quantity to compare output performance of
potential surrogates. In this work, we are considering a deuterium plasma combined with some higher Z
impurity, so the electron density is given by

ne = n+1
D +

Z∑
Zj=0

ZjnZj , (6)

where n+1
D is the number density of deuterium ions, nZj is the number density of the impurity ion with

charge Zj, and Z is the atomic number of the impurity species.
An additional output quantity of a CR model used to characterize a plasma is the average ion charge state,

Z̄. A weighted average of ion charge with ion population density, we can write Z̄ for an impurity species as

Z̄=

∑Z
Zj=0ZjnZj∑Z
Zj=0 nZj

. (7)

Solution of (4) can be computationally challenging when n, and thus R, is large, or R is near singular.
Solution of the non-linear rate-matrix problem (4) is usually performed with a standard linear algebra
package. Once n is known, the sum of radiation power loss due to each excited ion state is then computed by
the CR model, and Prad is then passed back to the main execution loop of a plasma model [5, 6, 41].

Ideally, one would simply solve a CR model at each time-step or iteration of a plasma code performing a
desired simulation, however as outlined in the previous section the computational bottleneck this would
create is unsatisfactory. As such, in the following Sections we present an efficient method to assemble
physically meaningful training data to allow the creation of an effective ANN surrogate. Essentially, such a
surrogate will provide the required mapping of input plasma conditions to output quantities normally
computed from a CR model in milliseconds, rather than seconds or often longer.
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3. Surrogate modeling strategy and demonstration

With the forward pass CR model detailed, and the requirements of a potential surrogate outlined, we now
detail the formulation of the surrogate modeling strategy. We begin with consideration of the input and
output quantities required for the surrogate mapping, before then detailing the two-tiered surrogate forms
and the adaptive sampling strategy.

When considering the input quantity of an impurity species’ atomic number, Z, we must note the
fundamentally different nature of plasma particle interactions with targets of different atomic numbers, Z.
For example, electron scattering from small targets like hydrogen or helium (Z= 1,2) is significantly
different to scattering from larger targets such as neon or argon (Z= 10,18). The subsequent impacts this
can have on plasma properties are not trivial due to each integer value of Z essentially posing a discrete
quantum mechanical scattering problem, which could be very different from the problem for adjacent
elements on the periodic table, i.e. Z− 1 or Z+ 1. As such, we believe it is preferable to choose not to treat Z
as a continuous variable to be fed as an input, and rather defer to generation of fit-for-purpose surrogates for
each required value of Z. Given the application of these surrogates is limited to a small number of tokamak
fusion relevant elements in the periodic table the option of fit-for-purpose surrogates specific to each atomic
number is a sensible treatment.

Therefore, in this work, for a given impurity under consideration, with atomic number Z, any surrogate
we seek will provide a map for an input field of: electron temperature, impurity density, deuterium density,
{Te,nI,nD}, to an output field of the total RPL and ion stage populations for deuterium and the added

impurity, {Prad,n0D,n
+1
D ,n0I ,n

+1
I , . . .,n+(Z−1)

I ,n+Z
I }.

To generate sample data for training, we must specify bounds on the input fields. Within typical
parameters expected in the application of a CR surrogate to tokamak disruption mitigation plasma
modeling, we limit the input field quantities to the domains of 1 eV⩽ Te ⩽ 1000 eV,
1013 cm−3 ⩽ nI ⩽ 1015 cm−3, and 1013 cm−3 ⩽ nD ⩽ 1015 cm−3. In order to regularize the input field being
mapped to output, each variable is normalized to the domain [0,1] via

x̂=
x−min(x)

max(x)−min(x)
(8)

where x and x̂ are raw and normalized quantities. We choose this input scaling to allow uniform sampling
over [0,1] as we have no a priori expectation of possible input quantity values. For example, essentially any
one value of deuterium and/or added impurity atom densities composing the plasma is just as likely as
another.

The ion populations in the output field are normalized against the input impurity number density, nI,
and deuterium, nD, densities, such that we henceforth assume to be dealing with fractional populations such
that

n0D + n+1
D = 1, (9)

n0I + n+1
I + · · · + n+(Z−1)

I + n+Z
I = 1. (10)

Given the standard unit of Prad may vary by up to approximately ten orders of magnitude on a
logarithmic scale, depending on multiple input factors, we choose to operate with log10(Prad) in order to
bring this element of the output field to be on a similar order of magnitude as the fractional ion populations.

In the following section, we evaluate the construction of surrogate models for our CR dataset so that
inexpensive forward models may be obtained using ANN. Notably, our goal is to not just obtain a cheap
surrogate but to also balance the offline cost of representative data set generation for training this surrogate.
This is obtained via an adaptive sampling explained below. We use two surrogate models in this research: a
low fidelity (LF) and high fidelity (HF) surrogate. The two models differ in the ability to accurately represent
the CR input-output relationship and are used for two distinct purposes in our surrogate development
campaign.

3.1. LF surrogate: random forest regressor (RFR)
The first of the fundamental surrogate models employed in our work is an LF RFR [42]. RFR is an ensemble
machine learning technique popularly used for regression and classification tasks [43]. It is built around the
utilization of many decision trees (thus leading to the ‘forest’ terminology). A decision tree is an efficient
algorithm for splitting a data set according to its various independent variables leading to a branch-like
structure with each ‘node’ corresponding to a splitting based on one variable. The decision to split according
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to one independent variable as against the others is taken by measuring the effectiveness of the split through
metrics such as impurity or variance reduction in the split. For a regression task, impurity is defined as

H(Qm) =
1

Nm

Nm∑
i=0

(yi − ym)
2
, (11)

with ym is the mean of the dependent variable yi given by

ym =
1

Nm

Nm∑
i=0

yi, (12)

and where Nm is the number of data points at a particular nodem. The set Qm represents the data that
resides at a node. The total impurity at this node may then be expressed as

G(Qm,θ) =
nleft
Nm

H(Qleft(θ))+
nright
Nm

H
(
Qright(θ)

)
, (13)

where nleft and nright correspond to the number of children data points in the left and right branches arising
from the nodem and

Qleft(θ) = (x,y)|xj <= tm,

Qright(θ) = (x,y)|xj > tm (14)

are the left and right split data sets respectively. Note how the splitting of Qm depends on an independent
variable xj and a threshold tm at each node. The choice of tm is generally given by the median value of the
attribute xj i.e. the left data set is comprised of all samples with independent variable xj less than tm. The
decision tree splits the data Qm in a manner that minimizes G(Qm,θ) by choosing an optimal dimension j for
the independent variable. This branching is performed recursively for every node until certain user-defined
criteria are met such as Nm <= Ntol at which point the node is denoted a leaf. A branching may also be
terminated if a certain maximum depth is reached. A new data point (i.e. an unseen sample) can then follow
the branching trajectory (by tracking the order of splits by j and equation (13) and placement into left or
right branches by tm) and reach a leaf. In case a N tol criteria is set, the prediction of the decision tree for a
sample is the average prediction value of the dependent variables at this leaf.

RFRs utilize ensembles of decision trees by selecting random subsets of the total data for each tree to
obtain a consensus on regression predictions. Each tree utilizes a random subset of the data through
sampling with replacement and may therefore obtain a completely different branching structure depending
on the distribution of that particular data set. The generation of multiple decision trees as estimators also
encourages generalization. The underlying mechanism of our adaptive sampling strategy uses the ensemble
property of the RFR wherein each tree in the forest may be queried for a prediction of a scalar metric, to
estimate prediction variances in the multidimensional parameter space. If the different trees in an RFR show
a wide range of predictions (i.e. there is widespread disagreement in the predictions of trees in a forest) in
some region of the finely sampled space, we run full-order CR evaluations in that region, append this to our
master training data set and retrain the RFR as well as the HF surrogate. This allows us to adaptively sample
higher dimensional spaces which may be challenging to cover due to the curse of dimensionality. To initialize
this adaptive algorithm, a first (relatively coarse) sampling of the input space is constructed to train our RFR
following which the adaptive sampling is performed iteratively. The end of an adaptive sampling iteration is
accompanied by a re-training of the HF surrogate on the expanded training data set. The validation
performance of the HF surrogate is recorded for the purpose of a posteriorimodel selection. We note that the
sampling at each iteration of the LF surrogate (and at the very start of the adaptive training data
augmentation) utilizes the Latin Hypercube sampling (LHS) method for experimental design [44]. We note
that a choice of scalar metric for the LF surrogate must be made in order to guide resampling. In this study
we trial physical quantities in this role, one being the average charge state of the impurity ions Z̄ and the
other the total RPL, Prad. Both scalar quantities are physically meaningful and important quantities, but
represent different physical aspects of a plasma. The total radiative loss, Prad, is the first element of the output
layer, while Z̄ is computed as a weighted mean via (7). Given a priori neither of them trump the other in
terms of which should be the more useful guide, we trial both.
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3.2. HF surrogate: ANN
Given a LF surrogate used to rapidly inform re-sampling, the second fundamental surrogate model
employed in our work is a HF ANN that may act as a universal approximator [45] trained by
backpropagation [46]. One technique to obtain a high-fidelity function approximation is through the use of
a multilayered perceptron (MLP) architecture, which is a subclass of feedforward ANN. A general MLP
consists of several neurons arranged in multiple layers. These layers consist of one input and one output layer
along with several hidden layers. Each layer (with the exception of an input layer) represents a linear
operation followed by a nonlinear activation that allows for great flexibility in representing complicated
nonlinear mappings. This may be expressed as

Ll
(
tl−1

)
:= wltl−1 + bl, (15)

where tl−1 is the output of the previous layer, and wl,bl are the weights and biases associated with that layer.
The output tl, for each layer may then be transformed by a nonlinear activation, η, such as rectified linear
activation:

η(a) = ReLU(a) =max(a,0). (16)

For our experiments, the inputs t0 are in Rd (i.e. d is the number of inputs) and the outputs tK are in Rk (i.e.
k is the number of outputs). The final map is given by

F : Rd 7→ Rk, t0 7→ tK = F(t0; (w,b)), (17)

where

F(t0;w,b) = ηK
(
LK ◦ ηK−1

act ◦LK−1 ◦ . . . ◦ η1act ◦L1
)
(t0) (18)

is a complete representation of the neural network and where w and b are a collection of all the weights and
the biases of the neural network. These weights and biases, lumped together as ϕ= {w,b}, are trainable
parameters of our map, which can be optimized by examples obtained from a training set. The supervised
learning framework requires for this set to have examples of inputs in RNip and their corresponding outputs
RNop . This is coupled with a cost function C, which is a measure of the error of the prediction of the network
and the ground truth. Our cost function is given by

C =
1

|T|
∑

(θ,x̃)∈T

‖x̃− F(θ;ϕ)‖2 (19)

where |T| indicates the cardinality of the training data set, consisting input, θ, and output fields, x̃, given by

T= {(θi, x̃i) : x̃i = f(θi)} (20)

and where f(θi) are examples of the true targets obtained from the adaptively generated training data set.
The trained MLP may be used for uniformly approximating any continuous function on compact domains
[47, 48], provided η(x) is not polynomial in nature.

3.3. Training and adaptive sampling of training data
In this section, we introduce a methodology to iteratively use two surrogate models—the RFR and ANN for
reducing computational costs for balancing accuracy and training data generation costs. The high-level idea
is to use the RFR to identify suitable regions for sampling training data and fitting an ANN regressor with the
improved training data set. By coupling the two surrogates for this approach—accurate surrogate models
may be obtained that leverage the expressiveness of the ANN but rely on the ease of training of the RFR for
identifying a superior dataset. Note that one may also use ANNs that provide uncertainty estimates for
identifying regions of high variance for adaptive sampling [49]. However, training such networks is generally
more expensive that regular networks and imprecise in the limit of small data. We note, however, that by
choosing surrogates from two different classes, the RFR and ANN, we utilize an assumption (i.e. an inductive
bias) that the predictive variance from the predictions of different decision trees imply in inability to learn a
consistent function approximation in an ensemble sense. It follows then, that the predictive variance is an
appropriate region to target for sampling to improve any surrogate model. Such inductive biases have proven
effective for various function approximation tasks [50].

The hyperparameters that need to be selected a priori for this framework include the number of samples
required for the first training iteration, the number of new samples for each data set augmentation, the total
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Algorithm 1. Adaptive CR surrogate training sampling.

Generate Ninit initial samples of forward CR model evaluation;
Train HF surrogate;
while Nsamples < Nbudget do

Train LF surrogate to map input field to scalar metric;
Evaluate fine sample space grid using LF surrogate. Sort list by variance;
for i= 1 : (Nsamples/10) do

Take input field of highest variance LF prediction. Generate new sample;
end
Train HF surrogate on expanded sample set. Evaluate surrogate metrics;
if R2 > R2

goal then
STOP

end
end

computational budget for training the surrogate, and the traditional hyperparameters of the MLP (e.g. the
learning rate, early stopping criterion, architecture) and the RFR (the number of trees, maximum depth of
the forest). Our sampling strategy is outlined in algorithm 1 where the hyperparameters of the associated
components are as follows: Ninit = 50 initial samples, Nresample = 0.1Nsamples re-samples per data set
augmentation iteration given a current number of acquired samples Nsamples, and a budget of Nbudget = 1950
samples to make 2000 samples the maximum possible. The MLP was chosen to have two hidden layers, 50
neurons wide each, between the input and output layers of dimension three and 14 respectively. The ReLU
activation function was employed in this network. The learning rate was fixed as 10−3 with the Adam
algorithm [51] used for optimization. An early stopping criteria was set to halt learning after 100 epoch of
failing to reduce validation loss. Hyperparameters of the RFR were chosen as 50 trees in the forest, with a
maximum depth of eight. Stopping criteria for the overall adaptive sampling framework was set to be when a
validation R2 result of 0.95 or greater is obtained.

3.4. Experiments and discussion
Given the proposed adaptive sampling method, we now examine the performance of the adaptive sampling
routine and compare the performance of a resulting surrogate versus a traditional approach to data
generation and training of an ANN. All assessments in this study were conducted with Tensorflow 2.0.0
under Python 3.7.9 on a 2.9GHz Intel Core i9 CPU with 32GB of RAM. In this section we choose to specify
Z= 10, which corresponds to a deuterium and neon plasma mixture, which is crucial to planned ITER
disruption mitigation strategy [15, 17].

Employing the network architectures and hyperparameter choices outlined in the previous section, we
now present some representative results from data generation and training exercises to examine the ability of
the adaptive sampling framework to produce an ANN surrogate trained on autonomously gathered training
data. Employing either of the two scalar metrics of Z̄ and Prad in RFR decision making, we found both cases
produced a steady convergence in validation R2 performance and drop in validation mean-squared error
(MSE) as more samples were acquired, as shown in figure 1. While non-monotonic behavior is indeed seen
in both quantities with increasing samples added, we can observe that these fluctuations follow an
alternating prediction-correction behavior, which is an expected result of the designed sampling routine.
Ultimately the adaptively trained multilayer feedforward perceptron (MFP) surrogates passed the R2

threshold of 0.95 and final surrogate models were obtained. We found that the performance difference
between Z̄ and Prad scalar metrics is usually comparable, however it was observed that the Z̄ option was
generally more reliable in reaching the training goal earlier with fewer forward pass model evaluations
required. By example, for the case shown in figure 1 the Z̄metric case yielded a validation R2 of 0.983 and
MSE of 8.422× 10−4, after 1719 samples were acquired in training. The case of the Prad metric yielded a
validation R2 of 0.965 and MSE of 1.587× 10−3 using 1890 samples.

As a point of reference for the performance of the adaptive sampling framework, an ANN surrogate was
simply trained on a fixed data set of size 3375, which is the result of choosing a space of 15× 15× 15 samples
determined via LHS. The hyperparameters outlined in the previous section were employed in training this
surrogate, and a test R2 of 0.999 was obtained against an unseen test set. To demonstrate the ability of this
ANN, from this unseen test set, a kernel density estimate (KDE) plot showing the predicted relationship
between two output field quantities is shown in figure 2.

Testing the adaptively trained MLP surrogates on an unseen data set, held back from training or
validation data, we present KDE plots in figure 2 showing the relationship between the output field
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Figure 1. Training validation metrics for (a) R2 and (b) mean-squared error (MSE) of adaptively trained MLP surrogate as a
function of acquired training samples. Clear, but relatively minor, differences are seen between using either Z̄ or Prad as the
decision metric for the RFR low fidelity surrogate [52].

Figure 2. Kernel density estimate plots demonstrating the true and predicted relationship between output field quantities of total
radiation Prad and the population density of the Ne+10 ion for (a) MFP conventionally trained on fixed set of 3375 samples,
(b) MFP adaptively trained on 1719 samples by using Z̄ as a guiding metric, and (c) MFP adaptively trained on 1890 samples by
using Prad as a guiding metric [52].

quantities of total radiation Prad and the population density of the Ne+10 ion as a way to demonstrate the
performance of predicted quantities versus the true values. Here we see, compared to the ANN trained on a
larger training set, the Z̄ guided surrogate performs reasonably well, with the exception of some translation
of the prediction over the two upper islands in the plot. Similarly, the surrogate guided by the Prad metric
does not accurately reproduce the upper two islands of the KDE. We note that testing R2 values of 0.982 and
0.967 were obtained for the adaptively trained networks informed by Z̄ and Prad respectively.

Given the primary motivator of constructing a framework for surrogate training was for rapid in situ
evaluation, a timing comparison for 1000 forward pass evaluations of the ANN surrogate and original CR
model executable was performed to highlight the compute time savings. The mean surrogate execution time
was approximately 4.2 ms, while the mean CR model forward pass execution was 2.7 s. While the direct
comparison between adaptively trained surrogates discussed in this section and a traditional ANN surrogate
trained on a large pre-assembled data set is at best inconclusive, we have demonstrated the success of the
sampling and training method as a proof of concept. To extend upon this basis, in the next section, we refine
some of the strategies used in adaptive sampling and demonstrate that a comparable, or often better, ANN
surrogate may be produced through automated sampling acquisition.

4. Improving adaptive sampling in training and data acquisition

In the prior section, we examined a brief demonstration of the feasibility in producing a sufficiently accurate
surrogate, within the error tolerances forgivable for in-situ coupling in plasma transport codes. Production
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of this surrogate via an adaptive training-sampling method was shown to be quicker than assembling an
arbitrarily large training data set, while still ensuring enough representative sample points were taken over
the parameter space. The proof-of-concept example demonstrated in the previous section was achieved while
employing a very simple sample acquisition method that gathered from high variance regions for a scalar
output of the HF surrogate.

In this section, we present a more effective sample acquisition method that produces an accurate ANN
surrogate with very few samples required to match or exceed an ANN surrogate trained on a very large LHS
sampled training set. In lieu of the prior choices for the LF surrogate scalar metric, being the average ion
charge state or the total radiation power loss, we now use the LF RFR surrogate to predict the sample error of
the HF surrogate

MSE=
1

N

N∑
j

(yj − ŷj)
2, (21)

where N is the number of data points in the training set, yj is the true value of the jth output, and ŷj is the
corresponding output predicted by the ANN output node. With a focus to rapidly evaluate an estimation of
the HF surrogate’s error over a finely grained input parameter space, we now propose an improved training
sample acquisition function.

4.1. Balancing exploitation vs. exploration
With the use of a LF model that predicts the sample error of validation data for the HF surrogate, we may
utilize acquisition function ideas from Bayesian optimization literature to adaptively select new points. First,
we sample a large number of unevaluated input parameters. At each of these locations, the low-fidelity model
is utilized to compute a mean (µ) and standard-deviation (σ) estimate for the error. Evaluating points with
large values of µ indicates that this point can potentially result in reduction of validation error of the HF
model, which we denote exploitation. Large values of σ indicate that the low-fidelity model has not
adequately learned to predict the error at these locations and therefore these regions may add to the diversity
of the overall training data set through a process of exploration. Several acquisition functions have been
developed for Bayesian optimization that attempt to balance exploration and exploitation for various
settings. In this paper we focus on the lower confidence bound, a simple and robust acquisition function
defined by

ALCB(x) = µ(x)+λσ(x), (22)

where the parameter λ⩾ 0 controls the balance of exploration and exploitation. When set to zero, this
parameter performs pure exploitation.

In our work we have examined the effects of varying this λ parameter to control the balance between
acquiring new training data samples from parameter space regions of high mean error (exploitation) and
regions of high variance (exploration). As a result, we will present a brief comparative study in subsequent
sections outlining the benefits of a balanced approach between exploitation and exploration in assembling a
representative and meaningful training data set.

4.2. Training and adaptive sampling of training data
As a point of reference for the performance of the adaptive sampling framework, an ANN surrogate was
simply trained on a fixed data set of size 8000, spanning a space of 20× 20× 20 samples determined via LHS.
Here the fixed data set size is increased to 8000 compared to 3375 in the previous section so to raise the bar
on the ANN benchmark that we will compare against. The hyperparameters selected for training this
iteration of the surrogate model were largely kept the same as the prior training procedure, outlined in the
previous section 3.3. Notable changes to these hyperparameters were that we employed Ninit = 100 initial
samples, Nresample = 0.1Nsamples re-samples per data set augmentation iteration, and a budget of
Nbudget = 7900 samples to make 8000 samples the maximum possible to match the total number of data
points used in generation of a high-resolution data set for training a benchmark ANN surrogate.
Additionally, we increased the threshold for stopping criteria of the overall adaptive sampling framework to
be a validation R2 result of 0.99 or greater. Further, given the oscillatory nature of the validation criteria
observed in figure 1 as a function of increasing samples, we add a requirement that to successfully complete
training the goal validation R2 must be passed in sequential iterations of the outer loop. This ensures an
improved surrogate is produced, by having to demonstrate robust convergence to the desired criteria and not
simply passing once, before potentially failing on the next data set augmentation. Modifications to the
sampling-training algorithm are shown in algorithm 2.
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Algorithm 2. Adaptive CR surrogate training sampling.

Generate Ninit initial samples of forward CR model evaluation;
Train HF surrogate;
while Nsamples < Nbudget do

Train LF surrogate to map input field to HF surrogate MSE;
Evaluate fine sample space grid using LF surrogate;
Evaluate lower confidence bound in (22) and sort list;
for i= 1 : (Nsamples/10) do

Take input field of highest variance LF prediction. Generate new sample;
end
Train HF surrogate on expanded sample set. Evaluate surrogate metrics;
if R2 > R2

goal then
Increment pass count Npass;
if Npass > 2 then
STOP

end
else
Reset pass count Npass = 0

end
end

In addition, the activation functions employed in the HF ANN surrogate in this section were modified
from the previous iteration in which we essentially demonstrated a proof-of-concept. Hidden layer neurons
were assigned the state-of-the-art Swish activation function [53]

swish(x) = x× sigmoid(x) =
x

1+ exp(−x)
, (23)

to make use of the general observations that it outperforms, or matches, the widely used ReLU activation
function as a result of its improved smoothness and differentiability properties [53, 54].

To map all output field quantities between [0,1], we now choose to rescale log10(Prad) between−20 and
20 using (8). This then enables us to employ an output layer of the ANN using a sigmoid activation function,
noting that output variable quantities at the output layer are normalized between (0,1). This choice of
activation layer was made with the intention of providing a fit-for-purpose architecture to hopefully improve
training performance, but to also circumvent non-physical quantities appearing at the output layers, such as
negative population densities of ions for example. Finally, we note that the discussed changes to
hyperparameters and activation functions used from the first half of this study were employed so to enhance
the fit-for-purpose of the surrogate. All subsequent ANNs were trained using the same updated
hyperparameters and activation functions so that we may still focus on the differences arising due to active
learning in the training routine compared to training using an arbitrarily large fixed data set.

4.3. Experiments and discussion
Employing the proposed modifications to the adaptive sampling routine, we present quantitative and
qualitative results of the performance of the sampling method and resulting surrogates. In this section we
choose to specify Z= 2, which corresponds to a deuterium and helium plasma mixture, which is relevant to
the scenario of helium dilution of a burning plasma undergoing DT fusion.

The main change in this evolution of the adaptive sampling framework is the adjustment of the LF
surrogate to now learn and predict the mapping of input fields to the MSE of the HF surrogate at the current
iteration. Given the current CR problem being studied, there is no obvious a priori choice for the value of the
hyperparameter, λ, which balances exploitation and exploration of an error surface for a given input field. In
our work, multiple values of λ were trialled and tested in order to gain an empirical understanding of this
hyperparameter’s influence. Here, we present some results representative of the general trends observed in
our study and a short discussion on this matter.

Here, we employ three values of λ= 0.1,1, and 10 to highlight the influence of this hyperparameter. We
recall from (22) that when λ= 1 there is equal weighting between variance of the MSE (exploration) and the
MSE itself (exploitation). When λ> 1 priority is placed on exploration as training data samples are collected
from regions of relatively high variance in the MSE. Conversely, when λ< 1 the policy priority is on
exploiting regions of high MSE itself to augment the training data set with additional samples.

Following execution of the adaptive sampling and training framework for these values of λ, given the
conditions previously outlined in this section, we obtain surrogates for determining deuterium-helium
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Table 1.Metrics for varying sizes of adaptively chosen training data acquisition methods.

Training samples Training R2 Training MSE

Large LHS set 8000 0.9992 2.6835×10−7

Balanced AS 655 0.9913 7.0304×10−6

Exploitation biased AS 596 0.9962 6.0526×10−6

Exploration biased AS 339 0.9915 2.4972×10−5

Table 2. Testing metrics for different training data acquisition methods.

Testing R2 Testing R2 w/ ne

Large LHS set 0.9924 0.9931
Balanced AS 0.9923 0.9976
Exploitation biased AS 0.9911 0.9922
Exploration biased AS 0.9826 0.9891

plasma characteristics. The training metrics, as well as the number of required samples for reaching the
training termination criteria are shown in table 1.

As shown in table 1, using the adaptive sampling framework, with hyperparameters described previously,
enables a high training validation goal of R2 = 0.99 to be reached with only a few hundred samples. For a
balanced policy, λ= 1, 655 samples were required, compared to 596 when either exploitation or 339 when
exploration were prioritized. For the raw validation metrics, the R2 and MSE values for λ= 0.1 are
marginally the best performing. However, these metrics are not significantly better than the R2 and MSE
produced for the balanced λ= 1 case, where both cases yield an MSE on the order of 10−6. We should note
that given the capability of single precision operation of the ANN training platform, and for the context of
providing fractional ion populations and a transformed RPL quantity, this error is an acceptable outcome for
implementation within multiphysics plasma simulation codes. Naturally, the surrogate trained on the very
large LHS dataset with 8000 samples performed very well in validation, with an order of magnitude
reduction in MSE and R2 of 0.999.

Following validation, given an unseen data set witheld from training and validation, we can assess the
performance of the four ANN surrogates on mapping a set of input fields unseen in training. For this case,
the testing R2 results are shown in table 2. For these assessments testing metrics are computed from the
output fields, but in addition a R2 value is computed when the output field is augmented by an additional
element of the electron density, ne, which can be computed in post-processing from the output field and then
appended. Though the ne quantity is a derived quantity given an output field, it is a very important variable
when describing a plasma, and so we include this in our assessment of our surrogates to further test their
ability to reproduce physically important values.

Here we can see that performance between the large LHS trained surrogate is comparable to the
performance of the adaptively trained surrogate that was exposed to over an order of magnitude less data
(8000 vs. 655). In fact, the adaptively trained case with λ= 1 could be argued to slightly outperform the rest
with an R2 of 0.9976 compared to the surrogate trained on the very large LHS set. This result is encouraging,
in that over an order of magnitude less sample points can be used to train an effective surrogate trained using
traditional data acquisition methods.

While comparing R2 and MSE metrics is a reasonable thing to do when evaluating surrogates, we can also
visually compare the performance of potential surrogates by projecting the relationships between output
field quantities onto KDE plots to provide easy graphical representation of the predicted outputs compared
to the known output relationships in the testing set. These KDE plots are shown in figure 3 for the four
surrogates being examined in this section.

Interestingly, comparison of subplots (a) and (b) in figure 3 highlights that the MFP trained with a
balance of exploitation and exploration better captures the relationship between the two output field
quantities considered; He+ ion density and log10(Prad) in this case. Specifically, we see that the adaptively
trained surrogate is able to better predict the features in the lower half of the probability distribution than
any of the other surrogates. Ultimately, this indicates that the predictions capable of the adaptively trained
surrogate are grounded in a training set with more representative samples compared to the very large set of
8000 instances generated via LHS. This outcome is an encouraging demonstration of the intended nature of
the adaptive sampling framework to identify regions of parameter space where predictions break down, and
assign more sampling resources to those regions.
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Figure 3. Kernel density estimate plots demonstrating the true and predicted relationship between output field quantities of total
radiation Prad and the population density of the He+1 ion for (a) MFP trained on set of 8000 points via latin hypercube sampling,
(b) MFP adaptively trained by balancing exploration with exploitation of MSE of HF surrogate (i.e. λ= 1), (c) MFP adaptively
trained by weighting exploitation over exploration (i.e. λ= 0.1), and (d) MFP adaptively trained by weighting exploration over
exploitation (i.e. λ= 10).

To provide a quantitative comparison to complement the KDE plot shown in figure 3, we can compute a
relative entropy measure, specifically the Kullback–Leibler divergence [55, 56], between the distributions of
output field quantities of a proposed surrogate and the known truth distribution. In the context of
comparing an approximate distribution, Q, trying to emulate a true distribution, P, the Kullback–Leibler
divergence, DKL(P||Q), is computed as

DKL(P||Q) =
∑
i

Pi log
Pi
Qi

, (24)

and is a measure of entropy increase, or loss of information, due to the use of an approximation, Q,
compared to the true distribution itself, P. When DKL(P||Q) = 0 it implies that P and Q have identical
amounts of information. Thus a smaller value of DKL(P||Q) indicates a better surrogate performance. For the
RPL and He+ ion density variables visualized in figure 3 we show DKL values in table 3. Inspecting the
numerical values shown in table 3 we see that the improved visual similarity observed in the KDE plots when
adaptively sampling with a balanced policy in exploitation and exploration is indeed reflected in the relative
entropy measures between the candidate surrogates.

As reinforcement of the observations made from the previous KDE visualization, we present a second
KDE figure showing the relationship between electron density and RPL, which are arguably the two most
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Table 3. Kullback–Leibler divergence measures for radiation loss and He+ ion density variables visualized in figure 3.

Sampling model DKL for RPL DKL for ne

Large LHS set 5.13× 10−3 5.28× 10−4

Balanced AS 3.03× 10−3 2.81× 10−4

Exploitation biased AS 5.81× 10−3 1.66× 10−3

Exploration biased AS 1.19× 10−2 1.40× 10−1

Figure 4. Kernel density estimate plots demonstrating the true and predicted relationship between output field quantities of total
radiation Prad and the density of electrons for (a) MFP trained on set of 8000 points via latin hypercube sampling, (b) MFP
adaptively trained by balancing exploration with exploitation of MSE of HF surrogate (i.e. λ= 1), (c) MFP adaptively trained by
weighting exploitation over exploration (i.e. λ= 0.1), and (d) MFP adaptively trained by weighting exploration over exploitation
(i.e. λ= 10).

physically meaningful quantities in plasma characterization, in figure 4. In addition to this, we also present
scatter plots of these two output variables in figure 5 to assess the performance of the four surrogates in a
different light.

A common visualization to assess ANN performance is a scatter graph of predicted output field values
against known true values. For the important RPL and electron density variables used in figure 4, we present
scatter plots in figure 5. From figure 5 we can observe that all surrogates appear to do a reasonable job at
predicting the electron density for a set of unseen input fields. However, as suggested in the KDE plots, the
predictive capability for RPL is less than ideal for most surrogates, except the adaptively trained surrogate
using λ= 1.

It is not unsurprising that RPL is a more challenging quantity to reproduce than electron density, or ion
charge state populations, given the well known physics of the coronal regime limit [11, 20]. In the coronal
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Figure 5. Scatter plots demonstrating the true and predicted relationship between output field quantities of (top) total radiation,
Prad, and (bottom) electron density, ne, for (a) MFP trained on set of 8000 points via latin hypercube sampling, (b) MFP
adaptively trained by balancing exploration with exploitation of MSE of HF surrogate (i.e. λ= 1), (c) MFP adaptively trained by
weighting exploitation over exploration (i.e. λ= 0.1), and (d) MFP adaptively trained by weighting exploration over exploitation
(i.e. λ= 10).

limit plasma densities are assumed to be relatively low, and ion populations are assumed to be in the ground
state. Ion population balance is determined between ionization and recombination between ground states of
ion charge states, and so very simple models can replace full CR models to determine charge state
populations. Where this physical limit breaks down is in the determination of excited states, and thus
subsequent RPL quantities, in intermediate regimes where arbitrary populations of ion excited states can
occur. This general CR regime is where our current tokamak plasmas appear to sit, though in some scenarios
accurate ion charge state populations can be determined from coronal-like models if the conditions are
appropriate [7]. Ultimately, from these physics considerations, the total RPL quantity is very sensitive to
small changes in excited state populations, and thus makes for a more challenging quantity to learn accurate
mappings for when compared to ion charge state populations.

Despite the reduced size of the training data set, this surrogate is able to reasonably predict the RPL much
better than the alternatives. Again, this result underscores the virtue of the adaptive sampling framework to
not only produce a sufficiently accurate surrogate in a shorter time, with fewer training samples required, but
it also ensures a physically meaningful set of data is gathered. By exposing the MLP training infrastructure to
a much more representative set of samples we can then take greater confidence that a surrogate we obtain via
this method can be used to bypass an original forward pass CR model coupled within a multiphysics plasma
simulation. Consequently, with confidence in the fidelity of a CR surrogate, that can be demonstrably
produced cheaply, there are now greater opportunities for greatly improved coupling between atomic and
plasma physics models at next to no computational expense thanks to the nature of rapidly executable ANN
surrogates.

Finally, we now comment on a measurement in which the large LHS data set remains superior: the MSE,
as shown in table 1, where aO(10−7) training MSE was reported compared to theO(10−6) training MSE for
the cheaper balanced adaptively sampled surrogate. To briefly explore this quantity, we present box plots of
the testing MSEs obtained over output layer fields in figure 6. Here, we can see that broadly the ANN
surrogate trained on the LHS set is able to maintain a window of approximately an order of magnitude
around an MSE O(10−6.5). The balanced adaptively sampled ANN surrogate is able to maintain a similar
bandwidth of MSE but is pinned at a higher O(10−5.5)MSE.

We note that while not the best overall candidate in our study, the exploitation biased adaptively sampled
NN surrogate was able to yield a lower MSE floor than the balanced sampling case. The latter was able to
provide results which were more aligned with the true behavior when comparing KL-divergence metrics.
This outcome is a direct result of the objective function seeking to minimize the surrogate MSE in training.
Another demonstration of the impact of our objective function policy can be seen in the MSE of the
exploration biased surrogate. Here, the bandwidth of MSE error is by far the smallest due to the penalty
added to minimize variance of the MSE, but not the MSE itself. As a result, the MSE floor and ceiling are
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Figure 6. Box plot of testing mean squared errors over output layer fields (a) MFP trained on set of 8000 points via latin
hypercube sampling, (b) MFP adaptively trained by balancing exploration with exploitation of MSE of HF surrogate (i.e. λ= 1),
(c) MFP adaptively trained by weighting exploitation over exploration (i.e. λ= 0.1), and (d) MFP adaptively trained by weighting
exploration over exploitation (i.e. λ= 10).

higher for this model despite having a narrow spread. Demonstration of these impacts on MSE due to
objective function policy is an encouraging result, and will allow further tailoring and improvements on
surrogate training depending on potential MSE requirements of a surrogate’s application. Furthermore, we
may also use a combination of metrics to determine the sampling strategy for new data sets.

5. Conclusion and future work

In this study we have outlined the motivation for employing ANN surrogates of CR models in coupled
multiphysics plasma simulation codes, so that vital quantities can be provided to the physics simulation in a
computationally efficient manner, without adding a bottleneck at each time-step or iteration of a code.
Circumventing this bottleneck with ANN surrogates has previously been successfully demonstrated in other
plasma modeling applications [36]. With this in mind, we have introduced and demonstrated the capability
of a novel adaptive sampling framework to autonomously generate training data in statistically meaningful
areas of the CR problem parameter space, which in turn allows: (a) faster acquisition of training (validation)
data for training the ANN surrogate, and (b) some assurance that the data assembled for training
(validation) is physically meaningful and representative of the problem parameter space. Further, we have
shown that application of this framework towards the creation of an ANN based surrogate for a CR model,
that would allow rapid evaluation of ion and radiation properties within a fusion plasma doped with an
impurity species, outperforms training an ANN surrogate on more than 10 times the amount of data
generated by the often used LHS technique. Future work avenues will explore transfer learning of the ANN
(rather than retraining), and parallelized sampling, for example employing DeepHyper [28], as well as
implementation of the surrogates presented in this study into plasma fluid simulation research codes.
Another direction will be to apply the adaptive sampling framework outlined in this study to more physics
rich, but expensive, forward CR models.
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