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ABSTRACT 
 

This study aims to assess the soil quality under different land uses by utilizing technique for order 
preference by similarity to the ideal solution method (TOPSIS) and geostatistical Technique in the 
Northern part of Sohag Governorate, Egypt. Various soil parameters such as sand, silt, clay 
content, CEC, ESP OC, ECe, pH, and CaCO3 were determined. Afterward, the geostatistics 
approach using ordinary kriging interpolation and semivariogram was applied to produce a 
spatialized and detailed map for each soil parameter. Spherical, Exponential, Gaussian, and J-
Bessel geostatistical models were used to define the spatial variability of soil properties based on 
RMS, MSE, and RMSSE. Based on the TOPSIS method, the soil quality index (SQI) and its 
ranking under land use types in the study area were calculated. The results of SQI ranged from 
38.75% to 55.82% and 27.53% to 52.72%, and 5.75% to 26.73% for old cultivated, new cultivated, 
and desert soil, respectively. The SQI was classified into three regions. The first has a fair quality 
index and covers 56.48% (403.91 km

2
) of the total geographical area (TGA). The soils of this region 
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are located mainly in old cultivated soils and some new ones. The second region was observed in 
some newly reclaimed soils and desert soils and extended over an area of about 27.75% (198.45 
km

2
). These soils have low values of favorable studied indicators, leading to negative effects on the 

SQI that are defined as poor. The third region is very poor quality, covers about 15.77% (112.78 
km

2
) of TGA, and is located mainly in desert soils with low beneficial and high non-beneficial 

studied indicators. Finally, the results indicate that the integration of TOPSIS and geostatistical 
technique allow for an accurate and practical assessment of the SQI. 
 

 

Keywords: Soil quality index; ordinary kriging; semivariogram; TOPSIS. 
 

1. INTRODUCTION 
 

As a natural and one of the basic factors for the 
survival of nonrenewable resources, the soil has 
attracted worldwide attention with the increased 
populations and has become the most fragile 
ecosystem due to long-term human cultivation. 
Land use by humans is a vital and direct activity 
that affects soil quality. Soil quality may be 
defined as the ability of soil to play a role in 
natural or managed ecosystems to maintain the 
productivity of animals and plants while ensuring 
the healthy life of human beings [1,2]. It reflects 
the level of soil management, and it is of great 
significance to the restoration and mitigation of 
degraded land, regional land resource 
management, and sustainable land use, which 
has become an area of increasing concern [3-5]. 
Recently, there have been various approaches 
for assessing soil quality [6-10]. There is no 
standardised approach for assessing soil quality 
because of the diversity of evaluation objectives 
and the complexity of the process [11]. The 
technique for order preference by similarity to 
ideal solution (TOPSIS) model can deal with both 
qualitative and quantitative data during 
assessment processes and is widely used in 
many fields, such as water quality assessment, 
but less used in soil quality assessment [12,13]. 
Spatial variability characterization of different soil 
properties is important in macro and micro scales 
[14]. 
 

Furthermore, obtaining continuous and accurate 
spatial data saves cost, time, and effort for the 
cultivation development process, gives better soil 
management, and improves land-use 
sustainability [15]. Therefore, geostatistical 
analyses with the help of GIS tools effectively 
demonstrate soil data spatially and distribute 
their variations in a specific area. Geostatistical 
tools are used in estimating and mapping soil 
properties by using different semi-variogram 
models. There are various methods of spatial 
variability distribution of soil data, such as 
Kriging, co-Kriging, inverse distance weighting 
(IDW), and linear regression model (LR) [16]. 

Kriging is the most commonly used technique for 
geostatistical analysis of soil parameters. 
Ordinary Kriging as a statistical technique was 
used frequently to predict soil properties [17]. 
Lopez-Granados et al. [18] mapped different soil 
properties using geostatistics and Kriging tools in 
southern Spain. Behera and Shukla [19] 
generated various maps for soil pH, ECe, SOC, 
and exchangeable bases in acidic Indian soils. 
Also, Patil et al. [20] used geostatistics and the 
spline method of interpolation and mapping soil 
organic carbon, available nitrogen, phosphorus, 
and potassium in Karnataka. Spatial variability 
maps were also generated for the soil's physical 
properties in Assam, India [21]. Behera et al. [22] 
assessed the spatial distribution of total and 
extractable Zinc in India. Vasu et al. [23] used 
the Kriging method in West Bengal, India, for 
characterization and mapping the soil fertility 
factors. Gülser et al. [24] used block Kriging to 
generate the physical properties map of some 
Turkish soils. Kriging and co-Kriging interpolation 
methods were used to generate surface maps of 
spatial variability of soil Physico-chemical 
properties in Babylon, Iraq [25]. Shukla et al. [26] 
analyzed the spatial variability of soil 
micronutrients in India's intensively cultivated 
Trans-Gangetic Plains. 
 

Therefore in the current study, the soil quality 
under different land uses was assessed utilizing 
TOPSIS and Geostatistical Technique in the 
Northern part of Sohag Governorate, Egypt. This 
study aimed to (1) evaluate the soil quality under 
different land uses by applying the TOPSIS 
model, (2) characterize the spatial variability of 
soil some soil properties by fitting the best semi-
variogram model and (3) prepare the spatial 
variability maps of soil properties and Soil quality 
index (SQI) using ordinary Kriging technique. 
 

2. MATERIALS AND METHODS 
 

2.1 Overview of the Study Area 
 

Northern Sohag (26.51 to 26.9 N, 31.24 to 31.57 
E) is a part of Sohag Governorate, Egypt. This 
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area covers approximately 715.14 km
2
 and 

belongs to the arid region of North Africa, 
generally characterized by hot summers and mild 
winters with low rainfall. The area under study 
had three land uses (Fig. 1) viz. old cultivated 
soils, newly reclaimed soils, and Desert soils. 
Middleton and Thomas [27] state that a hyperarid 
climate is common, with an aridity index lower 
than 0.05. 

 

2.2 Soil Sampling and Laboratory 
Analysis 

 
The soil samples were collected from the study 
area using GPS and a soil cylinder auger at 0–60 
cm depths in 34 locations (Fig. 2). The selected 
sites represent old cultivated soils, newly 
reclaimed soils, and desert land. Soil samples 
were prepared for analyzing their physical and 
chemical properties, whereas they were air-dried, 
grounded, and sieved. Soil samples were 
analyzed in the soil testing laboratories                
using the standard analysis methods given by 
USDA [28]. The analyzed parameters are clay 
(%), sand (%), silt (%), exchangeable sodium 
percentage (ESP %), organic carbon (OC %), 
electrical conductivity (EC dS/m), soil reaction 
(pH), cation exchange capacity (CEC cmol 
(p+)/kg) and calcium carbonate total content     
(%). 
 

2.3 Soil Quality Evaluation Based on 
TOPSIS  

 

TOPSIS is a practical method for ranking and 
selecting several alternatives by measuring 
Euclidean distances. It evaluates the samples 
according to the relative distances between 
positive and negative ideal solutions [29]. The 
steps of the TOPSIS method are as follows: 
 

Step 1: Calculation of the normalized decision 
matrix following the procedure elaborated by 
[30,31] as the following equation: 
 

    
   

     
  

   

 

 

Where nij (i=1, 2, ..., m) is the normalized value 
and xij is the original value 
 

Step 2: Weight Determination of Soil Parameter 
 

It is a paramount step for defining weights for 
each indicator used in TOPSIS [32]. The 
indicators’ weights can be calculated objectively 
by using the entropy theory as follows: 
 

   
  

     
             

       

 
 

Fig. 1. Location of the study area 
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Fig. 2. Location of the soil samples 

 

   
  

    
   

 

 

Where ej is the information entropy of the soil 
parameter i among the m soil parameters; i = 1, 
2, ..,m 
dj is the degree of diversity possessed by each 
criterion 
wj is the weight objective for each criterion  
Step 3: Calculation of the weighted normalized 
decision matrix 
 

           
 

Step 4: Determination of Positive and Negative 
Ideal Solutions 
 

TOPSIS is one of the multi-criteria decision 
analysis methods [33]. It ranks objectives based 
on the distance between the positive and 
negative ideal solution that should be calculated. 
In detail, the weighted solutions. Firstly, the 
standardized matrix must be formulated [34] then 
the positive and negative ideal solution can be 
calculated as follows: 
 

  
                              

  
                              

 

Where   
  is the positive ideal solution, and   

  is 

the negative ideal solution. The distance from the 

positive/negative ideal solution can be calculated 
to determine the relative proximity of soil 
conservation benefit to the ideal solution as the 
following step. 
 
 Step 5: Calculate the Distance between the 
positive and negative ideal solutions: 
 

  
           

   
 

   
 

  
           

   
 

   
 

 

Step 6: Calculation of Soil Quality Index (SQI) 
 

     
  

 

  
    

      

 

Where SQIj is the soil quality index of soil sample 
j, the range of SQIj is [0,100], and a larger SQI 
value indicates better soil quality. 
 

2.4 Statistical and Geostatistical 
Analyses  

 

Classical statistical analysis was implemented 
using STATISTICA version 7 software [35] to 
investigate the distribution of each soil 
parameter. This analysis is a prerequisite step 
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before geostatistical analyses. A geostatistical 
approach was utilized to examine the variability 
of the soil parameters. The geostatistics 
approach comprises the calculation of the 
experimental semivariogram and the prediction 
at un-sampled locations. Measuring the spatial 
correlation using a semivariogram is the most 
advantage of geostatistics [36]. The 
semivariogram of each soil parameter was 
generated using the average squared differences 
among all pairs of values according to this 
equation [36]. 
 

     
 

     
                 

    

     

 

 

Where:  
 

γ(h) is the semivariance of the distance interval 
h,  
N(h) is the number of pairs of the lag interval,  
Z(xi) is the measured sample value at point i, and  
Z(xi + h) is the measured sample value at 
position (i + h). 
 

The best semivariogram models were selected 
based on strong spatial dependence (SDC), root 
mean square error (RMS), mean standardized 
error (MSE), and root mean square standardized 
error (RMSSE) [36] moderate, and weak spatial 
dependence, respectively. A spatial distribution 
map of the soil quality index was generated using 
ordinary kriging interpolation in ArcGIS 10.4, 
applied the kriging method using the equation 
given by Cafarelli et al. [37]: 
 

                

 

     

 

 

Where, 
 

Z*(xo) is an estimated variable at location xo,  
Z*(Xi) is the value of an inspected variable at 
location Xi,  
 i is the statistical weight attributed to Z*(Xi) for a 
sample located near xo, and N is the number of 
observations in the neighborhood of the 
inspected point. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Soil Properties under Different Land 
Uses 

 

The summary of descriptive statistical analysis of 
the investigated soil parameters is presented in 

Table 1. These  results could be discussed under 
subtitles as follows: 
 
3.1.1 Old cultivated soils 
 
The sand fraction ranged from 26.21% to 
75.00%. In contrast, silt and clay fractions varied 
from 10.60% to 38.73% and 11.51% to 45.93%, 
respectively. The soils were slight to moderately 
alkaline, whereas the pH values of these soils 
varied from 7.44 to 8.21. These soils are non-
saline soils, as all values are below 4 dS/m. 
These soils' cation exchange capacity is low, 
ranging from 4.03 cmol+/kg to 17.43 cmol+/kg. 
These soils' low ESP values range from 1.13% to 
14.73%. The soil organic carbon ranged between 
0.29% to 1.46%, which indicated low to very high 
organic carbon content. Calcium carbonate 
content is low, which ranges from 0.53% to 
4.96%.  
 
3.1.2 New cultivated soils 
 
These soils have a slightly higher coarse fraction 
and a lesser finer fraction than the previous       
soils. The average sand, silt, and clay                  
values were 67.92% , 12.55% and 19.56%, 
respectively.  
 
Some of these soils received different amounts 
of alluvium to enhance their properties. These 
soils are non-to slightly saline and range from 
slightly to moderately alkaline. The cation 
exchange capacity of these soils is low. The ESP 
values varied from low to high, ranging from 
3.39% to 17.13%. The organic carbon content of 
these soils ranges between very low to 
moderately high in some soils that received 
different amounts of alluvium soils. These soils 
are calcic, and calcium carbonate content ranges 
from low to extremely high, which ranges from 
2.21% to 31.35%.  
 
3.1.3 Desert soils 
 
These soils are uncultivated yet but maybe a 
prospective area for agricultural activities. These 
soils have the coarsest fractions (sandy texture 
class is dominant) compared to the previously 
discussed. These soils are very high saline and 
range from 7.65 to 24.15 dS/m. In addition, the 
organic carbon content is very low. These soils 
are calcic, which calcium carbonate content 
ranging from 17.67% to 38.12%. Cation 
exchange capacity and exchangeable sodium 
percentage are low. 
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Table 1. Descriptive statistical analysis of some soil characteristics 
 

Land 
use 

property Mean  Minimum Maximum Standard 
Deviation  

Standard  

Error 

O
ld

 c
u

lt
iv

a
te

d
 l

a
n

d
s

 

sand 54.30 26.21 75.00 16.05 4.63 

Silt 20.25 10.60 38.73 9.24 2.67 

Clay 25.45 11.51 45.93 12.03 3.47 

CEC (Cmol+ kg
-1

) 8.19 4.03 17.43 3.40 0.98 

ESP 6.70 1.13 14.73 4.64 1.34 

OC (%) 0.54 0.29 1.46 0.31 0.09 

ECe (dSm
-1

) 0.68 0.26 1.98 0.48 0.14 

pHe 7.82 7.44 8.21 0.23 0.07 

CaCO3 (%) 2.49 0.53 4.96 1.70 0.49 

N
e
w

ly
 r

e
c
la

im
e
d

 s
o

il
s

 sand 67.92 29.46 93.45 20.61 5.95 

Silt 12.55 4.61 29.33 7.88 2.27 

Clay 19.56 2.00 48.95 14.60 4.21 

CEC (Cmol+ kg
-1

) 6.44 1.73 18.05 4.92 1.42 

ESP 9.04 3.39 17.13 3.91 1.13 

OC (%) 0.31 0.03 0.79 0.26 0.07 

ECe (dSm
-1

) 0.96 0.31 3.65 0.94 0.27 

pHe 7.98 7.66 8.72 0.33 0.10 

CaCO3 (%) 14.28 2.21 31.35 10.74 3.10 

D
e
s
e

rt
 s

o
il
s

 

sand 85.48 74.73 92.00 6.37 2.01 

Silt 5.50 2.00 13.00 3.17 1.00 

Clay 9.02 3.80 15.08 3.92 1.24 

CEC (Cmol+ kg
-1

) 3.35 2.25 3.92 0.55 0.17 

ESP 8.77 5.36 15.33 2.66 0.84 

OC (%) 0.11 0.01 0.45 0.17 0.05 

ECe (dSm
-1

) 13.19 7.65 24.15 6.47 2.04 

pHe 7.99 7.65 8.32 0.25 0.08 

CaCO3 (%) 27.94 17.67 38.12 8.32 2.63 

 

3.2 Soil Properties Maps 
 
The tabulated results (Table 2) indicated that the 
spherical model is suitable for predicting the 
unknown values of sand, CEC, and ESP. At the 
same time, the exponential model was suitable 
for silt and CaCO3 content, and the Gaussian 
model was suitable for Clay and Organic carbon 
content and ECe—finally, the J-Bessel model for 
pH.  
 
Geostatistical range values of soil characteristics 
varied widely from  5718.99 m to 42956.02 m. 
Emadi et al. (2010) stated that the values 
affected by some other values over greater 
distances have a wide range compared to 
variables having smaller ranges. However, the 
least value for the range parameter was recorded 
for ESP and the highest for CaCO3. The nugget 
effect is related to spatial variability between 

measurements. Meanwhile, the large                  
nugget effect means that additional sampling of 
these properties at smaller distances                      
and in larger numbers might be needed to              
detect spatial dependence, and a greater 
sampling density will result in a more accurate 
map [38]. 
 
The spatial dependence (SD) results are 
moderate for sand, clay, CEC, and CaCO3. In 
contrast, the SD is weak for ESP, OC, and pH. 
Finally, it is strong for silt and ECe, meaning that 
the later factors are inherited. In comparison, a 
weak spatial dependence SD is due to the orthic 
factors. Finally, a moderate spatial dependence 
is controlled by both inherited and orthic factors 
[38], (Kiliç et al. 2004; Yasrebi et al. 2009 and 
Kavianpoor et al. 2012). The spatial distribution 
maps of soil properties affecting SQI in the study 
area are shown in Figs. 3 -11. 
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Table 2. Geostatistical analyses and Semivariograms parameters of soil properties 
 

Soil property model  RMS MSE RMSSE Range Nugget Partial Sill sill Nugget /Sill 
ratios 

Spatial 
dependence 

Sand Spherical 20.520 -0.042 1.005 8688.54 261.39 159.73 421.12 62.07 Moderate 

Silt Exponential 9.111 0.027 1.038 10208.45 18.94 77.61 96.55 19.62 Strong 

Clay Gaussian 13.924 -0.013 0.997 5998.12 121.12 71.16 192.28 62.99 Moderate 

CEC Spherical 4.986 -0.009 1.053 5817.99 7.97 11.43 19.40 41.08 Moderate 

ESP Spherical 4.543 0.032 1.033 5718.99 11.68 3.57 15.25 76.59 Weak 

OC Gaussian 0.344 -0.007 1.006 5998.12 0.07 0.02 0.09 77.78 Weak 

ECe Gaussian 4.819 -0.061 0.920 6200.21 8.14 35.25 43.39 18.76 Strong 

pH J-Bessel 0.277 0.017 1.017 16303.29 0.06 0.01 0.07 85.71 Weak 

CaCO3 Exponential 10.882 0.001 0.954 42956.02 85.11 138.83 223.94 38.01 Moderate 

SQI Exponential 10.189 0.039 0.986 15487.61 44.73 101.21 145.94 30.65 Moderate 
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Fig. 3. The spatial distribution maps of sand 
 

 
 

Fig. 4. The spatial distribution maps of silt 
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Fig. 5. The spatial distribution maps of clay 
 

 
 

Fig. 6. The spatial distribution maps of CEC 
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Fig. 7. The spatial distribution maps of ESP 
 

 
 

Fig. 8. The spatial distribution maps of OC 
 



 
 
 
 

Mustafa; Asian J. Soil Sci. Plant Nutri., vol. 9, no. 3, pp. 16-32, 2023; Article no.AJSSPN.101783 
 
 

 
26 

 

 
 

Fig. 9. The spatial distribution maps of ECe 
 

 
 

Fig. 10. The spatial distribution maps of pH 
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Fig. 11. The spatial distribution maps CaCO3 
 

3.3 Pearson Correlation Matrix 
 
The correlations between soil indicators are 
listed in Table 3. The sand fraction has a 
statistically significant negative relationship (p < 
0.05) with all other soil indicators except for ECe, 
pH, and CaCO3 content which exhibits a 
significant positive relationship. Contrary to that, 
the case is in finer fractions (silt and clay). CEC 
is significantly positively correlated (p < 0.05) 
with silt and clay and significantly negatively 
correlated with CaCo3. In contrast, it has a non-
significant positive correlation with ESP and OC 
contents. Soil ESP has non-significant                  
positive correlations (p < 0.05) with all indicators 
except for sand, which was a negative 
correlation. The results show that ECe               
has a significant positive relationship with 
CaCO3 and sand content (p < 0.05). At the same 
time, the correlations between ECe and silt, clay, 

CEC, and OC were positive. The soil organic 
carbon has a significant positive correlation (p < 
0.05) with Silt, clay, and CEC, while it has a 
significant negative correlation with                    
sand, ECe, pH, and CaCO3. The calcium 
carbonates have a significant negative 
correlation (p < 0.05) with silt, clay, CEC, and 
OC. In comparison, it has a significant positive 
correlation with sand and ECe ESP and a non-
significant negative correlation with ESP. 
Correlation coefficients matrix between each soil 
parameter. 
 

3.4 Evaluation of SQI under Different 
Land Use 

 

Based on the TOPSIS method, the soil quality 
index (SQI) and its ranking under land use types 
in the study area were calculated (Tables 4, 5, 
and 6).  
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Table 3. Correlation coefficients among soil properties 
 

 Sand Silt Clay CEC ESP OC ECe pH CaCO3 

Sand 1.00                 
Silt -0.85 1.00               
Clay -0.92 0.58 1.00             
CEC -0.85 0.59 0.89 1.00           
ESP -0.37 0.39 0.29 0.29 1.00         
OC -0.62 0.64 0.49 0.53 0.19 1.00       
ECe 0.47 -0.47 -0.38 -0.37 0.14 -0.50 1.00     
pH 0.34 -0.35 -0.27 -0.24 0.06 -0.39 0.34 1.00   
CaCO3 0.75 -0.69 -0.65 -0.66 0.16 -0.66 0.71 0.48 1.00 

  
Table 4. SQI results based on TOPSIS (Old cultivated soil) 

  

Sample No. Si+ Si- SQI Class Soil quality 

1 0.178 0.125 41.37 3 fair 
2 0.167 0.123 42.39 3 fair 
3 0.162 0.123 43.25 3 fair 
4 0.160 0.124 43.61 3 fair 
5 0.173 0.121 41.21 3 fair 
6 0.138 0.127 47.88 3 fair 
7 0.130 0.128 49.48 3 fair 
8 0.144 0.128 47.08 3 fair 

 
Table 5. SQI results based on TOPSIS (New reclaimed soil) 

  

Sample No. Si+ Si- SQI Class Soil quality 

13 0.163 0.120 42.43 3 fair 
14 0.196 0.105 34.82 4 poor 
15 0.212 0.108 33.70 4 poor 
16 0.156 0.121 43.58 3 fair 
17 0.149 0.123 45.26 3 fair 
18 0.170 0.120 41.43 3 fair 
19 0.229 0.087 27.53 4 poor 
20 0.199 0.102 33.78 4 poor 
21 0.229 0.090 28.13 4 poor 
22 0.220 0.093 29.62 4 poor 
23 0.130 0.145 52.72 3 fair 
24 0.213 0.093 30.40 4 poor 

 
Table 6. SQI results based on TOPSIS (Desert soil) 

 

Sample No. Si+ Si- SQI Class Soil quality 

25 0.233 0.085 26.73 4 poor 
26 0.245 0.080 24.69 4 poor 
27 0.245 0.080 24.60 4 poor 
28 0.233 0.082 26.12 4 poor 
29 0.235 0.080 25.40 4 poor 
30 0.262 0.062 19.13 5 Very poor 
31 0.286 0.042 12.68 5 Very poor 
32 0.283 0.047 14.32 5 Very poor 
33 0.287 0.049 14.51 5 Very poor 
34 0.330 0.020 5.75 5 Very poor 
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The SQI ranged from 38.75 to 55.82 %, 27.53 to 
52.72 %, and 5.75 to 26.73 % for old cultivated, 
new cultivated, and desert soil, respectively. 
According to Aprisal et al. [39], the SQI is 
classified into three quality regions. The first has 
a fair quality index and covers 56.48% (403.91 
km

2
) of the total geographical area (TGA). The 

soils of this region are located mainly in old 
cultivated soils and some newly cultivated soils. 
This may be due to adding alluvium soils at 
different amounts on the surface of newly 
reclaimed soils. The second region was 
observed in some newly reclaimed soils and 
desert soils and extended over an area of about 

27.75% (198.45 km2). These soils have low 
values of favorable studied indicators, leading to 
negative effects on the SQI that are defined as 
poor [40,41]. The third region is very poor quality, 
covers about 15.77% (112.78 km2) of TGA, and 
is located mainly in desert soils with low 
beneficial and high non-beneficial studied 
indicators. A box-whisker graph shows the 
minimum, maximum, median, lower quartile 
(25%), and upper quartile (75%) of SQI in the 
studied soils (Fig. 12). In addition, the correlation 
coefficients between the different soil indicators 
and SQI is depicted in Fig. 13. The spatial 
variability of SQI is shown in Fig. 14. 

 

 
 
Fig. 12. A box-whisker graph showing the minimum, maximum, median, lower quartile (25%), and upper 

quartile (75%) of SQI 
 

 
 

Fig. 13. Correlation coefficients between the different soil indicators and SQI 
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Fig. 14. The pattern of the spatial distribution of the SQI 

 

4. CONCLUSION 
 
This study has developed integrated TOPSIS 
and Geostatistical Techniques in the Northern 
part of Sohag Governorate, Egypt, for soil quality 
assessment under different land uses. The area 
under study had three land uses: old cultivated, 
newly reclaimed, and desert soils. Soil quality is 
affected by agricultural practices and climatic 
conditions, which, in turn, affect the soil's 
physical, chemical, and fertility properties. This 
study used the soil's physical and chemical 
properties to assess the SQI in the study area. 
The ordinary kriging interpolation method was 
used for estimating and mapping the unknown 
values of soil properties. The model’s accuracy 
was confirmed for each soil property based on 
RMS, MSE, and RMSSE. The results show that 
the spherical model is suitable for predicting the 
unknown values of Sand, CEC, and ESP. 
 
In contrast, the exponential model was suitable 
for silt and CaCO3 content, and the Gaussian 
model was suitable for Clay and Organic carbon 
content and ECe—finally, the J-Bessel model for 
pH. Based on the TOPSIS method, the soil 
quality index (SQI) and its ranking under land 
use types in the study area were calculated. The 
results of SQI ranged from 38.75% to 55.82% 
and from, 27.53% to 52.72%, and from 5.75% to 

26.73% for old cultivated, new cultivated, and 
desert soil, respectively. The SQI is classified 
into three quality zones. The first is characterized 
by a fair quality index representing about 56.48% 
(403.91 km

2
) of the total area. The soils of this 

zone are located mainly in old cultivated soils 
and some newly cultivated soils. The second 
zone is characterized by poor soil quality and 
covers about 27.75% of the area (198.45 km

2
). 

This class is observed in some newly reclaimed 
soils and desert soils. These soils have low 
values of favorable studied indicators, negatively 
affecting the SQI. The third zone is very poor 
quality and covers about 15.77% (112.78 km

2
) 

and is located mainly in desert soils with a low 
content of beneficial and high content of non-
beneficial studied indicators. Finally, the present 
work confirmed that the geostatistical technique 
and TOPSIS are accurate and effective 
assessments of the SQI. 
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