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Abstract
A longstanding debate surrounds the related hypotheses that low-curvature minima generalize
better, and that stochastic gradient descent (SGD) discourages curvature. We offer a more complete
and nuanced view in support of both hypotheses. First, we show that curvature harms test
performance through two new mechanisms, the shift-curvature and bias-curvature, in addition to
a known parameter-covariance mechanism. The shift refers to the difference between train and test
local minima, and the bias and covariance are those of the parameter distribution. These three
curvature-mediated contributions to test performance are reparametrization-invariant even
though curvature itself is not. Although the shift is unknown at training time, the shift-curvature
as well as the other mechanisms can still be mitigated by minimizing overall curvature. Second, we
derive a new, explicit SGD steady-state distribution showing that SGD optimizes an effective
potential related to but different from train loss, and that SGD noise mediates a trade-off between
low-loss versus low-curvature regions of this effective potential. Third, combining our test
performance analysis with the SGD steady state shows that for small SGD noise, the shift-curvature
is the dominant of the three mechanisms. Our experiments demonstrate the significant impact of
shift-curvature on test loss, and further explore the relationship between SGD noise and curvature.

1. Introduction

Understanding generalization remains one of the key questions in machine learning. In typical machine
learning applications, we train a model on a training dataset hoping that the model will generalize well to a
test dataset, which is a proxy for unseen data. However, our theoretical understanding of how datasets,
models, and learning algorithms combine to determine test performance is still incomplete, particularly in
the case of overparametrized models that defy classical expectations about overfitting (Belkin 2021). A
decades-old debate focuses on the related hypotheses that low curvature of the loss function results in better
test performance, and that stochastic gradient descent (SGD) favors lower-curvature local minima.
There is strong evidence for these hypotheses. First, many studies have shown that increasing SGD noise
(by increasing the ratio of learning rate to batch size) can improve test performance (Goyal et al 2017, Hoffer
et al 2017, You et al 2017, Golmant et al 2018, McCandlish et al 2018, Shallue et al 2018, He et al 2019a,
Smith et al 2020). Our experiment in figure 8 also confirms this. Second, Keskar et al (2016), Li et al (2017a),
Jiang et al (2019) offer empirical evidence that lower-curvature local minima tend to generalize better, an
idea often attributed to Hochreiter and Schmidhuber (1997). Third, Jastrzkebski et al (2017) make direct
theoretical connections between test performance, curvature, and SGD noise (albeit under strong
assumptions). They show that under the SGD steady-state distribution, the expected test loss near a given
local minimum depends on the trace of curvature times parameter covariance, assuming a constant Hessian
equal to SGD noise. They also show that the probability of SGD landing near a particular local minimum is
inversely related to its curvature, with noise mediating a depth/curvature tradeoff, assuming constant,
isotropic SGD noise and valid Laplace approximation. On the other hand, there are several arguments
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Figure 1. Train and test accuracy (left) and loss (middle) along a line connecting the local minimum of the train loss to a nearby
local minimum of the test loss, for different train local minima found using high (red) vs. low (blue) temperature SGD. Lower
temperature SGD leads to higher curvature (for both train and test, in terms of both loss and accuracy), and worse test
performance near the train local minimum (compare red to blue dashed lines near r= 0). We extract loss curvature by reflecting
the train and test losses along the line about their respective local minima and fitting the resulting curve to 1

2
cx2. We call c the

curvature; the right-most plot above shows the reflected losses and the quadratic fits corresponding for a specific temperature. In
all plots, the x- and y-axes are as follows: lettingΘ(r) be a line connecting the train/test local minima (so thatΘ(0) = θ tr

k and
Θ(||sk||) = θ test

k ), the x-axis is r, and y-axis is the accuracy or loss evaluated at the interpolated parametersΘ(r).

against the idea that curvature predicts test performance. Dinh et al (2017) point out that model
reparametrization can arbitrarily change curvature without changing test performance. Further, a number of
recent works argue that Jastrzkebski et al (2017) and others present an oversimplified view of curvature, since
loss landscapes often (e.g. when there are many more model parameters than training datapoints) have many
directions of near-zero curvature rather than locally strictly-convex valleys; in particular, the SGD noise
matrix and Hessian of the loss are different, and both are highly non-isotropic with many near-zero
eigenvalues (Draxler et al 2018, Sagun et al 2018, Li et al 2020). Our work aims to help reconcile these points
of view by removing unrealistic assumptions such as constant, isotropic Hessian and loss gradient covariance,
identifying new and possibly more significant mechanisms by which curvature affects test performance, and
showing that these curvature-dependent contributions to test performance are reparametrization invariant.

At a high level, we find that the intuitive connections between test performance, curvature, and SGD
noise still hold, but in a more complete and nuanced way. We show that the test loss averaged over an
arbitrary parameter distribution depends on the shift-curvature (in addition to the bias-curvature and the
previously-identified covariance-curvature). The shift-curvature is equal to the curvature of the loss in the
direction of the shift between nearby train and test local minima, as shown in figure 1; such a shift may be
caused by dataset sampling or possibly by test and train datasets coming from different distributions.
However, the shift is unknown at training time, so it is beneficial to reduce curvature in all directions.
Second, we show that the SGD steady-state distribution favors train local minima with low curvature in all
directions, although the curvature is not that of the train loss, but rather of a related effective potential which
we obtain by refining existing results about the steady state of SGD. Third, we find that the shift-curvature
may be the most significant curvature term when SGD noise is small. Our empirical results show that
shift-curvature indeed has a significant impact on test loss.

In more detail, we refine existing results for the steady-state distribution of SGD as follows. Starting from
a continuous-time diffusion approximation of SGD due to Li et al (2017b) (for which we also offer an
alternative, constructive derivation which may be helpful for analyzing other algorithms), we derive a
steady-state distribution showing that SGD minimizes an explicit effective potential that is related to but
different from the training loss. Our expression is more explicit than the result in Chaudhari and Soatto
(2018), and more general than that in Jastrzkebski et al (2017) and Seung et al (1992) since we remove their
assumptions of constant and isotropic SGD noise.

This paper is organized as follows. Sections 2 and 3 present the setup and main results for the simpler
underparametrized case (more data samples than model parameters). Section 4 discusses the SGD diffusion
approximation and its steady state in more detail, describing how the results in section 3 are obtained.
Section 5 extends the results to the more complex overparametrized case. The appendices contain derivations
and additional experiments.
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Table 1. Notation reference guide.

Symbol Definition Notes

U(x,θ) Loss function
U tr/test(θ) = Ex∼tr/test[U(x,θ] Train/test loss at θ

θ
tr/test
k = argminU tr/test(θ) Local minima of test/train loss

U tr/test
k U tr/test(θ

tr/test
k ) Test/train loss at local minima

C tr/test
k ∂2

θU
tr/test(θ

tr/test
k ) Curvature at test/train local minima

sk = θ test
k − θ tr

k Shift between train/test minima
ρ(θ)≈

∑
kwkN

(
µk,Σ

2
k

)
Approx. parameter distribution

bk = θ tr
k −µk Bias of ρ at k

D tr(θ) = Covx∼tr[∂θU(x,θ)] SGD diffusion matrix

2. Setup

In this section and the next, we present our setup and main results in the underparametrized case (section 5
extends to the overparametrized case). We assume we are given a loss function U(x,θ) that depends on a
single data sample x ∈ Rι and model parameters θ ∈ Rp, where ι and p are positive integers. We are also
given a training set

{
xtr1 , . . . ,x

tr
Ntr

}
(tr is short for train) consisting of Ntr points sampled i.i.d. from an

underlying train distribution, and a test set
{
xtest1 , . . . ,xtestNtest

}
sampled i.i.d. from an underlying test

distribution. Often the train and test distributions are identical, but sometimes they differ from one another
(for example, when the data distribution evolves over time and test is sampled at a later time than train). But
even when train and test are both sampled from the same underlying distribution, the train and test sets still
differ due to sampling (because each data set consists of a finite number of samples). We define the train and
test losses for a given θ as the expectation over the train and test sets, respectively:

U tr(θ) =
1

Ntr

Ntr∑
i=1

U(x tri ,θ), and U test(θ) =
1

Ntest

Ntest∑
i=1

U(x testi ,θ). (1)

In general, U tr(θ) and U test(θ) are similar but not identical functions, each with multiple local minima. We
make three initial assumptions about the local minima: (i) the local minima of both train and test are strict,
(ii) each local minimum of the train loss has a nearby local minimum of the test loss, and (iii) the train local
minima are countable. We expect (i) to hold for underparametrized models (provided there are at least p
linearly-independent per-sample gradients) but not for overparametrized models (which are handled in
section 5, where we drop assumption (i)). Assumption (ii) is validated by our experiments, and can be
satisfied, for example, in the absence of distribution shift by having large enough datasets. Both (ii) and (iii)
could actually be relaxed to apply only to train local minima that receive significant weight in the SGD
steady-state distribution, as (4) will make clear, but we will assume they hold for all train minima to simplify
the exposition. With these assumptions, we denote the (strict) local minima of train by θ tr

k and the
corresponding closest local minima of test by θ test

k , and generally reserve k as an index that runs through train
local minima (k= 1,2,3, . . .). We can then define the shift between corresponding local minima of train and
test as:

sk = θ test
k − θ tr

k . (2)

The shift is small as a consequence of assumption (ii), but nonzero in general because the train and test losses
are slightly different (due to dataset sampling or possibly distribution shift). He et al (2019b) experiments and
our own demonstrate a nonzero train/test shift for several models and datasets. (We generalize definition (2)
to apply to non-strict minima in section 5.) Table 1 summarizes the main notation we use for easy reference.

We further assume that a stochastic learning algorithm such as SGD processes the train dataset to
produce model parameters with a distribution ρ(θ); that is, different runs of SGD on the same training set
yield i.i.d. samples from ρ(θ). The resulting models are evaluated on a test dataset to determine the test
performance. One of our main goals is to understand the expected test loss over the distribution of model
parameters the algorithm produces (while keeping datasets fixed).

3. Main results

First, consider a solution θ̂ obtained by a single run of a training algorithm like SGD, i.e. θ̂ is a sample from
ρ(θ). To predict the performance of the trained model on unseen data, we would evaluate the test loss at θ̂.

3



Mach. Learn.: Sci. Technol. 3 (2022) 045002 A V Bradley et al

We expect θ̂ to be near a train local minimum θ tr
k because it was found by an algorithm that attempts to

minimize the train loss. We can therefore write θ̂ = θ test
k − sk − b̂, where sk is the train/test shift introduced

above, and b̂= θ tr
k − θ̂ denotes the bias of θ̂ relative to the train local minimum, with both sk and b̂ assumed

small. We then Taylor expand U test about θ test
k , noting that ∂θU test(θ test

k ) = 0:

U test(θ̂)≈ U test
k +

1

2

(
sk + b̂

)T
C test
k

(
sk + b̂

)
, (3)

where we introduce the more compact notation U test
k = U test(θ test

k ) for the test loss at a local minimum, and
C test
k = ∂2

θU
test(θ test

k ) for the Hessian (or curvature) of the test loss at one its local minima1. Although it comes
from a simple Taylor-expansion, equation (3) identifies important quantities impacting test loss that have so
far been inadequately discussed in the literature. The equation says that the test loss evaluated near a train
local minimum is equal to the test loss at the test local minimum plus a term that depends on an interaction
between the curvature, the shift between the train and test local minima, and the bias between θ̂ and the train
local minimum. The shift-curvature term, 1

2 skC
test
k sk, plays an especially important role in the rest of this

paper; the basic intuition is that, given train and test losses with local minima slightly shifted relative to each
other, the test loss evaluated near a train local minimum depends on the local curvature in the direction of
the local-minimum shift (Keskar et al 2016 seem to appeal to similar intuition, but do not make it concrete).
Since the shift cannot be known at training time, it is beneficial to minimize curvature in all directions,
which, as we will see shortly, is what SGD does.

In order to obtain an explicit approximation for the expected test loss over a distribution of parameters,
we model the parameter distribution ρ(θ) as a countable mixture of Gaussians with one mixture component
for each train loss minimum, as proposed by Jastrzkebski et al (2017) for the case of SGD. That is, we write
ρ(θ) =

∑
kwkN (µk,Σk), where wk ⩾ 0,

∑
kwk = 1, the component means µk are close to the train local

minima, bk = θ tr
k −µk denote the component biases, and Σk denote the component covariances2. Averaging

the approximate test loss in (3) over such a parameter distribution results in the approximate test
performance:

Eθ∼ρ [U
test(θ)]≈

∑
k

wk

{
Utest

k +
1

2
Tr[ΣkC

test
k ] +

1

2
(sk + bk)

TCtest
k (sk + bk)

}
, (4)

here Tr[·] denotes the trace of a matrix. Equation (4) is one of our main results, and makes explicit how
curvature determines test performance: through the covariance of model parameters Σk, as well as a
quadratic function of the shifts sk and biases bk. Buntine (1991), Jastrzkebski et al (2017) identify the same
Tr[ΣkC test

k ] contribution of curvature to test performance (under the assumption that C=D, which we
remove), but the other curvature-dependent terms in (4) are new as far as we know. In particular, the new
shift-curvature term (discussed above) appears as 1

2wkskC test
k sk, showing that test loss improves when ρ places

more weight on minima with lower shift-curvature. The role of shift-curvature is consistent with the
empirical results of Verpoort et al (2020), who show that curvature (as measured by log |C|) has a major
impact on test performance for small sample sizes, which correspond to larger train/test shift.

We can also show that (4) is reparametrization-invariant. Although multiple authors, including Keskar
et al (2016), Jiang et al (2019), and Hochreiter and Schmidhuber (1997), have suggested that generalization
quality can be tied directly to curvature, Dinh et al (2017) argue against this by observing that model
reparametrization can arbitrarily change the curvature of the local minima. Although the curvature
alone is indeed not invariant to reparametrization, we show in appendix C that every term in (4)
is reparametrization-invariant, as is the entire expression. The intuition behind the proof is that
reparametrization changes terms in (4) like sk and C test

k in ways that cancel each other out, i.e. under a
reparametrization y= r−1(θ), the reparametrized shift becomes ∂yr(y testk )−1sk while the reparametrized
curvature becomes ∂yr(y testk )TC test

k ∂yr(y testk ) (where ∂yr(y)−1 is the matrix inverse of the Jacobian of r), so that
skC test

k sk is left unchanged. Other authors like Smith and Le (2017) have shown reparametrization-invariant
PAC-Bayes bounds for the generalization error, but we show the left-hand-side of (4) is a
reparametrization-invariant quantity that directly approximates the expected test loss.

1 In section 5, we find that (3) still holds in the overparametrized case after generalizing the definition of sk to apply to non-strict minima.
We further note that for asymmetric losses, only the curvature in the direction from the test toward the train local minimum matters, as
explored in our experiments. Finally, in appendix E, we show how this result and others can be partially generalized to the case where the
quadratic term is zero, but curvature can still be characterized in terms of a higher-order even derivative.
2 Generally, such a model is reasonable when ρ has the form ρ(θ)∝ e−cυ(θ) for some constant c and function υ with local minima near
those of the train loss, so that ρ is multimodal with peaks near the train local minima, enabling a Laplace approximation about each local
minimum of υ, which yields a Gaussian mixture with small biases. We will see shortly that the SGD steady state has this form.
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Our second main result is the approximate steady-state distribution of SGD, derived in section 4:

ρ(θ) =
1

Z
exp

{
− 2

T
υ(θ)

}
, where Z≡

ˆ
exp

{
− 2

T
υ(θ)

}
dθ, and

υ(θ)≡
ˆ θ

(D tr)−1

(
∂θU

tr +
T

2
(∂θ ·D tr)T

)
· dθ. (5)

We call υ(θ) the effective potential, D tr(θ) is the training set gradient covariance, ∂θU tr(θ) is the gradient of
the training loss, and Z is the partition function of this Boltzmann-like distribution. The temperature T,
which is equal to the ratio of learning rate and minibatch size (so typically T≪ 1), captures the strength of
SGD noise (as discussed further in section 4). The effective potential is related to the training loss U tr(θ), but
in general not the same: υ ∝ U tr only if D tr is constant and isotropic3. Result (5) requires the assumption
that the integrand in the line integral is a gradient, which is equivalent to having zero curl, as well as for
D tr(θ) to be invertible, which is only true in underparametrized case4. Equation (5) is more general than the
results in Seung et al (1992), Jastrzkebski et al (2017), which assume that the noise D tr(θ) is constant and
isotropic (i.e. a multiple of the identity). It is different and more explicit than results in Chaudhari and
Soatto (2018) for nonconstant, anisotropic noise, enabled by the zero-curl assumption that we rely on to
obtain a solution with zero probability current (J in equation (10)). Chaudhari and Soatto (2018) say that
the steady state cannot have zero probability current for anisotropic and/or non-constant noise, but we offer
a counterexample in appendix B.1. They also stop short of explicitly solving for the effective potential,
presumably because they are rightly concerned about inverting D tr; however, our analysis of the nullspace of
D tr shows that this is only an issue in the overparametrized case, in which case a modified SGD still allows us
to find a solution (see section 5).

Approximating ρ as a mixture of Gaussians shows that ρ assigns to basin k the weight:

wk ∝ exp

{
− 2

T
υ(µk,T)

}
· |∂2

θυ(µk,T)|−
1
2 . (6)

This shows how SGD noise mediates a trade-off between depth and curvature of the effective potential,
generalizing the result given in Jastrzkebski et al (2017) for the special case of constant, isotropic covariance
D tr(θ). When T= 0 the weights wk indicate that ρ(θ) places all its probability mass on the deepest minimum
of the effective potential, but as T increases, ρ(θ) begins to transfer weight onto other minima. It then favors
minima with lower curvature of the effective potential due to the inverse-square-root dependence on the
determinant of the curvature of the effective potential. In particular, if two local minima have the same
depth, SGD will prefer the one with lower curvature. Compared to Jastrzkebski et al (2017)’s result, ours
highlights the complexity arising from non-isotropic noise, in particular that the depth and curvature are
those of the effective potential rather than those of the training loss.

Third, to approximate the expected SGD test performance, we specialize (4) to the Gaussian mixture
approximation of the SGD steady-state ρ in (5) to obtain:

Eθ∼ρ[U
test(θ)]≈

∑
k

wk

(
U test

k +
1

2
sTkC

test
k sk

)
+O(T). (7)

The terms in (4) involving bias bk and covariance Σk are both O(T), as detailed in section 4. Equation (7)
shows that for SGD with small T and non-negligible shifts sk, our newly-identified shift-curvature term may
be the most significant way that curvature affects the test loss. In summary, we find that SGD temperature
mediates a trade-off between depth and curvature of the effective potential, so that as temperature increases,
greater weight wk is placed on lower-curvature basins. These lower-curvature basins tend to have smaller
values of shift-curvature, sTkC

test
k sk, which can reduce the expected test loss Eθ∼ρ[U test(θ)] overall5. We

illustrate this with a conceptual example in the next section.
Our experiments in figures 1–3 demonstrate the significant contribution of shift-curvature to test

performance, support the inverse dependence of curvature on SGD temperature, and offer additional

3 When D tr = d(θ)I for some scalar function d(θ), then υ(θ) =
´ θ 1

d(θ)
∂θU tr · dθ+ T

2
log(d(θ)). If in addition d(θ) is a constant

denoted by d, then υ(θ) = d−1U tr(θ)+ const.
4 The zero-curl assumption is stated and discussed in appendix B.1 (assumption 1). The invertibility ofD tr is handled in section 5, where
we find that an analog of (5) still holds in the overparametrized case if we add zero-mean Gaussian noise to SGD and ℓ2 regularization to
the training loss.
5 This is in contrast to the effective potential υ, since some algebra shows that ∂TEθ∼ρ[υ] =

1
T2 Var[υ]> 0, so υ can only worsen with

increasing T. Interpreting Eθ∼ρ[υ] as the energy of the system makes ∂TEθ∼ρ[υ] the heat capacity (Niroomand et al 2022).
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Figure 2. Test loss and shift-curvature for VGG16 network. Experiment setup as described in figure 1. (Top left) Test loss at the
train local minimum and Taylor approximation prediction as a function of temperature. The former is an important quantity
because it predicts model performance on unseen data; note the improvement with increasing temperature. Equation (3) (with
θ̂ = θ tr

k ) predicts that the test-loss-at-train-local-minimum is approximately equal to the test-loss-at-test-local-minimum U test
k

plus the shift-curvature term 1
2
skC test

k sk, which is supported by our experimental results. (Bottom left) Train loss and test loss
evaluated at their respective local minima (U tr

k , U
test
k ), as a function of temperature. Both increase with increasing temperature,

consistent with the theory that SGD temperature trades off depth and curvature. (Top right) Shift-curvature (skC test
k sk) and shift

magnitude (∥sk∥). Shift-curvature decreases with increasing temperature, as expected. We observe empirically that skC test
k sk makes

a larger contribution to (3) than U test
k . Finally, here the shift magnitude increases with temperature, though we see the opposite

behavior for Resnet10 (figure 3). (Bottom right) Train and test curvature (C train
k ,C test

k ), which both decrease with increasing
temperature as expected.

Figure 3. Experiment as in figure 2, repeated for Resnet10 network. The main qualitative differences are that the shift now
decreases with increasing temperature, and the magnitude of the train curvature is higher than that of the test curvature.

empirical insights about the test local minima, curvature, and shift. For figures 1–3, we trained VGG16
(Simonyan and Zisserman 2014) and Resnet10 (He et al 2016) networks, both without batch normalization,
on CIFAR10 (Krizhevsky et al 2009). We also performed the same experiment and obtained qualitatively
similar results for Resnet20 with batch normalization on CIFAR10, and Resnet18 with batch normalization a
subset of ImageNet (Deng et al 2009) (figures 5–7 in appendix G.1). The experiment is designed as follows.
We repeated the following procedure over a range of temperatures for the initial SGD run, and over several
seeds for each temperature. For each temperature and seed, we first trained our model using SGD with the
specified temperature to get close to local minima of train (note that SGD typically finds different train local

6
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Figure 4. Synthetic two-basin loss with train loss shifted by a constant s relative to test loss, and D constant (so bias is zero). (Left)
Minimum at−1 is deeper but minimum at 1 is wider. As temperature increases, the steady-state distribution transfers weight to
the wider minimum which has lower shift-curvature, so that test error decreases and training error increases. (Right) Minimum
at 1 is deeper and wider. There is no depth/curvature trade-off to explore, so both training and test error worsen as T increases.

minima for different temperatures). Next, we initialized from the SGD solution and kept training at
extremely low temperature on the train set to get even closer to the train local minimum. Finally, we again
initialized from the SGD solution and trained at extremely low temperature, but this time on the test set, to
get as close as possible to the test local minimum. Having found the train and test local minima, we linearly
interpolated between them in order to study the train and test accuracy and loss along the line connecting
their local minima (as shown in figure 1 for two different initial SGD temperatures; note the higher
curvature at lower SGD temperature). Finally, we estimated the curvature of the loss functions along this line
by reflecting them about their local minima in the direction from θ test

k toward θ tr
k , and fitting a quadratic

centered at the local minimum (as shown in figure 1, right pane). (We focus on the line connecting the local
minima because all quantities in (3) with θ̂ = θ tr

k lie along this line. LettingΘ(r) denote the line, with
Θ(0) = θ tr

k andΘ(||sk||) = θ test
k , the curvature of the fitted quadratic corresponds to skCksk/∥sk∥2, as shown

in (31).) Although we could compute the full Hessian matrix, in these experiments we are mainly interested
in the curvature along the line Φ(r) which can be computed much more cheaply via the 1D projection;
further, because of the shapes of the losses we find that the symmetrized quadratic fit better captures the
relevant overall curvature of the basin, as discussed in appendix F. The plots in figures 2 and 3 show trends in
key quantities (losses and curvature at local minima, shift magnitude, and shift-curvature) as a function of
the initial SGD temperature. The results validate (3) (with θ̂ = θ tr

k ) by showing that the test loss at the train
minimum is approximately equal to the test loss at the test local minimum U test

k plus the shift-curvature
1
2 s

T
kC

test
k sk; empirically 1

2 s
T
kC

test
k sk appears to be more significant than U test

k . Further, they show that both the
train and test curvatures along the lineΘ(r) decrease with increasing SGD temperature, as does
shift-curvature. Interestingly, although our theory makes no predictions about the shift magnitude ∥sk∥, in
our experiments it increases with temperature for VGG16, but decreases with temperature for Resnet10—but
in both cases, the shift-curvature still decreases. Also, the test curvature is larger than the train curvature for
VGG16 but the opposite is true for Resnet10.

3.1. A simple two-basin example
To illustrate the impact of shift and curvature on test loss and the temperature-controlled depth/curvature
trade-off, we construct a simplified synthetic optimization problem where θ ∈ R, and the train and test
losses each have two local minima (the data is implicit because we directly define the train and test losses as
functions of θ). We construct the train and test losses to be identical except for a constant shift
(i.e. U test(θ) = U tr(θ+ s)). We let the noise D tr be a constant as well, so the bias is zero. Thus (5) becomes
ρ(θ)∝ e−

2
TU

tr(θ), the basin weights become wk ∝ e−
2
TU

tr
k (C tr

k )
− 1

2 and (7) becomes:

Eθ∼ρ[U
test(θ)]≈

∑
k

wk

(
U tr

k +
1

2
sTC tr

k s

)
, (8)

since U tr
k = U test

k and C tr
k = C test

k . In figure 4, the losses each have two local minima with different curvature
(hence different shift-curvature, since the shift is constant). On the left, the minimum at θ =−1 (let us
assign it k= 0) is deeper but narrower than the minimum at θ= 1 (k= 1), so that U tr

0 < U tr
1 and C tr

0 > C tr
1 .

At T= 0, ρ is a Dirac delta at argmin(U tr) and w0 = 1. As T increases, w1 increases, and we get a mixture

7
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between the two basins. As w1 increases, the depth term worsens (w0U tr
0 +w1U tr

1 increases), while the
shift-curvature terms improves ( 12 s

T(w0C tr
0 +w1C tr

1 )s decreases). For larger temperatures, the variance
and/or bias terms in the loss become large enough to worsen test performance again, so there is a non-zero
and finite optimal temperature that minimizes test performance. On the right, we have a similar setup,
except that the deeper basin is also wider. In this case, we see no improvement in test loss with increasing
temperature, since there is no trade-off to explore between depth and shift-curvature. Appendix G.3 includes
similar one-basin and three-basin cases. In the one-basin case, increasing the temperature can only worsen
the expected test loss, since there is no trade-off to explore, and increasing the SGD variance can only hurt
both the train and test losses on average. The three basin case is qualitatively similar to the two basin case, but
also shows the preference for lower curvature when the two basins are equally deep.

4. Stochastic gradient descent

In this section we derive equations (5)–(7). Recall that SGD attempts to minimize the training loss U tr(θ)
through a discrete-time stochastic process with state θt ∈ Rn, where t indexes the number of SGD updates:

θt+1 = θt +∆t, where∆t =−λ

B

B∑
i=1

∂θU(xi,θ), (9)

where λ is the learning rate, B is the minibatch size, and the xi are i.i.d. samples from the train set that
comprise the minibatch. Letting T= λ/B, we note that∆t has mean−λ∂θU tr(θ) and covariance λTD tr(θ)
—we refer to the latter as the SGD noise, and think of the temperature (by analogy with statistical
mechanics) as a good summary of noise strength. Typical applications use λ≪ 1, and B> 1, so that T≪ 1,
since running SGD with too high a learning rate or temperature results in unstable dynamics (especially early
in a run) that often fail to converge, i.e. see Goyal et al (2017). So we generally assume that λ≪ 1, and T≪ 1.
As shown by Li et al (2017b) and our complementary derivation in appendix A, under these conditions the
probability distribution of parameters p(θ, t) that SGD produces can be well approximated by the probability
distribution ρ(θ, t) of a continuous-time diffusion process governed by the Fokker–Planck equation:

∂tρ(θ, t) = λ∂θ · J(θ, t), where J(θ, t) = ∂θU
tr(θ)ρ(θ, t)+

T

2
∂θ · (D tr(θ)ρ(θ, t)) . (10)

J(θ, t) is called the probability current. Redefining training time through the change of coordinates t= λt has
the only effect of removing λ from (10), i.e. yielding ∂tρ(θ, t) = ∂θ · J(θ, t), and leaving T as the only
equation parameter. (Explicitly, rescaling the temporal axis of SGD runs so that λ1n1 = λ2n2, where λ1,λ2

are the learning rates and n1,n2 are the number of SGD updates for two different runs, should produce
similar results as long as the diffusion approximation holds; this can be a useful rule of thumb for adjusting
the number of SGD updates as the learning rate is changed.) The fact that T is the only remaining parameter
after rescaling time justifies the notion that T is a good summary of SGD noise strength, and means that
different SGD runs with the same value of T but different learning rates and minibatch sizes still produce
approximately the same steady-state parameter distributions. The dependence of the SGD distribution on T
is in agreement with theory given in Jastrzkebski et al (2017), and the empirical results of Goyal et al (2017),
He et al (2019a). We also confirm the T dependence in figure 8 (appendix G.2), which shows similar test
performance for different minibatch sizes and learning rates as long as T is kept fixed. Finally, Goyal et al
(2017) notes that the simple dependence of SGD on T breaks down when the learning rate is sufficiently
large even when T is small; a situation where we expect the diffusion approximation to be inaccurate.

With the change of variables t= λt just described, ∂tρ(θ, t) = ∂θ · J(θ, t) is equivalent to the Langevin
(stochastic differential) equation:

dθ =−∂θU
tr(θ)dt+

√
TD tr(θ)dW, (11)

that appears in Li et al (2017b) and Chaudhari and Soatto (2018) as an approximation of SGD.
Fokker–Planck and Langevin equations describe the same underlying continuous-time diffusion process;
i.e. see Gardiner (2009). Li et al (2017b) showed that (10) is an order-1 weak approximation of SGD. In
appendix A.1 we offer a complementary informal constructive derivation that shows how to approximate any
discrete-time Markov process by a continuous-time diffusion process through the truncation of the infinite
Kramers–Moyal expansion, which may be useful for analyzing other algorithms as well. Our approach
essentially relies on approximating each SGD step as a sum of i.i.d. infinitesimal increments, and validates a
conjecture in Bazant (2005) that the moments of the continuous-time diffusion approximation are

8
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proportional to the cumulants of the discrete-time process6. For the rest of this paper, we assume that (10) is
a good approximation to SGD, and study the resulting stationary distribution. Next, we assume that the
process described by (10) is ergodic, and seek its unique steady-state solution, i.e. the distribution ρ(θ) such
that ∂tρ(θ, t) = 0. We can follow Gardiner (2009) and seek a solution where J(θ, t) = 0. Appendix B.1 shows
that some algebra starting from J(θ, t) = 0, assuming that the integrand of the line integral in (5) is a
gradient, yields the steady-state distribution in (5). This approach needs an invertible D tr(θ), which is only
possible in the underparametrized case. Section 5 describes what happens in the overparametrized case.

To approximate the expected SGD test loss (7), we approximate the SGD steady-state distribution as a
mixture of Gaussians (similar to Jastrzkebski et al 2017). Since (5) has the form ρ(θ)∝ e−

2
Tυ(θ), it is

reasonable to expect that that when T≪ 1, ρ is multimodal with peaks at the local minima of the effective
potential υ(θ). So we make a Laplace approximation, i.e. we approximate υ(θ) by a quadratic function in a
neighborhood of any local minimum to obtain a local Gaussian approximation. Combining the local
approximation at every local minimum yields a weighted Gaussian mixture approximation of ρ(θ), with
weights given by (6), and bias and variance both O(T). Details are in appendix B.2. (Note that the bias is
linear in T but nonzero, confirming a result in Chaudhari and Soatto (2018) that the critical points of υ
differ linearly-in-T from those of U tr.) Substituting these results into the approximate test loss (4) and
keeping only leading terms in T results in the approximate SGD test performance in (7). The validity of the
Gaussian mixture approximation of (5) depends on the local quadratic approximation of υ, which we
explore in our experiments with quadratic fits to the train loss, to which υ is related.

5. More parameters than datapoints

We now consider the overparametrized situation (p⩾ Ntr and/or p⩾ Ntest, recalling that p denotes the
number of model parameters and Ntr/test the number train/test model parameters). As discussed in
appendix D, the overparametrized case is more complex because the per-sample gradients of the train set
now do not span Rp, but rather a subspace of dimension no larger than Ntr, denoted Gtr, which in general
depends on θ (similarly, there is a subspace Gtest of dimension Ntest for test). This has many implications. One
is that the losses no longer necessarily have strict local minima, which means we need to generalize the
definition of the shift and the Taylor approximation (3). Another is that the average training gradient
∂θU tr(θ) and the range of D tr(θ) both lie in Gtr, which implies both that that the SGD updates∆t in (9) lie in
Gtr, and that D tr(θ) is no longer invertible, invalidating (5). To help resolve these issues, we will need to add
ℓ2-regularization to the train loss (as is common in practice), and also to modify SGD to include isotropic
noise. With these changes, we can obtain analogs of our main results.

In appendix D.4, we generalize (3) to the overparametrized case. We first add ℓ2-regularization to the
train loss: U tr(θ) = Ex∼tr[U(x,θ)]+

1
2αθ

Tθ, which makes the train local minima strict (so that the bias b̂
in (3) makes sense); however, the test loss is unregularized so its local minima are non-strict. We find that (3)
still holds if we generalize the definition of the shift to:

sk = ProjGtest
(θ test

k − θ tr
k ) , (12)

where ProjGtest
is the projector onto the subspace spanned by the per-test-sample gradients.

In order to generalize equation (5), we modify SGD to include isotropic noise in addition to the
ℓ2-regularization of the train loss, as follows:

θt+1 = θt +∆t, where∆t =−λ

B

B∑
i=1

∂θU(xi,θ)−αθ+
√
λTβwt, (13)

where α,β are scalars, and where wt is zero-mean Gaussian noise in Rp with covariance equal to the identity,
that is independent of everything else. The isotropic Gaussian noise ensures that D tr(θ) is invertible, while
ℓ2-regularization controls the part of the drift in Rp but not in Gtr, as discussed in appendix D.3. The
diffusion process approximation of the modified SGD is then exactly like the one for the underparametrized
case after making the substitutions D tr(θ)+β2I in place of D tr(θ), and ∂θU tr(θ)+αθ in place of ∂θU tr(θ).
With these substitutions, the steady-state distribution still has the form in equation (5), and its Gaussian
mixture approximation still has the form in equation (7).

6 Informally, in our derivationwe need the probability distribution of ∆t to vary slowly with θ, andmakingλ sufficiently small guarantees
this, to ensure that infinitesimal increments comprising an SGD step are approximately i.i.d..We also needT≪ 1 to truncate the Kramers–
Moyal expansion to second order and obtain (10). The same conditions also appear in Li et al (2017b): T≪ 1 follows from the bound of
the accuracy of the order-1 weak approximation, which is a constant times the learning rate with batch size assumed constant. That the
probability of the updates varies slowly with θ appears formally there as a Lipschitz and growth condition on the loss.
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6. Other related work

There are many works aimed at understanding generalization in the context of SGD, and the interplay
between SGD noise, curvature, and test performance. In addition to the most relevant works already
discussed: Ahn et al (2012), Mandt et al (2017), Smith and Le (2017), He et al (2019a)take a Bayesian
perspective, He et al (2019b) study asymmetrical valleys, Belkin et al (2019) focus on model capacity, Martin
and Mahoney (2018) apply random matrix theory, Corneanu et al (2020) propose persistent topology
measures, Russo and Zou (2016), Xu and Raginsky (2017) provide information-theoretic bounds, Smith et al
(2021) perform error analysis relative to gradient flow, Lee et al (2017), Khan et al (2019)connect to Gaussian
processes, Wu et al (2019) analyze multiplicative noise, and Zhu et al (2018) study ‘escaping efficiency’. He
et al (2019b) show that SGD is biased toward the flatter side of asymmetrical loss valleys, and such a bias can
improve generalization (offering additional insight into the bias term in (3) which we identify but do not
focus on). Although Mandt et al (2017), Smith and Le (2017), He et al (2019a) make important connections
between generalization and curvature, none provide an explicit expression for test loss in terms of curvature.
Also, their analyses are focused around a single local minimum, rather than comparing different local
minima as we do in this paper. Mandt et al (2017) show that SGD can perform approximate Bayesian
inference by studying a diffusion approximation of SGD and its steady-state, but assuming a single, quadratic
minimum, and constant isotropic noise; assumptions we relax in this paper. He et al (2019a) derive a
PAC-Bayes bound on the generalization gap at a given local minimum, which shows that wider minima have
a lower upper-bound on risk; in contrast, we make a direct approximation showing that wider minima have
lower test loss. They also show that the bound on the risk can increase as log(1/T) for a particular local
minimum, provided the model is large relative to the T and curvature; this is quite different from our
analysis, which involves analyzing the role of T in modulating the SGD steady-state distribution’s preference
for different local minima (and with no assumptions on model size). Smith and Le (2017) connect Bayesian
evidence to curvature at a single local minimum, and empirically suggest evidence as proxy for test loss (by
contrast we connect test loss directly to curvature). They also show that the steady state of a Langevin
equation with constant isotropic noise is proportional to evidence, and by analogy surmise that SGD noise
drives the steady-state toward wider minima; we agree with their intuition, but we allow for non-constant
non-isotropic noise, and use a Gaussian mixture approximation to directly show the preference for wider
minima. Finally, there is a long history of using statistical mechanics techniques to study machine learning,
as we do in this work. For example, Seung et al (1992) prove among many other results that the
generalization gap is positive; however, like many works both before and after, they assume constant and
isotropic noise. Our work motivates updating these earlier studies to the algorithms currently used in
practice, e.g. by using the parameter distribution in (5).

7. Conclusion and discussion

This paper contributes to longstanding debates about whether curvature can predict generalization, and how
and whether SGD minimizes curvature. First, we show that curvature harms test performance through three
mechanisms: the shift-curvature, bias-curvature, and the covariance-curvature; we believe the first two to be
new. We address the concern of Dinh et al (2017) by showing that all three are reparametrization-invariant
although curvature is not. Our main focus is the shift-curvature, or curvature along the line connecting train
and test local minima; although the shift is unknown at training time, the shift-curvature still shows that any
directions with high curvature can potentially harm test performance if they happen to align with the shift.
Second, we derive a new and explicit SGD steady-state distribution showing that SGD optimizes an effective
potential related to but different from train loss, and show that SGD noise mediates a trade-off between the
depth and curvature of this effective potential. Our steady-state solution removes assumptions in earlier
works of constant, isotropic gradient covariance, and treats the overparametrized case with care. Third, we
combine our test performance analysis with the SGD steady-state to show that for small SGD noise,
shift-curvature may be the dominant mechanism. Our experiments validate our approximations of test loss,
show that that shift-curvature is indeed a major contributor to test performance, and show that SGD with
higher noise chooses local minima with lower curvature and lower shift-curvature.

However, many avenues for future work still remain. First of all, we have made substantial, but not
complete, progress in the overparametrized case. One of the main challenges is directions of near-zero
curvature (a concern raised by Draxler et al 2018, Sagun et al 2018 and others). On the positive side,
overparametrization poses no problem for our test performance approximation (3) or shift-curvature
concept (since zero-curvature directions simply have no effect on either local test performance or
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shift-curvature). Furthermore, our SGD results eliminate constant, isotropic assumptions that appear in
earlier works, clarify the challenges in the overparametrized case (such as the rank-deficient gradient
covariance with varying nullspace), and still obtain the steady-state solution (5) of a slightly modified
problem. However, the Gaussian mixture approximation (6), which highlights SGD’s low-curvature
preference, is less clear in the presence of near-zero-curvature directions. Therefore, further work is needed
to clarify how near-zero-curvature directions may affect the unmodified SGD steady-state as well as its
preference for low-curvature regions. (A possibly-useful intuition is that, locally, SGD should force all
near-zero-curvature directions to zero, making them essentially irrelevant; however, there are difficulties in
making this precise, as discussed in appendix D.) Another different limitation of our work is the assumption
that SGD reaches steady state (which enables us to obtain and study en explicit parameter distribution),
which may be too slow to accomplish and difficult to verify in practice. We also assume a constant learning
rate, although practitioners often use learning-rate schedules. To better understand these situations, further
work is needed to study the dynamics of SGD and its impact on generalization, possibly using the diffusion
approximation (10). Other popular learning algorithms, like ADAM and SGD with momentum, could be
studied using the techniques presented here. The diffusion approximation in (10) might yield additional
insights into SGD. For example, the so-called fluctuation-dissipation relations derived in Yaida (2018) from
the exact SGD process in (9) follow more directly from (10) by considering the time derivative of the average
of any function of the parameters, and applying this to the parameters themselves, the parameter
fluctuations, and the train loss (although the relation for train loss is quadratic in T, and deriving it via (10)
only recovers the constant and linear in T terms). Studying the time derivative of other functions of the
parameters may yield additional relations between key quantities. Third, our setup could be a helpful starting
point for investigating model-wise double descent (Belkin et al 2019), by studying how the stationary
distribution (5) and test performance change as model complexity increases (perhaps asymptotically via
random matrix theory). Finally, our results suggest that further work on models and algorithms that
promote low-curvature solutions, such as the algorithm recently proposed in Orvieto et al (2022), may have
great practical value.
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Appendix A. Continuous-time approximation of SGD

A.1. Continuous-time approximation of a discrete-time continuous-space Markov process
Our goal in this section is to construct a continuous-time Markov process that approximates a discrete-time
Markov process. Later we will specialize to SGD, but for now we consider any discrete-time stochastic process
with state θj ∈ Rp (where j indexes time), that evolves according to:

θj+1 = θj +∆j,

where∆j ∈ Rp is an arbitrary function of θj. The SGD update is a special case when∆ is given by (9). (Note
the different notation from the main text: j rather than t is the discrete time index here, so that we can use t
to represent continuous time.) We wish to construct a continuous-time Markov process θ̃(t) ∈ Rp, with
probability distribution ρ(θ, t) = P(θ̃(t) = θ), that approximates θj in the following sense. We assume the

discrete-time updates of θj occur every τ > 0 continuous-time units of θ̃, where τ is arbitrary. We want θ̃(t)
such that if ρ(θ,( j− 1)τ) = P(θj−1 = θ) then

ρ(θ, jτ)≡ P(θ̃( jτ) = θ)≈ P(θj = θ). (14)
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We will construct θ̃ via its Kramers–Moyal expansion, which is a differential equation that describes the
evolution of the probability distribution of θ̃. Truncating the Kramers–Moyal expansion to second order
yields a Fokker–Planck approximation of the discrete-time stochastic process (which we will later specialize
to the case of SGD). The Kramers–Moyal equation depends on the moments of the infinitesimal increments
of the continuous process (i.e. θ̃(t ′)− θ̃(t), for t ′ − t infinitesimally small), so our basic strategy is to
construct these moments in such a way that the continuous-time update over time interval τ matches the
discrete-time update (we will find that defining the continuous moments proportional to the discrete
cumulants achieves this).

We state the final results here, and justify them in the next sections. First we need to introduce some
notation. We adopt multi-index notation to streamline the exposition, so for example if x ∈ Rp then
xγ ≡ xγ0

0 . . .x
γp
p , where γ ∈ Np. Dropping the time index j from the discrete-time update∆ for now, we

denote the moments and cumulants of∆ (which play an important role) bymγ(θ) = E[∆γ ] and
κγ(θ) = logmγ(θ), respectively, with γ ∈ Np (using multi-index notation for∆γ). Next, we define the
increment of the continuous-time process θ̃ for any two times t ′ ⩾ t as the random variable
∆̃(dt)≡ ∆̃(t ′ − t) = θ̃(t ′)− θ̃(t). (Note that the Markov property implies that the increment only depends
on the time difference dt= t ′ − t when the value of θ̃(t) is known.)

With this notation, we can present our main results. In order to specify the process θ̃ via the
Kramers–Moyal expansion, we actually only need to define the probability distribution of ∆̃(dt) when
t ′ − t= dt is infinitesimally small. We will show that we can (approximately) match the continuous-time
update over time interval τ to the discrete-time update by defining the moments of ∆̃(dt) as:

E[∆̃(dt)γ ] =
κγ (θ(t))

τ
dt, (15)

with γ ∈ Np
0 (where N

p
0 denotes p-dimensional non-negative integers). That is, the moments of the

small-time increments of θ̃(t) are directly proportional to the cumulants of the discrete time process θj it
seeks to approximate. (We will find that resulting process will approximate the discrete one well when
κγ (θ(t)) does not change much in value within each τ time increment, so that the small time increments
during that time period are approximately independent and identically distributed.)

Then we will show that (setting τ = 1 for simplicity now) the following Kramers–Moyal (KM) expansion
describes the evolution of the distribution of θ̃:

∂tρ(θ, t) =
∑
γ∈Np

1

(−1)γ

γ!
∂γ
θ {κγ(θ)ρ(θ, t)} , (16)

where ∂γ
θ f(θ) = ∂γ0

θ0
. . .∂

γp−1

θp−1
f(θ) for an arbitrary function f(θ) (as is standard in multi-index notation), and

Np
1 denotes the p-dimensional positive integers. The KM expansion can be truncated to second order to

obtain a Fokker–Planck approximation of the discrete-time stochastic process.

A.1.1. Moments of the continuous time process in terms of cumulants of the discrete time process
Our goal in this section is to justify equation (15). Let dt= τ/K for some positive integer K, and define
tj = jdt for j= 0, . . . ,K, and dtj = tj+1 − tj = dt. Recall that ∆̃(dtj) is the small time increment of our

continuous process between tj−1 and tj, so that ∆̃(τ,K) =
∑K

j=1 ∆̃(dtj) is the total change in our process over
τ time units when breaking the temporal interval into K equal-sized increments. We want to determine the
moments of ∆̃(dtj) so that E[∆̃(τ)γ ] = limK→∞E[∆̃(τ,K)γ ]matches the corresponding moment of the
discrete SGD step E[∆(θ)]. Assuming the increments ∆̃(dtj) are approximately i.i.d. within each time interval
of length τ, we can approximate ∆̃(τ,K) as a sum of i.i.d. random variables. With simplified notation, we
model the problem as follows. Consider a sum SK =

∑K
i=1Xi, where Xi are i.i.d. random variables (each in

Rp). Suppose that we know the ‘desired’ limiting random variable S, along with its cumulants. We want to
find the moments of the i.i.d. random variables X so that limK→∞ SK = S. We will use here the following
definitions. LetmX

γ and κX
γ denote the moments and cumulants of an arbitrary random variable X. Let

MX(t) = E[et
TX] be the moment generating function of X, and CX(t) = logMX(t) the cumulant generating

function, so thatmX
γ = ∂γMX(t)|t=0 and κX

γ = ∂γCX(t)|t=0. We will also use the identity:

ex = lim
K→∞

(
1+

x

K

)K
. (17)

To restate the problem more precisely in this notation, we want to findmX
γ such that limK→∞CSK(t) = CS(t).

Using the i.i.d. assumption and identity 17, we obtain:
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MSK(t) = E[etSK ] =
K∏
i=1

E[etXi ] = (MX)
K, so

lim
K→∞

MSK(t) = lim
K→∞

(MX)
K = lim

K→∞
(1+ ξ/K)K, where ξ satisfiesMX ≡ 1+ ξ/K

= eξ,

so limK→∞CSK(t) = ξ, and since we want limK→∞CSK(t) = CS(t), we equate ξ = CS(t) to find that
MX(t) = 1+CS(t)/K, so:

mX
γ = ∂γMX(t)|t=0 =

1

K
∂γCS(t)|t=0 =

1

K
κS
γ .

In order to achieve the desired limit, we then need the moments of the i.i.d. variables X to be equal to 1/K
times the cumulants of the desired limiting distribution S. To explicitly connect this result back to the
continuous approximation of SGD, we associate Xi = ∆̃(dti), Sj = ∆̃(τ,K), S=∆(θ), and dt= τ/K. Then
mX

γ = 1
Kκ

S
γ translates to equation (15), as we desired. Note that the i.i.d. assumption on the increments

∆̃(dtj) is an approximation that introduces error into (15). In the approximation, we assume that
P(∆̃(dtj))≈ P(∆̃(dt0)) for tj = jdt, j= 1, . . . ,K, dt= τ/K. If τ is small and ∆̃ varies slowly, then this
condition will approximately hold.

A.1.2. The continuous Kramers–Moyal expansion
Our goal in this section is to obtain the Kramers–Moyal expansion (16). The approach is essentially to
Taylor-expand the Chapman–Kolmogorov equation, take the limit as dt→ 0, and use result (15) for the
moments of the infinitesimal increments. The Markov assumption for θ̃(t) implies the continuous-time
Chapman Kolmogorov equation:

ρ(θ, t ′) =

ˆ
ρ(θ−∆, t)W(∆, t ′|θ−∆, t)d∆, (18)

whereW(∆, t ′|θ, t) = P
(
θ̃(t ′) = θ+∆|θ̃(t) = θ

)
is the transition probability function, and t ′ ⩾ t.

Substituting t ′ = t+ dt, and using our definition of ∆̃, we obtain:

ρ(θ, t+ dt) =

ˆ
ρ(θ−∆, t)W(∆, t+ dt|θ−∆, t)d∆,

whereW(∆, t+ dt|θ, t) = P
(
∆̃(dt) = ∆|θ̃(t) = θ

)
. (19)

Next we Taylor-expand the left-hand-side of (19) in∆ (recalling that in multi-index notation, the infinite

Taylor expansion of f(θ) is f(θ+ h) =
∑

γ∈Np
0

∂γ
θ f(θ)
γ! hγ):

ρ(θ, t+ dt) =

ˆ ∑
γ∈Np

0

(−∆)γ

γ!
∂γ
θ (ρ(θ, t)W(∆, t+ dt|θ, t))d∆

=
∑
γ∈Np

0

(−1)γ

γ!
∂γ
θ

(
ρ(θ, t)

ˆ
∆γW(∆, t+ dt|θ, t)d∆

)

=
∑
γ∈Np

0

(−1)γ

γ!
∂γ
θ

(
ρ(θ, t)E[∆̃(dt)γ ]

)
= ρ(θ, t)+

∑
γ∈Np

1

(−1)γ

γ!
∂γ
θ

(
ρ(θ, t)E[∆̃(dt)γ ]

)
Finally we take the limit as dt→ 0 and use (15):

=⇒ ∂tρ(θ, t) = lim
dt→0

ρ(θ+∆, t+ dt)− ρ(θ+∆, t)

dt

=
∑
γ∈Np

1

(−1)γ

γ!
∂γ
θ

(
ρ(θ, t) lim

dt→0

E[∆̃(dt)γ ]

dt

)

=
∑
γ∈Np

1

(−1)γ

τγ!
∂γ
θ {κγ(θ)ρ(θ, t)} ,

The result above is equation (16).
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A.1.3. The continuous process approximates the discrete process
Now that we have defined θ̃ via its Kramers–Moyal expansion (16), we need to check that it approximates
SGD in the sense of equation (14) (we need to show that ρ(θ, jτ)≈ P(θj = θ)). We seek to understand the
approximation error in terms of the difference between m̃γ(θ) andmγ(θ). The error arises because m̃γ(θ)
relies on the approximation that small-time increments of θ̃(t) are i.i.d.. We assume that ρ(θ, t) = P(θj = θ),

and then study ρ(θ, t+ τ), starting from the Chapman–Kolmogorov for θ̃(t) (18):

ρ(θ, t+ τ) =

ˆ
ρ(θ−∆, t)W(∆, t+ τ |θ−∆, t)d∆

=

ˆ
P(θj = θ−∆)

(
P(∆j =∆|θj = θ−∆)

+
{
W(∆, t+ τ |θ−∆, t)− P(∆j =∆|θj = θ−∆)

})
d∆

= P(θj+1 = θ)+

ˆ
P(θj = θ−∆)

{
W(∆, t+ τ |θ−∆, t)− P(∆j =∆|θj = θ−∆)

}
d∆

= P(θj+1 = θ)+

ˆ
ρ(θ−∆, t)W(∆, t+ τ |θ−∆, t)d∆

−
ˆ

P(θj = θ−∆)P(∆j =∆|θj = θ−∆)d∆. (20)

The two integrals above can be Taylor-expanded in the same way as in our derivation of the Kramers–Moyal
expansion to yield:

e(θ) = ρ(θ, t+ τ)− P(θj+1 = θ) =
∑
γ∈Np

0

(−1)γ

γ!
∂γ
θ

{
ρ(θ, t)E[∆̃(τ)γ ]− P(θj = θ)E[∆γ

j ]
}

=
∑
γ∈Np

0

(−1)γ

γ!
∂γ
θ {ρ(θ, t)(m̃γ(θ)−mγ(θ))}=

∑
γ∈Np

0

(−1)γ

γ!
∂γ
θ {ρ(θ, t)eγ(θ)} , (21)

where we define the error in the γ-th moment to be eγ(θ) = m̃γ(θ)−mγ(θ). So, i.e.

ˆ
|e(θ)|dθ ⩽

∑
γ∈Np

1

1

γ!
|∂γ

θ {ρ(θ, t)eγ(θ)}|. (22)

Recall that the errors eγ(θ) are due to the i.i.d. assumption on the infinitesimal increments in the continuous
approximation; that is, the assumption that the distribution of ∆̃ is approximately constant in an interval of
length τ . Therefore, if ∆̃ varies slowly relatively to the timescale τ , the approximation will be close.

A.2. Continuous-time diffusion approximation of SGD
We now choose∆ to be as in equation (9) to study SGD. Our goal here is to approximate SGD with a
continuous-time process. Because cumulants of independent random variables are additive, and letting
ωγ(θ) be the γth cumulant of ∂θU(xi,θ) (i.e. the gradient evaluated at a single sample of x), we find that the
cumulant for the minibatch of size B is:

κω(θ) = (−T)|γ|Bωγ(θ).

So the KM expansion (16) of the continuous-time SGD approximation then becomes:

∂tρ(θ, t) = B
∑
γ∈Np

1

T|γ|

γ!
∂γ
θ (ωγ(θ)ρ(θ, t)) . (23)

Clearly, then, as T gets small, fewer terms in the expansion matter. The first two cumulants for SGD are the
mean and variance of the gradients of U over the training distribution, respectively:

ω1(θ) = Ex∼tr[∂θU(x,θ)], ω2(θ) = Covx∼tr[∂θU(x,θ)].

When T is small enough, or when the cumulants ωγ(θ) are small for |γ|> 2 (i.e. when ∂θU(xi,θ) is
Gaussian, cumulants higher than 2 are zero), we can approximate the KM expansion of (23) by the

14
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Fokker–Planck (FP) equation that retains only the first two terms in the expansion. Switching to the notation
of the main text:

ω1(θ) = ∂θU
tr(θ), ω2(θ) = D tr(θ),

(so D tr(θ) = ω2(θ) ∈Rp×p is now the empirical covariance matrix of the gradients in the training, or
diffusionmatrix, and U tr(θ) is the train loss), we obtain:

∂tρ(θ, t) := λ

p∑
i=1

∂θi {∂θiU tr(θ)ρ(θ, t)}+ 1

2
λT

p∑
i,j=1

∂2
θi,θj

{
D tr

ij (θ)ρ(θ, t)
}
.

Rewriting using the divergence operator ∂θ · υ =
∑p

i=1 ∂θiυ(θ), we obtain the Fokker–Planck SGD equation
stated in the main text (10).

A.2.1. When is the SGD diffusion approximation accurate?
The FP approximation of SGD follows from two approximations. First, we need the increments ∆̃(dtj)
within a time interval of τ (corresponding to a single SGD update) to be approximately i.i.d. so that the KM
expansion (16) is an accurate approximation of the discrete time SGD process. This condition holds when
the product of the expected change in θ during a single update and of the derivative w.r.t. θ of the density of
any small increment is small7. The second condition required for the FP equation to hold is that terms of
order |γ|> 2 in the KM expansion must be small (relative to the |γ|⩽ 2 terms), so that the truncation that
yields the FP equation is appropriate. The latter is satisfied when T is small, and/or the third and higher
cumulants of the gradients (i.e. ωγ(θ) for |γ|> 2) are small. Finally, our steady-state analysis in the next
section relies on the distribution having actually reached steady-state, and the number of SGD steps required
to reach steady-state scales inversely with temperature, so in practice with very small temperature the
steady-state could be difficult to attain. Therefore, practically speaking, we expect the SGD diffusion
approximation to start to break down for large T (i.e. large ratio of LR to batch size), or for fixed small T at
extreme (very small or very large) learning rates or batch sizes. A large learning rate makes the expected
change in θ in a single update large, potentially violating the i.i.d. assumption of the small time increments,
while a large batch size at small fixed temperature also implies a large learning rate, and has the same effect.
We similarly expect the mean change in an SGD update to be large at the beginning of an SGD run, and our
FP approximation to not be valid during some initial transient period. Lastly, the i.i.d. assumption can be
violated when the derivative of the mean and covariance of a single SGD update with respect to θ is large.

Appendix B. Steady state of the SGD diffusion approximation

B.1. Steady state distribution
Our goal in this section is to show that (5) is the steady-state solution of our SGD diffusion
approximation (10), and clarify the assumptions under which this is true. Our solution of the Fokker–Planck
equation is identical to one presented in Gardiner (2009) section 6.2. We consider the underparametrized
case (section 5 extends to the overparametrized case), so that D tr(θ) is invertible and the SGD drift term
spans Rp even without regularization. We assume the process is ergodic, and therefore has a single
steady-state distribution ρ(θ). To find it, we first set (10) to zero and obtain the steady-state condition

7 To see this, consider the joint probability of two infinitesimal increments within the same time period of length τ,

i.e.P
(
∆̃(dt0) = x0,∆̃(dtj) = xj

)
= P

(
∆̃(dt0) = x0

)
P
(
∆̃(dtj) = xj|∆̃(dt0) = x0

)
, where j> 0, and assume θ = θ0 at the beginning

of the dt0 interval. We can write the latter probability as:

P
(
∆̃(dtj) = xj|∆̃(dt0) = x0

)
= EW

[
P
(
∆̃(dtj) = xj|θj−1 = θ0 +W

)]
, withW= x0 +∆̃(t1, tk−1),

is a random variable describing the increment since the start of the τ time interval until the beginning of the kth infinitesimal increment
tk−1. Letting µw denote the mean ofW, we can Taylor expand to first order aroundW = 0 to find that:

EW
[
P
(
∆̃(dtj) = xj|θj−1 = θ0 +W

)]
≈ P

(
∆̃(dtj) = xj|θj−1 = θ0

)
+µ′

w∂θj−1
P
(
∆̃(dtj) = xj|θj−1 = θ0

)
,

plus higher order terms. When the second term above is small compared to the first, we can finally write that

P
(
∆̃(dt0) = x0,∆̃(dtj) = xj

)
= P

(
∆̃(dt0) = x0

)
P
(
∆̃(dtj) = xj

)
, and since |dtj|= |dt0|= dt, and these increments only depend on

these magnitudes and on θ at the beginning of each increment (both equal to θ0 in our expansion above), then the i.i.d. assumption

is satisfied. Conversely, when µw and/or ∂θP
(
∆̃(dtj) = xj|θ = θ0

)
are large we expect the increments not to be i.i.d. and the KM

expansion to not approximate the discrete process well.
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∂θ · J(θ) = 0. A distribution ρ(θ) where J is constant, if it can be found, satisfies the above. We also now
require that ρ(θ)→ 0 and ∂θρ(θ)→ 0 as θ →±∞, so we attempt to find a solution that satisfies J(θ) = 0
everywhere, and where J(θ) = ∂θU tr(θ)ρ(θ)+ T

2 ∂θ · (D
tr(θ)ρ(θ)) . Some algebra then yields the steady-state

solution:

∂θρ(θ, t)

ρ(θ, t)
=− 2

T
D tr(θ)−1

(
∂θU

tr(θ)+
T

2
∂θ ·D tr(θ)

)
:=− 2

T
V(θ), so

ˆ θ

∂θ logρ(ξ) · dξ =− 2

T

ˆ θ

V(ξ) · dξ :=− 2

T
υ(θ,T),which can be re-arranged as

ρ(θ)∝ e−
2
Tυ(θ,T),with, υ(θ,T) =

ˆ θ

D tr(ξ)−1

(
∂ξU

tr(ξ)+
T

2
∂θ ·D tr(ξ)

)
· dξ. (24)

This solution relies on a line integral to define υ(θ,T) that is path independent, and therefore needs the
following assumption:

Assumption 1. V(θ) = D tr(θ)−1
(
∂θU tr(θ)+ T

2 ∂θ ·D
tr(θ)

)
is a gradient; that is the curl of V vanishes.

In other words, since V is defined as−∂θ logρ(θ), the first equation above can only be satisfied if V is a
gradient; a necessary and sufficient condition for this is the vanishing of the curl or so-called potential
conditions ∂θjVi = ∂θiVj where Vi denotes the ith entry of V . When these conditions hold, the Hessian of
logρ(θ) is symmetric, as it should be. So we assume that ∂θU tr(θ),D tr(θ) and are such that the assumption
above holds.

B.1.1. Examples where assumption 1 holds
Assumption 1 clearly holds in the case where D tr is constant and isotropic (i.e. D tr = c−1I for positive
constant c), since then V(θ) = c∂θU tr(θ), which is the gradient of cU tr. But it can also hold for nonconstant,
anisotropic D tr as well, as the following examples confirm.

(a) Isotropic but non-constant noise: consider D tr(θ) = U tr(θ)I, so that ∂θ ·D tr(θ) = ∂θU tr(θ). Then
V(θ) = (1+ T

2 )∂θ logU(θ) is a gradient, and we have υ(θ,T) = (1+ T
2 ) log(U(θ)), and

ρ(θ)∝ U(θ)−(1+ 2
T ). This argument works more generally: let f : R→ R be any smooth scalar function,

and let D tr(θ) = 1
f ′(U(θ)) I where f

′(U(θ)) = ∂U(θ)f(U(θ)) (the first example is a special case with

f= logU). Then the chain rule implies that (D tr(θ))−1∂θU tr(θ) = ∂θf(U(θ)). Similarly,
(D tr(θ))−1(∂θ ·D tr(θ)) =−∂θ log f ′(U(θ)), so V = ∂θf(U(θ))− T

2 ∂θ log f
′(U(θ)),

υ(θ,T) = f(U(θ))− T
2 log f

′(U(θ)), and ρ(θ)∝ e−
2
T f(U(θ))+log f ′(U(θ)).

(b) Anisotropic but constant noise: Consider D tr(θ) = ∂2
θU

tr(θ)−1 and suppose that U tr(θ) is quadratic, so
that D tr is constant and ∂θ ·D tr = 0. Then ∂θ

(
1
2∂θU

tr(θ)T∂θU tr(θ)
)
= ∂2

θU
tr(θ)∂θU tr(θ)

= (D tr)−1∂θU tr(θ) = V(θ), which shows that V is a gradient. In this case, υ(θ) = 1
2∂θU

tr(θ)T∂θU tr(θ).
(c) Non-constant and anisotropic noise: Let U tr(θ) =

∑
iUi(θi) and suppose that D tr(θ) = diag{di(θi)},

where di(θi) =
1

f ′(Ui(θi)
for an arbitrary smooth scalar function f. Note that both U i and di are functions

only of θi. Then
(
(D tr)−1∂θU tr

)
i
= f ′(Ui)∂θiUi = ∂θi f(Ui). Also,

(
(D tr)−1∂θ ·D tr

)
i
=

∂θi
di

di(θi)

= ∂θi logdi(θi) =−∂θi log f
′(Ui(θi). So Vi = ∂θi f(Ui)− T

2 ∂θi log f
′(Ui(θi). Defining

υ(θ) =
∑

i f(Ui(θi))− T
2

∑
i log f

′(Ui(θi)), we get ∂θυ(θ) = V(θ). This example results in independent
dynamics for each parameter, which is unlikely to hold for realistic models, but it does show that
assumption 1 holds for more models with just those with constant isotropic noise. (As an additional
example, note that in example 2 where D tr(θ) = ∂2

θU
tr(θ)−1, we obtain the same V if we remove

quadratic U tr/constant D tr assumption but take the limit as T→ 0 to drop the ∂θ ·D tr term.)

Further work is necessary to characterize all the situations for which SGD satisfies assumption 1.
Chaudhari and Soatto (2018) state in effect that J ̸= 0 whenever D tr is nonconstant and/or anisotropic, so the
examples above are counterexamples since they all satisfy J= 0 (a consequence of assumption 1).

B.2. Gaussian mixture approximation
We further approximate the steady-state distribution of SGD by a mixture of Gaussians, i.e. as a distribution
of the form ρ(θ) =

∑
kwkN (µk,Σk) . So we need to find the means µk, covariances Σk, and weights wk. In

our derivation, we assume the underparametrized case, where for example the gradient covariance and
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Hessian are full rank. However, the arguments are similar in the overparametrized case using the modified
SGD (13). From (5), the first two derivatives of υ are:

∂θυ(θ,T) = D tr(θ)−1

(
∂θU

tr(θ)+
T

2
∂θ ·D tr(θ)

)
∂2
θυ(θ,T) = ∂θ(D

tr(θ)−1)

(
∂θU

tr(θ)+
T

2
∂θ ·D tr(θ)

)
+D tr(θ)−1

(
∂2
θU

tr(θ)+
T

2
∂T
θ (∂θ ·D tr(θ))

)
.

If µ is any local extremum of υ, then:

0= ∂θυ(µ,T) = D tr(µ)−1

(
∂θU

tr(µ)+
T

2
∂θ ·D tr(µ)

)
∂2
θυ(µ,T) = D tr(µ)−1

(
∂2
θU

tr(µ)+
T

2
∂T
θ (∂θ ·D tr(µ))

)
,

where the first term of ∂2
θυ(θ,T) drops out since D

tr is positive definite, so ∂θυ(µ,T) = 0 =⇒ ∂θU tr(µ)+
T
2 ∂θ ·D

tr(µ) = 0). Now, let θ tr
k be a local minimum of U tr, and µk a nearby local minimum of υ. To find the

approximate bias bk = θ tr
k −µk, we can expand the 0= ∂θυ(µ,T) equation above:

0=D tr(µk)
−1

(
∂θU

tr(µk)+
T

2
∂θ ·D tr(µk)

)
≈ D tr(µk)

−1

(
−C tr

k bk +
T

2
∂θ ·D tr(µk)

)
,

since ∂θU tr(µk)≈ ∂θU tr(θ tr
k )+ ∂2

θU
tr(θ tr

k )(µk − θ tr
k ) =−Ckbk. So,

bk ≈
T

2
(C tr

k )
−1(∂θ ·Dθ(µk)) = O(T).

For the covariance, we can make a Laplace approximation to ρ(θ) centered at µk:

υ(θ,T)≈ υ(µk,T)+
1

2
∂2
θυ(µk,T), so

ρ(θ)∝ e−
2
Tυ(θ,T) ≈ e−

2
Tυ(µk,T)e−

1
T∂

2
θυ(µk,T)

∝
√
|Σk|N (µk,Σk),with Σk =

T

2
(∂2

θυ(µk,T))
−1. (25)

Therefore, Σk is also O(T) (and inversely proportional to the curvature of the effective potential). The
Laplace approximation also allows us to find the weights. We use the eigendecomposition of ∂2

θυ(µk,T) to
approximate the integral of ρ(θ) over the basin Bk:

∂2
θυ(µk,T) =MkΛkM

T
K (∂2

θυ(µk,T) is positive definite so λi > 0 for all i)

q=MT
k (θ−µk) =⇒ e−

1
T (θ−µk)

T∂2
θυ(µk,T)(θ−µk) = e−

1
T q

TΛkq

ˆ ∞

−∞
e−

1
T q

TΛkqdq=
n∏

i=1

ˆ ∞

−∞
e−

1
Tλiq

2
i dqi =

n∏
i=1

√
π/λi =

√
πn|Λk|−1 =

√
πn|∂2

θυ(µk,T)|−1

=⇒ wk =

ˆ
Bk

ρ(θ)dθ ≈ e−
2
Tυ(µk)

ˆ
Bk

e−
1
T (θ−µk)

T∂2
θυ(µk)(θ−µk)dθ

= e−
2
Tυ(µk)

ˆ ∞

−∞
e−

1
T q

TΛkqdq= e−
2
Tυ(µk)

√
πn|∂2

θυ(µk,T)|−1

∝ e−
2
Tυ(µk) · |∂2

θυ(µk,T)|−
1
2 .

This is equation (6) in the main text. It tells us that the basin weights depend on the depth and width of the
basin in terms of the effective potential.
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Appendix C. Reparametrization invariance

C.1. Expected test loss under any parameter distribution is reparametrization-invariant
Let U(θ) denote any loss function (for example, the test loss, or the train loss with or without regularization),
and let ρ(θ) be any distribution over the model parameters. Consider a reparametrization y= r−1(θ) of θ
(with θ,y ∈ Rp), where r : Rp → Rp is invertible. For an arbitrary function f(θ), we define the reparametrized
version by f r(y) = f(r(y)) = f(θ). With this notation, we want to show that Eθ∼ρ[U(θ)] is
reparametrization-invariant.

Let ρY(y) denote the p.d.f. of y= r−1(θ), and note that (using a general formula for invertible functions
of random variables) θ = r(y) =⇒ ρY(y) = ρ(θ)

∣∣ dr
dy

∣∣. Then:
Eθ∼ρ[U(θ)] =

ˆ ∞

−∞
U(θ)ρ(θ)dθ

=

ˆ ∞

−∞
U(r(y))ρ(r(y))

∣∣∣∣ drdy
∣∣∣∣dy, (integral change of variable y= r−1(θ))

=

ˆ ∞

−∞
Ur(y)ρY(y)dy, using ρY(y) = ρ(θ)

∣∣∣∣ drdy
∣∣∣∣

= Ey∼ρY [U
r(y)].

Therefore Eθ∼ρ[U(θ)] is reparametrization-invariant.
In particular, this means that Eθ∼ρ[U test(θ)] is reparametrization-invariant, where U test(θ) is the test loss

and ρ is the SGD steady-state distribution.

C.2. Taylor approximation is reparametrization-invariant
Using equations (3) and (4), we obtain the following approximation for the expected test loss:

Eθ∼ρ[U
test(θ)]≈

∑
k

wk(U
test
k +

1

2
(sk + bk)

TC test
k (sk + bk)+

1

2
Tr[ΣkC

test
k ]). (26)

Our goal in this section is to show that this expression is approximately reparametrization-invariant for
any distribution ρ(θ) =

∑
kwkN (µk,Σk) such that bk and sk are both small (which holds for SGD because

we are already assuming that sk is small, and the SGD steady-state distribution satisfies bk = O(T)≪ 1). As
before, let r : Rp → Rp be an invertible reparametrization. Defining y testk = r−1(θ test

k ), we need to show that
the terms appearing on the right-hand-side of (26) are (approximately) reparametrization-invariant.

We can show that the weights wk are reparametrization-invariant using a similar argument to
Eθ∼ρ[U(θ)]:

wk =

ˆ
Bk

ρ(θ)dθ =

ˆ
r−1(Bk)

ρ(r(y))

∣∣∣∣ drdy
∣∣∣∣dy= ˆ

By
k

ρY(y)dy= wr
k.

Now we want to show that the remaining terms in left hand side of (26) are approximately
reparametrization-invariant. First, since the test loss is a scalar function, it is equal to its reparametrization,
i.e.:

Utest,r
k (y testk ) = U test(r(y testk ))≡ U test(θ test

k ) = U test
k .

So wkU test
k is invariant. To help with the other terms, note that the first two derivatives of any scalar function

f : Rn → R are:

∂yf(r(y)) = ∂yr(y)
T∂θf(θ),

∂2
y f(r(y)) = ∂yr(y)

T∂2
θf(θ)∂yr(y), if θ is a local extremum of f,

where ∂yr(y) = [∂θi∂yj
]i,j ∈ Rn×n, ∂yf(r(y)) ∈ Rn, ∂2

y f(r(y)) ∈ Rn×n, ∂θf ∈ Rn, ∂2
θf ∈ Rn×n. We use these to find:
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Ctest,r
k = ∂2

yU
test(r(y testk ))

= ∂yr(y
test
k )T∂2

θU
test(θ test

k )∂yr(y
test
k ) since ∂θU

test(θ test
k ) = 0

= ∂yr(y
test
k )TC test

k ∂yr(y
test
k )

srk = y trk − y testk

≈ ∂yr(y
test
k )−1(θ̃ test

k − θ test
k )+O((y trk − y testk )2) since∆θ ≈ (∂yr)∆y+O(∆y2)

= ∂yr(y
test
k )−1sk +O(s2k)

Σr
k = ∂yr(y

test
k )−1Σk∂yr(y

test
k )−T since ρY(y) = dyr(y)ρ(θ)

brk = r−1(µk)− y trk
≈ ∂yr(y

test
k )−1bk,

Tr
(
Ctest,r
k Σr

k

)
= Tr

(
∂yr(y

test
k )TC test

k ∂yr(y
test
k )∂yr(y

test
k )−1Σ−1

k ∂yr(y
test
k )−T

)
= Tr

(
C test
k Σ−1

k

)
.

sr
T

k C
test,r
k srk = sTk∂yr(y)

−T∂yr(y
test
k )TC test

k ∂yr(y
test
k )∂yr(y)

−1sk +O(s2k)

= sTkC
test
k sk +O(s2k)

brTk Ctest,r
k brk ≈ bTkC

test
k bk, br

T

k C
test,r
k srk ≈ bTkC

test
k sk similarly. (27)

Since we have seen that each of the terms appearing in (26) (i.e. wk, U test
k , etc) are all

reparametrization-invariant, we conclude the whole expression for the expected test loss is
reparametrization-invariant.

Appendix D. The overparametrized case

D.1. Some intuition
One of the important properties of the overparametrized case (more model parameters than training
samples) is that the loss landscape necessarily has zero- or near-zero-curvature directions, since in the
absence of ℓ2-regularization there can be no more curved directions than there are training samples, and
ℓ2-regularization adds a small amount of curvature in all directions. A question, then, is how zero-curvature
directions affect the conclusions in this paper. As a rough intuition, we argue that zero-curvature directions
may have little impact on test performance, and be deterministically forced to zero by SGD at steady state in
the presence of any ℓ2 regularization, making them essentially irrelevant in the context of our analysis.
Consider a simplified case where the set of nonzero-curvature directions is constant (rather than depending
on θ, as it does in general) and the same for train and test. Suppose that the train loss has a small amount of
ℓ2-regularization (as is typical in practice) but the test loss does not. In this case, the train local minima are
strict (single points) but the the test local minima are subspaces that include all the zero-curvature directions.
The Taylor approximation (3) is identical for any point θ test

k in the test local minimum space spaces; that is,
only the nonzero-curvature directions impact test performance or its shift-curvature approximation.
Furthermore, SGD converges to a solution where the parameters in the zero-curvature directions are all equal
to zero (as there is no diffusion in these directions and the drift term is−αθ, where α> 0 is the ℓ2 parameter).
Therefore, the zero-curvature directions are essentially irrelevant in the context of generalization and SGD.

Of course, the situation becomes more complex when we allow the nonzero-curvature directions to vary
with θ and differ for train and test. Since (3) is a local approximation, the argument above still holds, and we
find that the local zero-curvature directions do not affect the test performance near a train local minimum.
However, (5) is more complicated, because it depends on the global landscape where the set of
nonzero-curvature directions can vary (also, the gradient variance only has rank N − 1, causing technical
difficulties), which is why we require the problem modifications discussed in section 5. In addition to
ℓ2-regularization on the train loss, we also need to add a small amount (β) of noise to the diffusion matrix to
make it invertible, which changes the problem so that SGD does not force the zero-curvature directions to
zero as in the discussion above, but instead converges to an infinite-support distribution, with the (local)
zero-curvature directions represented locally by Gaussians with mean zero and variance Tβ/α.

D.2. Nonzero-curvature subspaces
Our goal is to derive the results in section 5, but we first take a detour to describe in detail why and how
overparametrization changes the problem. In the underparametrized case (more data samples N than model
parameters p), the per-sample gradients ∂θU(xi,θ) typically span all of Rp, while in overparametrized case
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(p>N), the per-sample gradients span a subspace of dimension no larger than N. To work out the many
consequences of this, we introduce some more compact notation. We consider a typical loss function
U(θ) = 1

N

∑N
i=1U(xi,θ). The test loss and the train loss without ℓ2-regularization in (1) both have this form.

Let gi(θ) = ∂θU(xi,θ) ∈ Rp be a shorthand for the N per-sample gradients, and G(θ) = span{gi(θ)}i=1,...,N .

Thus G(θ) is the nonzero-curvature subspace at θ. Let G⊥ = Rp\Gtr denote the complement subspace
orthogonal to G. To simplify exposition, we assume that all per-sample gradients are linearly independent, so
that the dimension of G is min(p,N). Thus, if N⩾ p, then G = Rp and G⊥ is empty; but if p>N, then G has
dimension N and G⊥ has dimension p−N. Because the gradients are generally functions of θ, the spaces G
and G⊥ can change with θ.

As shown at the end of this section, the average gradient is in G, the range of the gradient covariance is
contained in G but has one less dimension, and the range of the Hessian is equal to G provided G is constant
in a neighborhood around θ. In particular, the gradient covariance and Hessian are both rank-deficient
(hence non-invertible). All of these facts apply directly to the test loss, and to the part of the train loss
excluding ℓ2-regularization. Adding ℓ2-regularization to the train loss changes the results as follows. The
average gradient is ∂θU tr(θ) = (1/N)

∑
gi(θ)+αθ, so that ∂θU tr(θ) is no longer constrained to lie in G tr

and can be anywhere in Rp. The gradient covariance is unchanged since αθ is not random; in particular, it is
still rank-deficient. The Hessian ∂2

θU
tr(θ) becomes full-rank, because regularization adds α to every

eigenvalue of the Hessian. These facts have important implications for the Taylor approximation (3) and the
SGD steady-state (5) in the overparametrized case. First, recalling that a local minimum is strict when the
Hessian is full-rank, we see that test local minima are non-strict, while train local minima are strict only if we
add ℓ2-regularization. Second, D tr(θ) is non-invertible, invalidating (5), but we can resolve this by adding
isotropic Gaussian noise to the SGD updates to make D tr(θ) full rank, together with ℓ2-regularization to
control the part of the drift term in G⊥

tr .

D.2.1. Average gradient, covariance, and Hessian are in G
The average gradient is g(θ) = 1

N

∑N
i=1 gi(θ), which clearly lies in the span of the per-sample gradients:

g(θ) ∈ G(θ). The gradient covariance is Cov(g(θ)) = 1
N

∑N
i=1 gig

T
i − ggT ∈ Rp×p.We will show shortly that

the range of Cov(g) is also contained in G, but it is not equal to it, since G has one more dimension. This
means that Cov(g) has a nonempty nullspace containing G⊥ and an extra direction, hence Cov(g) is not
invertible. To see that range(Cov(g))⊂ G, note that Cov(g) (like any p× p sample covariance constructed
from N data points) has rank min(p,N− 1) (since it can be written as a sum of N rank-1 matrices,∑

(gi − g)(gi − g)T, but span{gi − g} only has dimension N − 1 when p>N). Therefore, when p>N, the
nullspace of Cov(g) has dimension p−N+ 1. It is also clear that the nullspace of Cov(g) contains G⊥ (to see
this, consider any vector w ∈ G⊥, i.e. such that wTgi = 0 for all i ∈ {1, . . . ,N}; it then follows from the
definition of Cov(g) that Cov(g)w= 0). Therefore, the nullspace of Cov(g) contains all of G⊥ (which has
dimension p−N), plus one extra direction. Equivalently, the range of Cov(g) is contained in G, but G has
one extra direction. Finally, the range of the Hessian ∂2

θU(θ) is equal to G(θ) if G(θ) is constant in some open
neighborhood of θ. To see this, note that for any w ∈ G⊥(θ̂), we have that ∂2

θU(θ̂)w= ∂θ(g(θ)T)|θ̂
w= ∂θ(g(θ)Tw)|θ̂ = 0, since w ∈ G⊥(θ) =⇒ g(θ)Tw= 0 for all θ in a neighborhood of θ̂ by assumption. So

the nullspace of ∂2
θU(θ̂) contains G⊥(θ̂). Also, assuming that the per-sample Hessians in the dataset are

linearly independent, the range of the Hessian has dimension N, so it is equal to G.

D.3. Overparametrized SGD steady-state
In the overparametrized case, we use the modified SGD (13) which yields the diffusion approximation with
the same FP description (10) but with modified probability current J(θ) = (∂θU tr(θ)+αθ)ρ(θ)+ T

2 ∂θ·(
(D tr(θ)+β2I)ρ(θ)

)
. Recall that the diffusion matrix in the diffusion process approximation is the

covariance of∆t, which is now λT(D tr(θ)+β2I), and is invertible when β ̸= 0. But the added isotropic noise
creates a new problem: since ∂θU(xi,θ) lies in Gtr, we now have diffusion noise but no drift in G⊥

tr , creating
the possibility of a distribution of parameters that spreads out forever as t→∞. To prevent this, we need
drift in G⊥

tr that keeps parameter values small, and α> 0 accomplishes this for us. So, with α,β > 0, the same
approach given in appendix B.1 works to obtain the steady-state distribution, resulting in the same form after
the appropriate redefinitions of the diffusion matrix (adding β2I to it) and drift term (adding αθ to it). With
β= 0, it is unclear how find the steady-state distribution: for example, one might try replacing the inverse of
D tr-projected-onto-Gtr with its pseudoinverse, and including a delta function in ρ to enforce conditions
implied by the ODE in the one-dimensional nullspace of D tr-projected-onto-Gtr, but this choice turns out to
yield a nonzero divergence of the probability current∇· J ̸= 0, hence it is not a steady-state solution.
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D.4. Overparametrized Taylor approximation of test loss
If the local minima of train and test are strict (i.e. single points), then the Taylor expansion approximation of
the test loss (3) goes through unchanged. As we saw in appendix D.2, the local minima of train are always
strict since we assume that the train loss includes nonzero ℓ2-regularization (which makes the Hessian
full-rank). However, the local minima of test are non-strict in the overparametrized case since the Hessian is
rank-deficient (unless we also add ℓ2-regularization to the test loss, which is not usually done in practice).
However, we can still find a natural analog of the Taylor approximation in the overparametrized case. The
test local minima are no longer strict. We assume that Gtest is constant in a neighborhood of θ̄ test

k , where
g test(θ̄ test

k ) = 0. From appendix D, we know that ∂θU test(θ) = g test(θ), where g test(θ) ∈ G test(θ), and G test(θ)
has dimension N < p. Therefore (as shown at the end of this section) each test local minimum is a set:

θ test
k =

{
θtestk (w)≡ ProjGtest

(θ̄ test
k )+w, for any w ∈ G⊥

test

}
, where g test(θ̄ test

k ) = 0. (28)

The local minima of the train loss are strict due to the ℓ2-regularization. (The train gradients are
∂θUtrain(θ) = gtrain(θ)+αθ, which can only be zero when the element in G⊥

tr is equal to zero). Recall that
in (3), we seek to approximate the test loss at a point θ̂ found by a single trajectory of SGD. We know from
the previous section that θ̂ must have its projection on G⊥ equal to zero, so it is also unique.
Taylor-expanding the test loss about any θ test

k (w) in the test-loss-local-minimum subspace, we obtain:

U test(θ tr
k )≈ U test(θ test

k (w))+
1

2
(s(w)+ b̂)T∂2

θU(θ
test
k (w))(s(w)+ b̂), for any w

= U test
k +

1

2
(s(w)+ b̂TC test

k (s(w)+ b̂), since U,∂2
θU do not depend on w ∈ G⊥

test,

where s(w) = θ test
k (w)− θ tr

k , and b̂= θ̂− θ tr
k .

Since the range of C test
k is orthogonal to G⊥

test, the term s(w)TC test
k s(w) only depends on the part of s(w) in

Gtest, hence the Taylor approximation of U test(θ tr
k ) is the same for any choice of w. We would get the same

result for U test(θ tr
k ) by defining sk = s(w) for any w, but a natural choice (that eliminates the

irrelevant-to-the-test-loss part of s in G⊥
test) is sk = ProjGtest

(
θ test
k − θ tr

k

)
. (This choice of s(w) corresponds to

w= ProjG⊥
test
(θ tr

k ), which is the the solution to minw ∥s(w)∥.) The overall result is:

U test(θ̂) = U test
k +

1

2
(sk + b̂)TCk(sk + b̂), with sk = ProjGtest

(θ test
k − θ tr

k ) and b̂= θ̂− θ tr
k .

We see that the Taylor approximation of the test loss at a train local minimum has the same form as in
equation (3), but the definition of the shift takes a more general form: it is now the projection of the
difference between the test and train local minima onto Gtest (subspace for the test loss). This definition
coincides with the underparametrized definition of sk when Gtest is all of Rp.

D.4.1. Test local minima are given by (28)
LetO =

[
OG OG⊥

]
be an orthonormal matrix such thatOG is a basis for Gtest andOG⊥ is a basis for G⊥

test.

So, i.e. the projector onto Gtest is ProjGtest
=OGOT

G . Define z=OTθ =

[
OT

Gθ
OT

G⊥θ

]
≡
[
zG
zG⊥

]
. Then

[
∂zGU

test(θ)
∂zG⊥U test(θ)

]
≡ ∂zU

test(θ) = ∂zU
test(Oz) =OT∂θU

test(θ) =

[
OT

Gg(θ)
0

]
.

In particular, we have ∂zG⊥U test(θ) = 0. Therefore the unregularized train loss must be constant w.r.t. zG⊥ , so
we can write (by picking zG⊥ = 0):

U test(θ) = U test(Oz) = U test

([
OG OG⊥

][zG
0

])
= U test(OGzG) = U test(ProjGtest

(θ))

=⇒ U test(θ test
k (w)) = U test(ProjGtest

(θ̄ test
k )) = U test(θ̄ test

k )

=⇒ ∂θU
test(θ test

k (w)) = ∂θU
test(θ̄ test

k (w)) = 0. (29)

Appendix E. Higher order curvature

The full Taylor-expansion of a function U(θ) (for example, the train or test loss) about a local minimum θk is
given by:
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U(θ) = U(θk)+
∞∑
j=2

1

j!
∂
j
θU(θk)(θ− θk)

j,

here we are using multi-index notation, so that

1

j!
∂
j
θU(θ̄)θ

j ≡
∑

j:j0+...+jn−1=|j|

1

j0!j1! . . . jn−1!

∂|j|U(θ̄)

∂
j0
θ̄
∂
j1
θ1
. . .∂

jn−1

θn−1

θ̄j0θ
j1
1 . . .θ

jn−1

n−1.

Note that the derivatives of order 3 and higher are tensors, and ∂
j
θU(θk)θ

j represents a tensor contraction.
In one dimension, a critical point θk of a function f : R→ R is a local minimum if:

J= argmin
{
j : ∂ j

θf(θk) ̸= 0
}
is even, and ∂J

θf(θk)> 0. (30)

This follows from Taylor’s theorem. For example, if ∂2
θf(θk) = 0, then we can look at the next two

derivatives:if ∂3
θU(θk) ̸= 0 then θk is a saddle point; otherwise, it is a local minimum if ∂4

θf(θk)> 0 and a local
maximum if ∂4

θf(θk)< 0. If the 3rd and 4th derivatives are zero, we need to look at the 5th and 6th, and so
on. In higher dimensions (U : Rp → R), we can generalize ∂J

θf(θk)> 0 to ∂J
θf(θk)x

J > 0 for all x (analogous to
definition of positive definite Hessian). But the condition for a local minimum becomes more complex since,
for example, the second derivative could be positive semidefinite (with both positive and zero eigenvalues);
in positive-eigenvalue directions we can be confident of a local minimum, but in the nullspace we must
consider higher derivatives. However, we also know that a critical point θk is a local minimum of U if θk is a
local minimum of the 1D function obtained by evaluating U along any line through θk. This characterization
allows us to fall back to the simpler 1D characterization (30) along any line, and suffices for many of our
purposes.

In particular, in the Taylor expansion (3), taking θ̂ = θ tr
k to simplify the argument, we wish to

approximate U test(θ tr
k ) by expanding about θ

test
k , so we only care about the values of U test along the line

between the train and test local minima. Defining:

f test(r) = U test(Θ(r)), Θ(r) = θ tr
k +

rsk
∥sk∥

=⇒ Θ(0) = θ tr
k ,Θ(∥sk∥) = θ test

k

=⇒ U test(θ tr
k ) = f test(0) = f test(∥sk∥)+

∞∑
j=2

(−∥sk∥)|j|

j!
∂ j
r f

test(∥sk∥),

with ∂ j
r f

test(r) = ∂
j
θU

test(Θ(r))

(
sk

∥sk∥

) j

, (31)

(note that this Taylor expansion looks slightly unusual because it is centered at ∥sk∥, the test local minimum,
and evaluated at 0, the train local minimum, so that dr=−∥sk∥.) Since θ test

k is a local minimum of U test, we
know that f test has a local minimum at ∥sk∥, so condition (30) must hold there. This means that the order J of
the minimum nonzero derivative along the line must be even, and we must have:

∂J
r f
test(∥sk∥) = ∂J

θU
test(θ test

k )

(
sk

∥sk∥

)J

> 0.

This offers a way to characterize the curvature in terms of a higher-even-order derivative ∂J
θU

test, even if the
Hessian ∂2

θU
test is zero along the line between the local minima. Higher curvature along this line corresponds

to larger values of ∂J
θU

test(θ test
k )sJk. We can also partially generalize the SGD steady-state results to the

higher-order curvature case. However, we currently only know how to evaluate the necessary integrals in the
special case where the local curvature of υ depends only on a single even derivative (for example, only a
positive-definite 4th derivative), and where the even derivative tensor is diagonalizable (which is not the case
in general for tensors of order 3 and higher). That is, we must assume that at its local minima υ can be
approximated as:

υ(θ)≈ υ(µk)+
1

J!
∂J
θυ(µk)(θ−µk)

J,

where J is even, and ∂J
θυ(µk) is diagonalizable. Then,

ρ(θ)∝ exp

{
− 2

T
υ(θ)

}
≈ exp

{
− 2

T
υ(µk)

}
exp

{
− 2

TJ!
∂J
θυ(µk)(θ−µk)

J

}
.
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To find the basin weights, we need to evaluate the integral:

ˆ
Bk

ρ(θ)dθ ∝ exp

{
− 2

T
υ(µk)

}ˆ
Bk

exp

{
− 2

TJk!
∂Jk
θ υ(µk)(θ−µk)

Jk

}
dθ

= exp

{
− 2

T
υ(µk)

}(
TJk!

2

) n
|Jk|
ˆ

e−∂
j
θυ(µk)y

j

dy.

To make more progress, we need to evaluate integrals of the form
´∞
−∞ exp

{
−∂

j
xυ(µ)x j

}
dθ (here j is even

but otherwise arbitrary). This is where we need the assumption that ∂ j
xυ(µ) is diagonalizable, which always

holds for symmetric tensors of order two with real entries (i.e. matrices), but does not hold in general for
symmetric tensors of higher orders (Comon 1994). Specifically, we assume that ∂ j

xυ(µ) can be written as:

∂ j
xυ(µ) =

r∑
i=1

λiq
⊗j
i , with q,is orthogonal, λi > 0, r⩽ n

=⇒ ∂ j
xυ(µ)x

j =
r∑

i=1

λiq
⊗j
i x j =

r∑
i=1

λi(q
T
i x)

j =
r∑

i=1

λiz
j
i, with z= QTx, Q=

[
v1 . . .vn

]
,

where if r < n we add n− r additional columns to Q to complete an orthonormal basis for Rn. (Note that the
assumption that the qi’s are orthogonal implies that r⩽ n since more than n vectors in Rn cannot be linearly
independent, and also implies that λi ⩾ 0 for all i because ∂ j

xυ(µ) is positive semidefinite (Qi 2005). If we
take only the first r nonzero eigenvalues we can assume λi > 0 for all i= 1, . . . , r. In this case we have an
analog of the determinant given by Qi (2005): |∂ j

xυ(µ)|=
∏r

i=1λi. Then:

ˆ ∞

−∞
e−∂ j

xυ(µ)x
j

dx=

ˆ ∞

−∞
e−

∑r
i=1λiz

j
idz, z= QTx, dx= |Q|dz= dz

=
r∏

i=1

ˆ ∞

−∞
e−λiz

j
idzi =

r∏
i=1

λ
− 1

j

i

ˆ ∞

−∞
e−yjidyi, yi = λ

1/j
i zi

= |∂ j
xυ(µ)|

− 1
j

ˆ ∞

−∞
e−sjds,= 2|∂ j

xυ(µ)|
− 1

j Γ

(
j+ 1

j

)

=⇒
ˆ
Bk

ρ(θ)dθ ≈
exp
{
− 2

Tυ(µk)
}

|∂Jk
x υ(µ)|

1
Jk

(
TJk!

2

) n
Jk

2Γ

(
Jk + 1

Jk

)
.

To see that agrees with the J= 2 case, note that Γ(3/2) =
√
π
2 .

Appendix F. Experiment notes

F.1. Shift-curvature symmetrized quadratic fits
Due to the shapes of the losses we find that the symmetrized quadratic fit more accurately captures the
relevant overall curvature of the basin. First, the loss curves tend to have a small ‘flattened’ region right
around the local minima, despite looking roughly quadratic overall (we suspect the ‘flattening’ is due to
sigmoid saturation), so that the curvature evaluated right at the local minima tends to underestimate the
overall curvature of the basin, which is better captured by fitting a quadratic. Second, we find that the train
and test losses have an asymmetrical shape (He et al 2019b) along the line between the local minima, hence
we reflect about the test local minimum in the direction toward the train local minimum since this is the
direction that affects the test loss at the test local minimum; similarly, we reflect the train loss about its local
minimum in the same direction (i.e. away from the test local minimum) since we are interested in train
curvature as a proxy for test curvature so we should study the same direction of each. We believe the
observed asymmetry of the losses is due to the experimental design: to find the test minimum, we run
gradient descent starting from close to the train minimum, which means we go down the steepest direction
of the test basin away from the train local minimum until we reach a test local minimum; however if the test
basin has a flat region at the bottom, continuing in the same direction may have zero or very small test loss
until we reach the opposite wall of the basin (however, this direction has little impact on the test loss at the
train local minimum).
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Appendix G. Additional experiments

G.1. More shift-curvature experiments

Figure 5. Experiment of figure 1, repeated for Resnet20 (with batch normalization) on CIFAR10, and Resnet18 (with batch
normalization) on a subset of ImageNet (random sample of 100 classes). Train and test accuracy (left) and loss (middle) along a
line connecting the local minimum of the train loss to a nearby local minimum of the test loss, for different train local minima
found using high (red) vs. low (blue) temperature SGD. Consistent with figure 1, lower temperature SGD leads to higher
curvature and worse test performance near the train local minimum.

Figure 6. Figure 2 experiment, repeated for Resnet20 (with batch normalization) on CIFAR10. The results are qualitatively
consistent with those in figure 2.

G.2. Temperature and shift experiments
Figure 8 shows experiments on CIFAR10 (Krizhevsky et al 2009) to demonstrate the phenomenon of
generalization improving with temperature, as well as to understand the shift between and training and test
sets for CIFAR10. We used the VGG9 network Simonyan and Zisserman (2014) and the training procedure
of Li et al (2017a) (but with no momentum). For the temperature experiment, we first trained a network
using a large batch size (4096) and decreasing learning rate schedule (starting from 0.1, scaled by 0.1 at 0.5,
0.75 of total epochs, ending with LR 0.001) until the training converged. Then, we continued training from
that initialization with a variety of batch sizes and learning rates (all LRs held constant in second stage), for
1000 epochs (regardless of batch size). For each second-stage run, we took the median of the last 100 steps
(to eliminate spiky outliers) as the ‘final loss’. We repeated this two-stage experiment 10 times (with different
initializations), and plotted the mean and standard deviation over all trials of the final train and test loss as a
function of temperature (learning rate divided by batch size) (from 2.44× 10−8 to 2.44× 10−5). (At end of
first stage, final temperature= 2.44× 10−7; mean final train loss= 0.005 (var 4× 10−07) and test loss=
0.555 (var 1× 10−4).) Our results show that both the train loss and test loss depend primarily on the
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Figure 7. Figure 2 experiment, repeated for Resnet18 (with batch normalization) on a subset of ImageNet (random sample of 100
classes). The results are qualitatively consistent with those in figure 2, through noisier.

Figure 8. (Left two plots) Temperature experiment. Plots show the train and test loss on CIFAR10 as a function of temperature
(learning rate divided by batch size). Different colors correspond to different batch sizes. The train loss is consistently close to zero
(except for smallest batch sizes, as discussed in the text), while the test loss improves with increasing temperature in a consistent
way for all batch sizes; suggesting that temperature is the most important variable (rather than batch size or learning rate). (Right
two plots) Shift experiments (shuffling and sample-size). Reshuffling the training and test sets has little impact on the final
train/test losses, suggesting that there is no distribution shift between the default train and test sets. In contrast, smaller
subsamples of the dataset (still proportionally split into train/test) lead to higher test losses while train loss stays small, suggesting
that finite sampling is the source of train/test shift.

temperature, and test loss decreases with increasing temperature while train loss remains roughly constant.
For small batches (50 and 100), train loss was higher at the beginning of the second stage for all LRs; train
loss dropped significantly by the end of training with large LRs but remained high with small LRs. We believe
this was due to mismatched batchnorm statistics and parameters (parameters learned for batch size 4096 but
applied to batch size 50 or 100); with larger LRs the network was able to retrain the batchnorm parameters,
but smaller LRs did not allow sufficient progress.

The shift experiments aimed to clarify whether the train/test shift in CIFAR10 is more likely due to
distribution shift or to finite sampling. The training procedure was the same as in the initial stage of the
temperature experiment. To study distribution shift, we ran a shuffling experiment, where we merged the
train and test sets, reshuffled them to create a single dataset, and then randomly split the data into training
and test at each trial (25 total). If there were a distribution shift between the default train and test split in the
CIFAR data, this process would remove it, and we would expect the test loss to decrease. However, our
experiment shows that there is no significant difference in the test loss for different shufflings of the train and
test sets, suggesting that distribution shift is not present. To better understand the role of finite sampling, we
ran a sample-size experiment, where for each trial we chose a subsample of the full dataset of a given size,
split it proportionally into train and test, and trained on the training set. If finite sampling were causing the
shift between the training and test distributions, we would expect smaller sample sizes to exacerbate the
difference (since sampled distributions generally become closer to the underlying distribution as the sample
size grows). Our experiment shows that the test loss increases as the sample size decreases, consistent with
finite sampling as the source of distribution shift.

G.3. One and three basin experiments
Figure 9 shows 1-basin and 3-basin experiments analogous to the 2-basin experiment in figure 4. In the
1-basin example, both train and test error increase with increasing temperature. The 3-basin example shows
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Figure 9. Left: synthetic one-basin experiment with the same setup as in figure 4. Train and test error both increase as temperature
increases. Right: synthetic three-basin experiment with the same setup as in figure 4. Minimum at 0 is deeper but narrower than
minima at−1 and 1;−1 and 1 are equally deep but 1 is wider. Generalization improves (test error decreases while training error
increases) with increasing temperature, as the steady-state distribution moves probability mass from the narrower deeper
minimum at 0 toward the wider minima, with a preference for the widest minimum at 1.

qualitatively similar behavior to the 2-basin case and confirms the SGD steady-state distribution’s preference
for wider minima when the depths are similar.

G.4. Experiment details and hyperparameters
G.4.1. Figures 1–3 and 5–7
• Resnet10 (without batch norm): Shon (2021) haiku implementation of Resnet10 (He et al 2016). Modified
by reducing blocks per group from 3 to 2, and removing batch norm.

• Resnet20 (with batch norm): Shon (2021)’s haiku implementation of Resnet20.
• Resnet18 (with batch norm) for ImageNet: haiku implementation (Hennigan et al 2020).
• VGG16: Yoshida (2021) haiku implementation of VGG16 (Simonyan and Zisserman 2014). Adapted for
CIFAR10 by reducing size of dense layers to 512 as proposed by Liu and Deng (2015) and removing adaptive
pooling.

• Data: CIFAR10 (Krizhevsky et al 2009), ImageNet (Deng et al 2009)
• Training: adapted from Shon (2021)’s JAX sample code.

CIFAR10 experiment hyperparameters:
Initial SGD Find Train/Test Local Minima
BATCH_SIZE: 100 TRAIN_SAMPLE_COUNT: 50000
TRAIN_SAMPLE_COUNT: 50000 BATCH_SIZE: 10000(res) 5000(vgg)
TRAIN_SHUFFLE: True LEARNING_RATE: 1e-4
TRAIN_DROP_LAST: True MAX_EPOCH: 10000
MAX_EPOCH: 400 L2_REG: 1e-5
MAX_EPOCH_REF_TEMP∗: 0.00005 L2_AT_EVAL: True
LEARNING_RATE: various AUGMENT_TRAIN: False
L2_REG: 1e-5 TRAIN_SHUFFLE: False
L2_AT_EVAL: False TRAIN_DROP_LAST: False
AUGMENT_TRAIN: False

ImageNet experiment hyperparameters:
Initial SGD Find Train/Test Local Minima
BATCH_SIZE: 100 TRAIN_SAMPLE_COUNT: 127149
TRAIN_SAMPLE_COUNT: 127149 BATCH_SIZE: 500
TRAIN_SHUFFLE: True LEARNING_RATE: 1e-4
TRAIN_DROP_LAST: True MAX_EPOCH: 300
MAX_EPOCH: 500 L2_REG: 1e-5
MAX_EPOCH_REF_TEMP∗: 1e-5 L2_AT_EVAL: True
LEARNING_RATE: various AUGMENT_TRAIN: False
L2_REG: 1e-5 TRAIN_SHUFFLE: False
L2_AT_EVAL: False TRAIN_DROP_LAST: False
AUGMENT_TRAIN: False

∗We scale the number of epochs (E) as E ∗ T = MAX_EPOCHS ∗ MAX_EPOCH_REF_TEMP.
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G.4.2. Figures 4 and 9
The objective plots show the synthetic train and test objective (loss) functions U tr(θ) and U(θ). For the
steady-state distribution plots, we plug the train loss U tr(θ), the gradient variance D tr(θ), and the current
temperature into (5), and evaluate as a function of θ. For the probability of each basin plots, we integrate the
steady-state distribution over the basin of each minimum (i.e. between the two local maxima adjacent to the
minimum, or the range endpoint—noting that ρ→ 0 at the range endpoints); the probabilities are plotted as
a function of temperature. Finally, the train vs. test loss plots show the train and test losses as a function of
temperature, i.e. train loss is computed as

´
ρ(θ)U tr(θ)dθ) (where ρ(θ) depends on the temperature per (5).

Param Figure 4 Left Figure 4 Right Figure 9 Left Figure 9 Right
seed 0 0 0 0
minima [-1 1] [-1 1] [0] [-1 0 1]
weights [0.021 0.1] [0.019 0.1] [0.1] [0.1 0.051 0.3]
sigmas [0.1 0.5] [0.1 0.5] [0.1] [0.1 0.05 0.3]
c 0.001 0.001 0.001 0.001
stddev_shift 0.1 0.1 0.03 0.1
lscale 1.0 1.0 1.0 1.0
wscale 0.0 0.0 0.0 0.0

G.4.3. Figure 8
We used a slightly modified version of the code accompanying Li et al (2017a) for training a VGG9 network
on CIFAR10. We changed the learning rate schedule to drop at 0.5, 0.75, and 0.9 of total epochs (rather than
at fixed epochs), and also added support for reshuffling the train and test sets, and using a subsample of the
full dataset.

Stage 1 hyperparameters Stage 2 hyperparameters: Figure 8 right
rand_seed: range(0, 10) resume_epoch: 1200 rand_seed: -1
batch_size: 4096 rand_seed: -1 batch_size: 3000
lr: 0.1 batch_size: various lr: 0.1
lr_decay: 0.1 lr: various lr_decay: 0.1
epochs: 300 lr_decay: 1.0 epochs: 2000
weight_decay: 0.0005 epochs: 2200 weight_decay: 0.0005
momentum: 0.9 weight_decay: 0.0005 momentum: 0

momentum: 0 shuffle_seed: 0:25)
sample_size: 10000:50000
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