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We propose a locomotion framework for bipedal robots consisting of a new motion
planning method, dubbed trajectory optimization for walking robots plus (TOWR+), and a
new whole-body control method, dubbed implicit hierarchical whole-body controller
(IHWBC). For versatility, we consider the use of a composite rigid body (CRB) model
to optimize the robot’s walking behavior. The proposed CRB model considers the floating
base dynamics while accounting for the effects of the heavy distal mass of humanoids
using a pre-trained centroidal inertia network. TOWR+ leverages the phase-based
parameterization of its precursor, TOWR, and optimizes for base and end-effectors
motions, feet contact wrenches, as well as contact timing and locations without the
need to solve a complementary problem or integer program. The use of IHWBC enforces
unilateral contact constraints (i.e., non-slip and non-penetration constraints) and a task
hierarchy through the cost function, relaxing contact constraints and providing an implicit
hierarchy between tasks. This controller provides additional flexibility and smooth task and
contact transitions as applied to our 10 degree-of-freedom, line-feet biped robot DRACO.
In addition, we introduce a new open-source and light-weight software architecture,
dubbed planning and control (PnC), that implements and combines TOWR+ and IHWBC.
PnC provides modularity, versatility, and scalability so that the provided modules can be
interchanged with other motion planners and whole-body controllers and tested in an end-
to-end manner. In the experimental section, we first analyze the performance of TOWR+
using various bipeds. We then demonstrate balancing behaviors on the DRACO hardware
using the proposed IHWBC method. Finally, we integrate TOWR+ and IHWBC and
demonstrate step-and-stop behaviors on the DRACO hardware.
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1 INTRODUCTION

Planning dynamically feasible motions for humanoid robots is a challenging problem. One difficulty
arises from the need to use contact forces to control legged locomotion while conforming to terrain
elevation and friction constraints. Robustly tracking planned motions in humanoids is yet another
difficulty as they need to fulfill multiple task objectives and deal with redundancy and floating base
dynamics. To facilitate humanoid mobility in diverse terrains and whole-body control for trajectory
tracking, this paper proposes three methods: 1) a trajectory optimization for walking robots plus
(TOWR+) for versatile dynamic locomotion planning, 2) an implicit hierarchical whole-body
controller (IHWBC) for effective multi-objective trajectory tracking for legged systems, and 3) a
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planning and control (PnC) software package to create complex
mobility behaviors in diverse humanoid robots.

1.1 Dynamic Locomotion Planning for
Legged Robots
We characterize different dynamic models used for locomotion
planning purposes. Dynamic locomotion has been studied using
point mass models (PM) with predefined footholds and step
timings (Koolen et al., 2012; Englsberger et al., 2015; Ahn et al.,
2018) and PM models’ variations to account for swing foot
angular momentum (Faraji et al., 2019; Seyde et al., 2018; Ahn
et al., 2020). These approaches are computationally efficient but
require the contact schedule and the swing foot trajectories to be
predefined by experts. This lack of automatic scheduling and foot
swing trajectory optimization limits significantly their ability to
realize complex behaviors.

To generate more complex and capable motions, Dai et al. (2014),
Carpentier andMansard (2018), Ponton et al. (2018) used a centroidal
momentum (CM) model that projects all linkage motions onto a six-
dimensional floating base, and has been used to optimize the
momentum and reaction wrench trajectories with simplified
feasibility assumptions about the robot kinematics and actuation.
While Dai et al. (2014) incorporated linear complimentary
formulations to automatically optimize contacts schedules,
Kuindersma et al. (2016), Ponton et al. (2021) leveraged a separate
contact planner formulated as an integer programming, to enable the
optimization of contact sequences. This decoupling between the
contact sequence optimization and motion optimization allows for
reducing computational complexity but at a price: geometrically chosen
contact sequences do not guarantee dynamical feasibility. In addition,
the CM model does not include a robot’s base orientation in its state
vector, which is significantly limiting for motions that involve, for
instance, turning. The CM model additionally requires a full-
kinematics model for further optimization of the base orientation.

Hereid et al. (2016), Mastalli et al. (2020) used a full-order (FO)
model, that includes both a floating base and joint dynamics, and
considered to optimize the joint state and torque trajectories of
robots. Mordatch et al. (2012), Posa et al. (2013) formulated multi-
contact dynamics as a contact complementary problem and
automatically optimize contact interactions with the
environment while simultaneously considering joint trajectories.
Although these approaches demonstrate complex locomotion
behaviors and discovery of novel contact sequences, they are
often incapable of being used for receding horizon control
because of the complexity of the FO model.

As amoderate complexity option,Winkler et al. (2018) proposed
a trajectory optimization for walking robots (TOWR) algorithm
using a single rigid body (SRB) model. The SRB model assumes a
constant inertia embedded in a CM model and allows for further
optimization of the base orientation and feet position trajectories
without involving a full-kinematic model. Moreover, TOWR
optimizes contact sequences and timing without solving an
integer programming or complementary problems. This
framework is highly versatile to discover new gait patterns and
motions with minimal predefined information yet is still
computationally efficient thanks to a novel phase-based

parameterization. Unfortunately, the SRB model uses a constant
inertia tensor for articulated robots without considering the limbs’
inertia and assumes a robot morphology based on point-feet. While
these are reasonable assumptions for quadrupeds, they oversimplify
the dynamics of humanoids. Table 1 summarizes some properties
of various legged robots1, where the quadruped ANYmal, has a
point-feet with a light-weighted leg, while the compared humanoids
have line-feet or surface-feet with significantly heavier legs. As such,
the DRACO, ATLAS, and Valkyrie humanoids have larger
centroidal inertia variations across its joint ranges and require a
more delicate model than the SRB model2.

To better handle dynamic motion planning of humanoids, this
paper formulates a trajectory optimization algorithm, dubbed
TOWR+, that leverages TOWR’s phase-based parameterization
but is tailored to humanoid and legged robots with wrench contact
constraints and non-negligible centroidal inertia variations. To be
more specific, we include reaction torque trajectories on the contact
surfaces and end-effector orientation trajectories in the decision
variables. This extension enables to consider humanoids with line
or surface contacts and allows for the use of legs or other limbs with
higher degrees-of-freedom than quadrupeds. In addition, we
incorporate a composite rigid body (CRB) model to take the
configuration dependent centroidal inertia into account. To
compute the centroidal inertia without a full-kinematic model
in the optimization process, we pre-train a regressor that maps
floating base and end-effector configurations to the centroidal
inertia tensor. We then provide an analytic expression of the
trained network and its Jacobian to the optimizer.

1.2 Whole-Body Control
There are various types of WBC frameworks addressing the
transcription of hierarchies between tasks, and unilateral
contact constraints. Task hierarchies are important in WBCs
to ensure that higher priority tasks will not fail due to conflict
with lower priority tasks. There have been studies that impose a
strict hierarchy on tasks, where Sentis and Khatib (2005), Kim D.
et al. (2019), Kim et al. (2020) used null space projections and
Saab et al. (2013), Herzog et al. (2016) solved a hierarchical
quadratic program (QP). Strict hierarchies are attractive because

TABLE 1 | Summary of properties of various legged robots. We have sampled 105

random configurations for all robots, computed the centroidal inertia tensor,
and calculated the standard deviations for Ixx, Iyy, and Izz.

ANYmal B Cassie DRACO ATLAS Valkyrie

Foot type Point Line Line Surface Surface
Leg DOFs 3 5 5 6 6
Leg weight (kg) 3.40 10.76 16.27 18.11 24.76
Inertia Ixx 0.15 0.26 1.36 3.81 4.69
Variation Iyy 0.43 0.23 0.81 3.25 4.14
(kgm2) Izz 0.44 0.22 1.37 2.86 2.41

1The properties of the robot are taken from the descriptionfiles in the following repositories:
https://github.com/ANYbotics/anymal_b_simple_description (ANYmal B), https://github.
com/erwincoumans/pybullet_robots (Cassie, ATLAS), https://github.com/gkjohnson/nasa-
urdf-robots (Valkyrie), and https://github.com/junhyeokahn/PnC (DRACO).
2Exceptionally, Cassie has the leg actuators carefully located near the torso, which
results in less variation of centroidal inertia being an atypical humanoid.
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they allocate robots’ resources (i.e., actuators) to accomplish
higher priority tasks first and relax the enforcement of lower
priority tasks. However, these techniques require an additional
mechanism to compute a smooth and continuous transition
between tasks as studied in Lee et al. (2012), Kim S et al.
(2019). As another line of research, Wiedebach et al. (2016),
Feng et al. (2014), Kuindersma et al. (2016), Apgar et al. (2018)
imposed implicit hierarchies by directly describing the desired
task space motions in the cost function with different weighting
factors. Tasks weighted with larger weights result in higher
priority than tasks with smaller weights. These WBCs lose the
enforcement of strict dynamically consistent guarantees on the
priorities, but win on being more intuitive and providing
smoother transitions than WBCs with strict hierarchies.

WBCs typically enforce unilateral contact constraints to
prevent contact penetration and slip, which can be expressed
as zero accelerations of the contact bodies. Similarly, there are
approaches that model contact constraints as a hard constraint
through a null space projection technique (Sentis and Khatib,
2005; Saab et al., 2013; Kim et al., 2018) or equality constraint
(Kuindersma et al., 2016; Koolen et al., 2016; Herzog et al., 2016).
Although such approaches model exact unilateral constraints,
they generate discontinuous torques during contact switches. As
an alternative, Feng et al. (2014), Kim D. et al. (2019), Kim et al.
(2020), Wiedebach et al. (2016), Apgar et al. (2018) modeled
contact constraint as soft constraint by minimizing contact
accelerations using weighting factors in the cost function. This
allows for smooth contact switching through continuous
interpolation of the weighting factors.

WBCs provide multi degrees-of-freedom control and are often
integrated with a joint-level controller. For examples, Herzog et al.
(2016), Kim et al. (2018) integrated their WBCs with a joint-level
torque controller, while Feng et al. (2014), Kim et al. (2020)
incorporated a joint-level position controller to handle model
mismatch and provide stiff position behaviors. However, Feng
et al. (2014), Kim et al. (2020) solved an inverse kinematics
problem and compute joint kinematic targets, which can result
in inconsistencies between the desired joint position commands
and the dynamically consistent joint movements. To resolve this
issue, Kuindersma et al. (2016), Koolen et al. (2016) instead
integrated joint accelerations to obtain joint position commands.

In this paper we devise a newWBC framework, dubbed IHWBC.
It employs an implicit hierarchy betweenmultiple tasks and formulates
unilateral contacts using soft constraints to provide continuous task
and contact transitions, as well as more versatile task allocation. In
addition to tracking the desired motion tasks, IHWBC tracks desired
reaction wrench commands provided by motion planners and
computes joint torque commands. It also computes joint position
and velocity commands by integrating joint acceleration, which can
then be fed to low-level joint position controllers. Although each
individual feature embodied in IHWBChas been previously proposed
in other WBC frameworks, this is the first time that we combine the
best of all into a single IHWBC framework with an emphasis on
versatility and ease of use for biped robots and humanoids.

In our previous work (Ahn et al., 2019; Kim et al., 2020), we
successfully achieved unsupported dynamic stepping with
DRACO using a PM model-based reactive footstep planner

and a projection-based WBC. However, the dynamic stability
required continuous stepping without the ability to halt, which is
not suitable for loco-manipulation tasks that require the robot to
have zero velocity at the end of each movement (Jorgensen et al.,
2020). Unlike other bipeds, DRACO has line-feet provided by five
degrees-of-freedom per leg, and non-negligible mass distribution
of its limbs. While similar to Cassie, DRACO has heavier legs and
has up to 5x inertial variations as summarized in Table 1. For
precise walking control of DRACO, we need to consider the leg’s
inertia and its angular momentum during fast swinging motions
as reported by Kim et al. (2020), Wiedebach et al. (2016). In other
words, we need to use an accurate model that can captures
DRACO’s heavy distal mass in motion planning as Faraji et al.
(2019), Seyde et al. (2018) used a three-linear-pendulum and a
lumped mass model, respectively. To further support our claims,
Figure 1 shows how a robot’s mass distribution and foot size
affect the performance of its walking and control. Taking into
consideration all of this, we integrate the proposed TOWR+
planner and IHWBC controller and demonstrate it in the
DRACO biped robot to balance and stop at every step.

1.3 Open-Source Software Framework
Regarding locomotion planning, Crocoddyl (Mastalli et al., 2020), the
multi-contact locomotion planning framework described in
(Carpentier and Mansard, 2018), TOWR (Winkler et al., 2018), the
kino-dynamic optimization framework described in (Ponton et al.,
2021), and the inverted pendulum-based walking patter generator
described in (Caron et al., 2020) have been released open-source and
maintained. Regarding WBC, the task space inverse dynamics
framework described in (Del Prete et al., 2016), OpenSoT (Rocchi
et al., 2015), mc_rtc (Bolotnikova et al., 2020), and mim_control
(Grimminger et al., 2020) have been published open-source. The
packages above focus either on locomotion planning or WBC but
not on both. Therefore, these packages are not self-contained in that
they require external libraries to fully plan and control humanoid
robots. On the other hand, IHMC’s open-robotics-software
(IHMCRobotics, 2018) and MIT’s Cheetah-software (Kim S et al.,
2019) included both planning andWBCmodules together andprovide
an end-to-end testing environment.

In this paper, we provide a software architecture, dubbed PnC,
that implements our proposed TOWR+ motion planner and the
IHWBC feedback controller. PnC implements the building blocks
with sufficient abstraction of the tasks and constraints, such that it
can be used with IHWBC but also with other WBC controllers or
motion planners from third parties. Our software package contains
various important modules such as physics simulators, a rigid body
dynamics library, motion planners, and whole-body controllers so
that users can connect their own motion planner or controller and
evaluate it in an end-to-end manner with minimal external
dependencies. Another unique feature of PnC is that we provide
it in two different languages: a C++ version3 for those who are
interested in the real-time performance, and a Python version4 for
those who want to simply prototype and test their ideas.

3https://github.com/junhyeokahn/PnC
4https://github.com/junhyeokahn/PyPnC
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1.4 Contribution
We highlight the key contributions of the paper:

• We propose a motion planning framework, dubbed
TOWR+, that employs a CRB model and efficiently
solves for robot body motions, end-effector motions and
contact wrenches, and contact sequences, timings, positions
and orientations. The CRB model is a simplified floating
base model but is informative enough to consider the inertia
effects of heavy robots limbs for planning thanks to the use
of centroidal inertia network. We demonstrate various
locomotion behaviors including a multi-contact case on
multiple humanoid robots using TOWR+ with thorough
analysis. We demonstrate that TOWR+ is able to discover
arm motions to shape the robot’s composite inertia while
walking, which is a unique capability that other simplified
model-based planners haven’t achieved.

• We propose a whole-body controller, dubbed IHWBC, that
considers an implicit hierarchy between tasks and soft
constraints to account for unilateral contacts. IHWBC
tracks the desired reaction wrench commands from our
planner and computes joint torque commands. It also
computes joint kinematic commands by integrating joint
accelerations, which can be forwarded to low-level joint
controllers. IHWBC allows smooth task and contact
transitions, as well as a flexible task management, which
is an important feature to control humanoid robots. We
demonstrate experimental results on DRACO performing
lateral swinging motion of its center of mass (COM) in
double support phase by following a sinusoidal trajectory
using IHWBC.

• We provide a lightweight and open-source software
package, dubbed PnC, that integrates planning and
control modules altogether, enabling an end-to-end
evaluation environment with a focus on modularity,
flexibility, and generality. The software package includes
TOWR+ and IHWBC, but other algorithms can also be
seamlessly integrated in the framework.

• Finally, we pair our TOWR+ and IHWBC components and
evaluate locomotion behaviors under unknown disturbances
in a physics simulator. We also experimentally demonstrate
that DRACO can take a step and stop with zero velocity by
capturing the full floating base state using our TOWR+ and
IHWBC. To the best of our knowledge, this zero-velocity
capture behavior on a line-foot biped with significant leg
mass and centroidal inertia variations has not been achieved
with simplified model-based planners and WBCs.

2 TOWR+

We propose a new motion planning framework dubbed TOWR+
for humanoids by leveraging the previous study, called TOWR, by
Winkler et al. (2018). Our TOWR+ motion planning framework
is shown in Figure 2. Similarly to TOWR, TOWR+ takes initial
and final robot body states, the desired duration of the
locomotion trajectory T ∈ R>0, the number of steps for each
foot to reach the final robot state ns,i ∈ N, and the terrain
elevation as an input. TOWR+ uses this information to find
the COM trajectory r(t) ∈ R3, base orientation θ(t) ∈ R3, and feet
positions pi(t) ∈ R3, orientations ϕi(t) ∈ R3, reaction forces
fi(t) ∈ R3, and torques τi(t) ∈ R3. Our algorithm automatically
discovers appropriate gait schedules as defined by a phase
duration vector ΔTi ∈ R

2ns,i+1
>0 . Since each foot performs ns,i

steps which includes a swing and a contact phase, the total
number of contact phases for the foot is 2ns,i + 1. To ensure
feasible motions, we employ a CRB model and simplified
kinematic bounds for the feet positions. In addition, we
impose additional constraints on the feet motion and contact
wrenches to ensure that there is no slip on the feet and that
wrenches are produced only while in contact. The decision
variables and the constraints described in Figure 2 are
expressed in Cartesian space for ease of use. By extending
TOWR we benefit by its computational advantages compared
to other hybrid control methods that rely on complex integer
programming or complementarity constraint specifications.

FIGURE 1 | Sensitivity analysis on walking and COM tracking performance based on the robot’s mass distribution and feet size. (A)We created two variations of
ATLAS by reducing its extremities masses and evaluated the resulting walking performance using a PM model-based planner (Englsberger et al. (2015)). As the robot’s
mass distribution resembles a PM model (i.e., its distal mass becomes negligible), the robot is able to achieve faster walking speeds. (B) Similarly, we created two
variations of ATLAS by changing its feet width and evaluated its COM tracking performance duringmovements in the double support stance. As the robot’s feet get
wider, it’s able to track more aggressive sinusoidal trajectories.
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2.1 Phase-Based Parameterization
Similar to TOWR, we discretize the problem for numerical
efficiency and we employ the above collocation method. We
compose feet motions and wrench trajectories using multiple
cubic Hermite polynomials, where each polynomial is defined by
its duration and the positions and derivatives at the start and end of
each node5. For instance, we discretize the base motion trajectories
with a fixed timestep and parameterize their values and derivatives
to solve the collocation problem. Along the base trajectories, we
enforce continuous accelerations at the junction between
polynomials, thus preventing sudden jumps on the contact
points. As for foot motion trajectories, we use a predefined fixed
number of polynomials during the swing phase and a constant
position during the stance phase (since the feet are not moving).We
also use a predefined fixed number of polynomials to compose
contact wrench trajectories during the stance phase and use a zero
wrench value during the swing phase. These parameterizations
ensure that the feet only move during the swing phase and only
generate reaction wrenches during the stance phase. We further
constrain this processes tomake sure that the feet motions and their
wrench profiles are smooth and continuously differentiable during
junctions. The duration of each phase is changed based on the
optimized phase duration ΔTi. Therefore, the duration of each
polynomial during feet motions and contacts is automatically

determined through the optimization process, whereas the
polynomial duration for base motions is fixed in advance.
Figure 3 shows an example of spline trajectories for some of the
decision processes with their phase durations.

2.2 Robot Model
Here, we discuss a kinematic model for reachability and a
new CRB model based on the use of a centroidal inertia
network.

Kinematic model: We consider the relative distance between
the robot’s base and its feet to approximate the kinematic
reachability constraint. Similarly to TOWR, we define the
limits of the feet workspaces using cubes centered at nominal
positions on each foot. As an extension in TOWR+, we further
project each foot’s heading (i.e., the foot frame’s x-axis shown in
Figure 2) onto the transverse plane (i.e., the base frame’s x-y
plane) and keep the angle between the projected foot heading and
the base heading (i.e., base frame’s x-axis) smaller than a
threshold. Thus, we express the kinematic reachability
constraint for the foot i, gk,i (r, θ, pi, ϕi) ≤ 0 as:

|Rw
b (θ(t))[pi(t) − r(t)]︸���������︷︷���������︸

†

− p ̄ i |≤ lmax,∣∣∣∣∣∣∣∣∣∣∣∠⎛⎜⎝
1 0 0
0 1 0

[ ]Rb
eei
(θ(t), ϕi(t))

1
0
0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
︸��������︷︷��������︸

‡

,
1
0

[ ]⎞⎟⎠
∣∣∣∣∣∣∣∣∣∣∣≤ θmax,

(1)

where Rw
b is the rotation matrix of the base frame from the world

frame, Rb
eei is the rotation matrix of the ith foot frame from the base

frame, and p ̄i represents the nominal position of the ith foot from

FIGURE 2 | (A) The TOWR+ locomotion planning algorithm is presented. (B) Illustrative examples of the CRB model are shown for two different biped robot
configurations. The configuration dependent centroidal inertias of the robot are depicted as ellipsoids.

5Given pairs of foot positions, x0 and x1, and their derivatives, x ̇0 and x
̇
1
, at the end

points with time duration ΔT, a polynomial can be fully defined as x(t) � a0 + a1t +
a2t

2 + a3t
3, where a0 � x0, a1 � x ̇

0
, a2 � −ΔT−2(3(x0 − x1) + ΔT(2x ̇

0
+ x ̇

1
)),

and a3 � ΔT−3(2(x0 − x1) + ΔT(x ̇
0
+ x ̇

1
)).
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the base frame. ∠(·, ·) measures the angle between two vectors.
lmax ∈ R3 is the maximum deviation length vector from the
nominal foot position, and θmax ∈ R is the maximum deviation
angle of the projected foot heading from the base heading. Note
that the expression, †, represents the foot position relative to the
base frame with respect to the base frame. The quantity, ‡, denotes
the foot heading (i.e., x-axis) with respect to the base frame, which
will then be projected onto the transverse plane. These kinematic
constraints are enforced at sampled states while performing the
trajectory optimization process.

Centroidal inertia network: The main motivation for
incorporating a centroidal inertia along with the floating base
model is to properly account for the heavy distal mass of most
humanoid robots. However, considering a centroidal inertia with
a floating base model is non-trivial because the centroidal inertia
is a function of the robot’s configuration (i.e., joint positions). To
avoid solving an expensive inverse kinematic problem using the
full kinematic model of a robot during the optimization process,
we pre-train a centroidal inertia network that approximates the
centroidal inertia tensor with respect to the base frame when the
base and end-effectors configurations are given as an input with
the expressions:

Ixx Ixy Ixz Iyy Iyz Izz[ ]u � Ib(r, θ, p1, ϕ1, / , pnee, ϕnee
),
(2)

where I*’s are the inertia quantities at the base frame and Ib: R
6 ×

R6×nee1R6 is the regressor function. The quantities r and θ
represent the robot’s base configuration and pi and ϕi describe the
ith end-effector configuration. One of the benefits of our
composite centroidal inertia network is that it is possible to
provide an analytic expression of the regressor Ib and its
jacobian to the optimization solver, whereas inverse kinematic
approaches do not provide analytic mappings.

For efficient training, we collect data from random sequences
of stepping motions created using a few variables. For instance,
we randomly sample initial and final configurations of the base,
hands, and swinging foot, as well as stance foot configurations

and swing height positions. Then, we interpolate these initial and
final configurations to generate a one-step motion using
Cartesian frame samples. For all these interpolated trajectories,
we collect ndpm samples of the base and end-effectors
configurations, solve full-body inverse kinematics to compute
the robot’s joint configurations along the trajectories, and
compute centroidal inertia tensors. Repeating this procedure,
we construct an input dataset using the base and end-effector
configurations and label it using the exact centroidal inertia
quantities. We then use this dataset to train the centroidal
inertia network. The overall data generation pipeline and
network structure are illustrated in Figure 4.

Composite rigid body model: Finally, we use the pre-trained
centroidal inertia network above during the optimization process
to enforce dynamic constraints. The base frame acceleration is
defined by:

mr ̈ (t) � ∑nee
i�1

fi(t) −mg,

Iwẇ(t) + w(t) × Iww(t) � ∑nee
i�1

fi(t) × (r(t) − pi(t)) + τi, (3)

where m is the mass of the robot, nee is the number of end-
effectors, and g is the gravity vector. Iw is the centroidal inertia
tensor expressed in world frame, which is efficiently predicted by
the centroidal inertia network. Note that the centroidal inertia
network, Ib predicts the output with respect to the base frame, and
we apply a transformation to express it in the world frame. w(t)
represents the angular velocity and can be calculated using the
Euler angle rates θ

̇
(t). We enforce the dynamic constraint at

regular time intervals along the search.

2.3 Contact Model
As stated earlier, we use a phase-based parameterization to
enforce no slip conditions and ensure zero contact wrenches
while the foot is in the air. We optimize the duration of the
polynomials, which determine the contact sequence and timings.
For each foot’s contact phase, we additionally consider the

FIGURE 3 | Spline trajectories for various processes are illustrated. The optimization nodes are represented by dots and the associated slopes at these positions.
Cubic Hermite polynomials connect two consecutive nodes and define spline trajectories. The process trajectories are parameterized by their boundary values at the
collocation nodes along their interval durations. The base motion trajectories are discretized with a fixed timestep dt_base, whereas the feet trajectories and contact
wrenches are discretized with a fixed number of polynomials per phase (two for the swing trajectory, and three for the stance wrenches), whose duration is also an
optimization variable. Below, three timing variables per foot are shown, where ST and SW stand for the stance and swing phase. The combination of feet phases
determine the gait sequence and schedules, where DS, LS, and RS stand for double support phase, left foot swing phase, and right foot swing phase, respectively. Note
that TOWR+ optimizes 6 dimensional motions (pi, ϕi) and wrenches (ft, τ i) for each end-effector, but only few variables are illustrated here.
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contact wrench cone constraint and terrain elevation constraint.
The contact wrench cone constraint, gc,i(τi, fi) � Ui[τi(t),
fi(t)]

u ≤ 0, where Ui ∈ R16×6, ensures Coulomb friction
fulfillment on the resultant force, the center of pressure of the
foot being inside the support area, and the bounds on the yaw
torque being fulfilled (Caron et al., 2015). The terrain elevation
constraint enforces that the entire foot is in contact with the
ground using the expressions:

0 0 1[ ]pi(t) � hterrain
1 0 0
0 1 0

[ ]pi(t)( ),
Rw
eei
(ϕi(t))

0
0
1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � nterrain
1 0 0
0 1 0

[ ]pi(t)( ), (4)

where Rw
eei represents the rotation matrix of the ith foot from the

world frame. hterrain: R
21R is a function that receives a two

dimension location of the terrain map as an input and returns
its height (elevation), and nterrain: R

21R3 takes the same input and
returns the normal vector of the terrain. Physically, these constraints
ensure that the height of the foot matches the ground height and the
contact surface is perpendicular to the terrain normal vector. Note
that the contact wrench cone constraints and terrain elevation
constraints are only enforced when the foot is in the contact
phase and not enforced during the swing phase.

3 IMPLICIT HIERARCHICAL WHOLE-BODY
CONTROL

We propose a new whole-body control framework, IHWBC, that
employs an implicit hierarchy of tasks and soft constraints to
handle unilateral contacts. This formulation enables smooth task
and contact transitions, as well as flexible task management to be
used in diverse legged and humanoid robots. Given desired
task space objectives x ̈d

i
, and a stack of desired reaction forces

f dr , the goal is to find instantaneous joint accelerations q ̈ and
dynamically consistent reaction wrenches fr, that satisfy the
robot’s kinematics and dynamics constraints. The optimal
solutions q ̈* and f *r are then used to compute desired joint
torques τ using forward dynamics. The joint accelerations q ̈*
are subsequently integrated to obtain desired joint velocities and
positions that are then sent to a low-level joint controller in the
robot. As noted by Feng et al. (2014), care must be taken when
integrating joint accelerations to prevent instability problems, such
as wind-up. We follow the integration approaches described in
IHMCRobotics (2018), Jorgensen (2020). Our IHWBC is
formulated as a linear constrained QP:

min
q ̈, fr

∑n
i�1

wi‖Jiq̈ + J ̇ iq̇m − x ̈di ‖2 + wfr‖f dr − fr‖2 + λq‖q̈‖2 + λfr‖fr‖2 (5A)

s.t. Sf (Aq̈ + b + g − Juc fr) � 0, (5B)

FIGURE 4 | (A) This flowchart summarizes the data generation pipeline. (B) An example of a stepping motion in Cartesian space is depicted with randomly sampled
initial and final configurations of the base and end-effectors. The sequence of frames for each Cartesian frame depicts our interpolation process, for instance using six
samples per trajectory. (C) The centroidal inertia network is composed of a multi-layer perceptron that takes the base and the end-effector configuration as inputs and
approximates the inertia quantities as an output.

Frontiers in Robotics and AI | www.frontiersin.org August 2021 | Volume 8 | Article 7122397

Ahn et al. Locomotion Planning and Control

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Ufr ≥ 0, (5C)

Srfr ≤ f max
r , (5D)

q ̈ min ≤ q ̈ ≤ q ̈max, (5E)

τmin ≤ Sa(Aq ̈ + b + g − Juc fr)≤ τmax. (5F)

We now discuss the individual terms of the above optimization.
Task space acceleration objectives: The first term in Eq. 5A

describes task space acceleration objectives. The ith task space
acceleration, x ̈di , can be computed using simple task space PD
feedback, i.e., x ̈di � kp,i(xdi − xi) + kd,i(x ̇di − x ̇i), where, kp,i and kd,i
are PD gains. The desired task space position and velocity, xdi and x ̇

d
i ,

are provided by TOWR+ or other motion planners, and the
measured position and velocity, i.e., xi and x ̇i, is obtained via
forward kinematics from joint and IMU sensor data. q ̇m
corresponds to measured joint velocities. Each task has a priority
weight, wi, and uses a task Jacobian Ji to establish a correspondence
with generalize displacements. Unilateral contact constraints are
accounted for by penalizing contact accelerations through assigning
high values to their weights. Our strategy to incorporate non-slip
constraints is to set the desired positions and velocities as the current
ones (i.e., xdi � xi and x ̇di � x ̇i). Placing a high weight value on
contact tasks is akin to projecting lower priority tasks in the contact
null space. In summary, our new IHWBC imposes an implicit
hierarchy between tasks through the use of task weights and
provides soft constraints to handle contacts.

Smooth task and contact transitions: Using IHWBC, we
guarantee smooth task transitions by changing the relative
weights wi for all tasks i. To transition from an old task
weight, wold

i , to a target task weight, wtarget
i , we perform the

following linear interpolation:

wupdate
i � (1 − s(t))wold

i + s(t)wtarget
i (6)

where s: R1[0, 1] is a monotonic scalar function of time, t,
whose output goes from 0 to 1. For instance, given a task
transition time, Ttransition, s(t) is defined as:

s(t) � t
Ttransition

. (7)

Desired reaction wrenches: The next term in the cost function,
Eq. 5A, tracks desired reaction forces, f dr . A scalar weight wfr is
provided to indicate the relative priority of the force tracking task
compared to tracking task space acceleration tasks. This reaction
force tracking capability is used to track forces provided by
motion planners, such as feet reaction forces or desired
manipulation forces.

Regularization and smoothing terms: Regularization costs λq
and λf in Eq. 5A are incorporated to the decision variables, q

̈
and

fr, respectively, to ensure that the QP cost terms are positive
definite as certain configurations, q, can cause task Jacobians, Ji, to
be near singularities. Without these regularization terms, the QP
can encounter numerical issues as some QP solvers require the
quadratic cost matrix to be strictly convex (Goldfarb and Idnani,
1983; Turlach and Weingessel, 2011).

Dynamics constraint on floating base: The equality constraint Eq.
5B enforces floating base dynamics, where Sf is a selectionmatrix that
extracts the first six rows of the generalized dynamics equation. A, b,

g, and Jc are the mass matrix, centrifugal and coriolis force, gravity
vector, and the concatenation of contact Jacobians, respectively.

Contact wrench cone and maximum force constraints: The
constraints defined by Eqs 5C,D are the contact wrench cone and
maximum force constraints, respectively. The matrix U changes
depending on the contact type. Typically, the types of contacts
include point, line, or surface contacts (Park and Khatib, 2008).
The matrix Sr is a selection matrix used to bound a specific
reaction force to a maximum value described by the maximum
force vector fmax

r . In practice, we select the normal direction of the
reaction forces and bound them from above while bounding the
tangential force directions using the cone constraints. When a
robot makes or breaks contact, we smoothly increase or decrease
the upper bound so that the robot has smooth transitions. Note
that for each non-slip contact constraint that is defined, we need
to incorporate a position task defined at the contact frame to
ensure near zero accelerations.

Kinematic constraints: We also specify minimum and
maximum joint acceleration limits as shown in Eq. 5E.
Alternatively, joint acceleration bounds can be enforced using
position and velocity limits. For instance, assuming an integration
time of Δt and using Euler integration, the acceleration limits are
bounded by the joint position and velocity limits as:

q ̇ min ≤ q ̈Δt + q ̇m ≤ q ̇max, qmin ≤
1
2
q ̈Δt2 + q ̇mΔt + qm ≤ qmax, (8)

where q ̇m and qm are the measured joint velocity and position,
respectively. A conservative limit can also be enforced by over-
estimating the integration time Δt. To account for all possible
joint and velocity limits expressed as joint acceleration
constraints, the reader can refer to Del Prete (2018).

Torque limits: Actuator saturation constraints are defined in
Eq. 5F, where Sa is a selection matrix that extracts the bottom
rows of the generalized dynamics equation corresponding to
actuated joints. Once the QP solution q ̈* and f *r are obtained,
the optimal joint torque command can be obtained using:

τcmd � Sa(Aq ̈* + b + g − Juc f
*
r). (9)

Using the integration schemes described in IHMCRobotics
(2018), Jorgensen (2020) we then compute qcmd and q ̇cmd, which
will then be executed by a low-level joint position controller. The
torque input for each joint can be computed as:

τ joint � τcmd + kp(qcmd − qm) + kd(q ̇cmd − q ̇m), (10)

where kp and kd are the PD gains of the low-level controller.

4 PNC SOFTWARE ARCHITECTURE

We introduce a new open-source and light-weight software
architecture, dubbed PnC, that implements and combines
TOWR+ and IHWBC with control tools to design new
behaviors. The main goal of PnC is to provide various
modules for planning, whole-body control, simulation, rigid
body dynamics, and utilities, such that they can be executed
with minimal external dependencies. Figure 5 shows the overall
PnC architecture described in more detail below.
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Interface: PnC can be seamlessly employed for real-time
experiments or virtual simulations. The communication is
handled by the Interface class which takes SensorData inputs
and returns Command as computed by PnC. Here, SensorData
contains joint encoder measurements, force and torque data,
IMU data, and camera data, and Command consists of desired
joint positions, velocities, and torques to be applied to the robot.
This computational cycle takes place at every servo loop for
simulation or real robot experimentation. Currently, PnC uses the
PyBullet simulator (Coumans and Bai, 2016–2019).

RobotSystem: The StateEstimator class computes the floating
base state estimation using SensorData and updates the internal
robot model using RobotSystem class. RobotSystem is a wrapper
class for rigid body dynamics, such as interfacing with Dart (Lee
et al., 2018) or Pinocchio (Carpentier et al., 2019). The class is
initiated with a robot description file, updates the robot’s
configuration, and implements APIs that return the robot’s
kinematics and dynamics information, such as link Jacobians
and the robot’s mass matrix.

ControlArchitecture: This is the main class that computes
Commands, and it is composed of StateMachine,
TaskContactContainer, and IHWBC. StateMachine includes a
finite number of states, where each one determines distinct
planner or controller parameter. State transitions are triggered
by predefined temporal parameters, contact events, or user
interrupts through the InterruptLogic class. At each state in the
state machine, the TrajectoryManager communicates with the
Planner and updates the desired task accelerations x ̈di and
reaction wrenches f dr . The HierarchyManager updates the
implicit hierarchy between the tasks by modifying the task
weights wi, and the ReactionForceManager updates the
maximum reaction force fmax

r . Note that continuous changes to
wi and fmax

r ensure smooth task and contact transitions. The
TaskContactContainer contains a list of Tasks and Contacts that
are used in IHWBC and which provide APIs for returning the
quantities required to solve the QP optimization described in Eq. 5.

PnC provides a predefined task and contact library that can be
reused in otherWBC implementations thus allowing flexible use for
different applications. Currently, four tasks and two contact types
are provided in the library: joint position task, Cartesian position
task, orientation task, COM task, point contact, and surface contact.
IHWBC solves a QP optimization and integrates the resulting joint
accelerations to compute τcmd, qcmd, and q ̇

cmd
, which are then sent

to the robot using the Command class.

5 RESULTS

In this section, we evaluate our planning algorithm, TOWR+, and
the whole-body control framework, IHWBC, with various robots
in both simulation and real hardware. The simulation and
experiment videos are available at https://youtu.be/
XionNtDvM20.

5.1 TOWR+
We demonstrate a variety of motions generated with TOWR+
algorithm. We also study the effectiveness of our CRB model
which employs the proposed centroidal inertia network. Finally,
we perform a numerical complexity analysis of the TOWR+
algorithm.

5.1.1 Illustrative Examples
Here, we consider various locomotion tasks with the NAO robot
from SoftBank (Shamsuddin et al., 2011), Valkyrie from NASA
(Radford et al., 2015), and ATLAS from Boston Dynamics. Before
solving the trajectory optimization, we first trained a centroidal
inertia network for each robot. To create the dataset, we followed
the pipeline shown in Figure 4. We considered the robots’
kinematic limits and use them to sample a wide range of
parameters so that the dataset includes configurations for
many types of locomotion. The probability distribution used
for sampling can be found in the open-source code repository

FIGURE 5 | The PnC software architecture is presented with the computation flow and the individual class objects. PnC communicates with a physics simulator or
the real robot hardware via the Interface class by receiving the robot’s information and returning a command. Internally, PnC estimates the robot’s states, and solves
forward kinematics and dynamics using a rigid body dynamics library. Manager blocks update the task hierarchy weights, desired task accelerations, and the reaction
force upper bounds based on finite state machines, which will then be used in the IHWBC module to compute the target joint positions, velocities, and torque
commands.
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we mentioned earlier. We generated 104 end-effectors’ motions
and then collected 15 data points per motion. We built the
centroidal inertia network using a multi-layer perceptron with
two hidden layers containing 64 nodes and tanh activation
functions for differentiability. Finally, we obtained an analytic
expression of the trained regressor and its Jacobian with respect
to the inputs using the CasADi tool (Andersson et al., 2019).

Equipped with the trained centroidal inertia network, we
generated various motions on the NAO, Valkyrie, and ATLAS
moving in different terrains, as shown in Figure 6. For each
example, we specified an initial and final state of the system, total
duration of the motion, the number of contacts for each end-
effector, and terrain information to generate a desirable walking
trajectory. More detailed problem specifications including terrain
information can be found in the provided code repository. We
then solved for the base motion trajectories, [r(t), θ(t)], each end-
effectors’motions [pi(t), ϕi(t)] and wrench trajectories [fi(t), τi(t)],
as well as the time duration for each phase (ΔTi). As shown in
Subfigures 6A to 6H, our TOWR+ motion planner generated
various locomotion behaviors including running over a cluttered
terrain and jumping over a ground block by optimizing the phase
duration vectors. By including the arms in the optimization

process, TOWR+ discovered new arm motions that modify
the robot’s composite inertia as shown in Subfigures 6I and 6J.
For instance, the NAO robot adapted its centroidal inertia using
its arms such that the volume of its inertia ellipsoid changed by
13% during forward walking (Figure 6I) compared to the case
without arm motions (Figure 6A). To the best of our knowledge,
inertia shaping capabilities using arm motions used for complex
terrain locomotion planning have not been achieved by other
simplified model-based motion planners. Finally, TOWR+
successfully produced motion trajectories to handle multi-
contact scenarios as shown in Figure 6K.

For all examples in Figure 6, we discretized the base motion
trajectories with a 0.1 s timestep. We used two polynomials to
represent the foot motions during the swing phase and three
polynomials for the contact wrench profiles during the stance
phase. We enforced kinematic reachability constraints every
0.08 s and dynamics constraints at every 0.1 s. We imposed
the terrain elevation constraint and the contact wrench cone
constraint only at the junctions of the feet polynomials, but these
constraints could be enforced with a finer granularity. For the
stair and the block shown in Figures 6G,H,J, we smoothly
increased or decreased the height around the edges with a

FIGURE 6 | Various motions generated with TOWR+ using different robots are illustrated; (A) Forward walking, (B) side walking, (C) turning, (D) side walking while
turning, (E) forward walking while turning, (F) cluttered terrain running, (G) stair climbing, and (H) hopping down a block. (I) and (J) illustrate forward walking and hopping
down behaviors, while performing arm motion optimizations. (K) demonstrates cluttered terrain walking of Valkyrie while making multi-contact motion using its hands.
For visualization we solve the robot’s inverse kinematics using the trajectories computed by TOWR+ and display the resulting joint motions.

Frontiers in Robotics and AI | www.frontiersin.org August 2021 | Volume 8 | Article 71223910

Ahn et al. Locomotion Planning and Control

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


small margin so that the solver could access the gradient information
of the terrain. Finally, we solved the optimization problem using the
Interior point method solver, Ipopt (Winkler, 2018).

5.1.2 Quantitative Analysis
First, we study solution trajectories for the example shown in
Figure 6E. The solution trajectories for this example are shown in

FIGURE 7 | We illustrate the trajectories for Valkyrie walking forward while turning. The upper left figure shows the motions in Cartesian space with varying
centroidal inertia ellipsoids.
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Figure 7. As mentioned, the optimization nodes for the base
motions are equally distributed with a 0.1 s interval, whereas the
nodes for the feet motions and wrenches are defined based on the
contact phase. For instance, the feet motions in swing mode and
the wrench profiles in stance mode are represented with two and
three polynomials respectively. At the same time, a single
polynomial with a constant value is used to represent the
stance phase of the feet. Another polynomial with zero value
is used to represent the wrench trajectories during the swing
phase. This strategy ensures that the feet do not slip during
contact and do not generate wrenches in the air. The gait pattern
and schedule are also optimized using the phase duration
variables, ΔT1 and ΔT2.

We now evaluate the centroidal inertia network during the
walking and turning behavior shown in Figure 6E. At every 0.1 s,
we solved the inverse kinematics problem using the output
trajectories and computed ground truth centroidal inertia tensor
and angularmomentum rate. Then, we computed the average root-
mean-squared percentage errors for the robot’s inertia and angular
momentum rate when using our network’s predictions with respect
to ground truth values. For comparison, we also implemented
TOWR+ with a constant centroidal inertia tensor computed at a
nominal pose instead of using the composite centroidal inertia
network, and computed the previous errors again. As shown in
Table 2, the centroidal inertia network provides much more
accurate predictions, which means that the solution trajectories
are achieved with higher fidelity.

We also study computational efficiency of our centroidal
inertia network by measuring computation time to evaluate
our network and its Jacobian during the optimization process.
We take the example with Valkyrie shown in Figure 6E. The
evaluation of the regressor function and its Jacobian took place at
8,216 and 39,840 times during the optimization and took 0.37 and
5.58 s, respectively. To compare this, we solve the robot’s inverse
kinematics (Buss, 2004) to obtain joint positions and then obtain
the centroidal inertia instead of using our pre-trained centroidal
inertia. With the inverse kinematics method, the total evaluation
time of the centroidal inertia tensor and its Jacobian took 49.72
and 4,302.72 s, respectively. Note that we provided an analytic
expression of the regressor network and its Jacobian to the solver,
but in the inverse kinematics approach, we had to use the
numerical Newton-Raphson method and the finite difference
method.

Finally, we perform a numerical complexity analysis of our
trajectory optimization framework. As illustrated in Figure 8, we
defined six different forward walking behaviors with different
goal distances, total duration of the motion, and total number of
steps. For each case, we counted the number of decision variables,
constraints, optimization iterations with respect to the wall-clock

time. As the complexity increases linearly, the number of decision
variables and constraints increases linearly too, whereas the wall-
clock time to solve the problem increases almost linearly. The
number of iterations to find a solution remains the same,
regardless of process complexity during forward walking tasks.
The numerical computations performed in this section were run
on a single core of an Intel I7-4770HQ at 2.5 GHz.

5.2 IHWBC
Here, we tested our biped DRACO robot balancing using
IHWBC. As shown in Figure 9, the StateMachine class that
we used consists of a sequence of six different states to achieve the
desired balancing behavior.

Initialize: DRACO is initialized in the air where its base (i.e.,
torso) is supported by an overhead gantry with guidance from the
experimenter. During the Initialize phase, DRACO moves its
joints to a predefined target configuration for standing by
employing reaction forces with the support ground. To be
more specific, IHWBC controls the 10-dimensional joint
positions and the 3-dimensional base position using a 3-
dimensional reaction force from the base support contact. The
desired base motions are controlled with zero accelerations with a
high task weight to be fixed, while the desired joint motions are
controlled using an interpolation between initial and target
configurations. The Initialize phase lasts for 2 s and then
switches to the Stand phase.

Stand: In this phase, DRACO uses the reaction forces from the
ground to lift itself up. During this phase, IHWBC performs a
smooth task transition from one task set (i.e., joint task and base
position task) to another task set [i.e., 3-dimensional COM task,
3-dimensional base orientation task, 6-dimensional left and right
foot SE(3) tasks] as well as a continuous contact transition from
one contact set (i.e., base support contact) to another contact set
(i.e., 6-dimensional left and right foot contacts6). The smooth
changes of the task weights andmaximum normal force in Figure
9 ensure continuous task and contact transitions. Next, the
desired trajectories for the COM are determined by
interpolating between initial and target positions, where the
target x and the y position correspond to the middle of the
feet and the target height z is set to be 0.7 m. The desired
orientation for the base frame is set to be identical to the
world frame. The desired accelerations for the feet motion
tasks are set to zero to ensure the fulfillment of unilateral
contact constraints. The Stand phase lasts for 4 s and switches
on to the Balance phase.

Balance: During this phase, DRACO balances without any
support from the overhead gantry or experimenter. During this
phase, IHWBC maintains the COM and base orientation steady
and forces the feet accelerations to become zero to prevent
slipping. There are no contact forces from the handles due to
experimenter interactions, and the feet control their reaction
wrenches for balancing. The Balance phase lasts until receiving a
user interrupt via InterruptLogic and then switches to the Sway
phase.

TABLE 2 | Average root-mean-squared percent errors of the centroidal inertia (Ixx,
Iyy, Izz) and angular momentum rate (L̇ ) predictions when using our trained our
centroidal inertia network and a constant inertia computed at a nominal pose.

Ixx Iyy Izz L ̇

Centroidal inertia network 1.05 (%) 0.43 (%) 0.114 (%) 0.99 (%)
Constant inertia at nominal pose 10.69 (%) 9.41 (%) 8.05 (%) 8.91 (%)

6DRACO’s line-foot is approximated using a narrow surface contact.
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FIGURE 8 | Complexity analysis for TOWR+ is shown here for six different forward walking behaviors each defined with a different specification. As the complexity
of the problem increases linearly (i.e., the goal distance, total duration, and number of steps), the number of decision variables and constraints increases linearly, while the
wall-clock time to solve the problem increases almost linearly.

FIGURE 9 | A sequence of snapshots of the balancing experiment are shown. Different sets of tasks and contacts are considered for each behavior phase. Using
task weights we impose unilateral contact constraints and implicit hierarchies. The maximum normal forces (i.e., fmax

r in Eq. 5) during the Stand phase are smoothly
changed. The lateral COM trajectories (i.e., COM y) are also illustrated.
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Sway: In this state, the desired lateral motions for the COM
task are determined using a sinusoidal trajectory planner using
0.04 m for the amplitude and 0.3 Hz for the frequency. The other
tasks and contacts are kept identical to those from the previous
Balance phase. The tracking performance in the lateral direction
is shown in Figure 9.

During this balance experiment, we determined the desired
joint accelerations using IHWBC and integrated them to
provided the desired joint position and velocity commands to
send to the low-level controller of the robot.

5.3 End-to-End Evaluation
Here, we integrate our TOWR+ and IHWBC algorithms and
evaluate the full PnC framework both in simulation and in
hardware experiments.

5.3.1 ATLAS Walking With Unknown Disturbances
We compute ATLAS walking trajectories using TOWR+ and
stabilize the robot using IHWBC in the physics simulator,
PyBullet (Coumans and Bai, 2016–2019). As shown in Figure
10, we consider a case involving forward walking while turning
and another case involving stair climbing. While controlling the
robot, we generated random disturbances by throwing a 500 g
soccer ball every 1 s. IHWBC rejected successfully the
disturbances and achieved robust locomotion behaviors
without falling.

5.3.2 DRACO Step-and-Stop Experiment
In this section, we integrate TOWR+ and IHWBC to demonstrate
step-and-stop behaviors using the DRACO biped. Figure 11
shows three consecutive step-and-stop motions. Similarly to
the balance experiment, we initialize the robot to the Balance
phase. Then, an InterruptLogic (e.g., keyboard stroke) initiates
TOWR+ to generate step-and-stop trajectories. Here, the robot
swings either its left or right foot and stops at the nominal
standing pose for 1.2 s. Once a solution is achieved by
TOWR+, phase transitions are triggered based on the phase
duration while the robot is stabilized along the trajectory using
IHWBC.

ContactTransitionEnd (CTE): In this phase, we take off a small
portion (i.e., 0.1 s) of the last part of the double support phase
(i.e., Balance phase) and modify it to achieve smooth task and

contact transitions. More specifically, CTE employs feet motion
tasks, COM position task, and base orientation task, as well as feet
contacts. Here, we continuously reduce the task weight and
maximum normal force for each foot about to start swinging
so that the robot can smoothly break contact. In this transition
phase, the desired accelerations for the swinging foot are still zero,
but the unilateral contact constraint becomes weaker as the task
weight decreases. Similarly, IHWBC reduces the reaction forces
from the swinging foot via reducing the maximum normal force
fmax
r . The task weights and the maximum normal force during
this phase are illustrated in Figure 11.

Swing: In this phase, the robot swings its leg using the
trajectories computed by TOWR+. The phase employs the
same type of tasks then CTE but with an implicit priority
order as follows: contact foot motion task, swing foot motion
task, COM task, and base orientation task. During step-and-stop
motions, the desired foot and COM trajectories are shown in
Figure 11. We also illustrate the desired normal direction of the
contact reaction forces computed by IHWBC during swinging.

ContactTransitionStart (CTS): In this phase, we take off a
small portion (i.e., 0.1 s) of the double support phase (i.e., the
Balance phase) and modify it to achieve smooth task and contact
transitions. CTS employs the same tasks and contacts as in the
Swing phase but continuously increasing the task weight and
maximum normal force of the swinging foot so that the robot can
smoothly make contact. The task weights and max normal force
during this phase are illustrated in Figure 11.

In summary, we have incorporated the proposed TOWR+ and
IHWBC algorithms to achieve step-and-stop motions with
DRACO. Thanks to the use of the CRB model in TOWR+, we
have been able to plan dynamic motion trajectories employing
accurate centroidal inertia information compared to other
simplified model-based planners, such as the inverted
pendulum-based planner. In addition to this, our IHWBC
method provides flexibility for multi task management and
smooth transitioning capabilities for step-and-stop motions
resulting in small foot placement errors (less than 0.036 m as
shown in Figure 11). To the best of our knowledge, stepping
behaviors on a line-foot biped with significant leg mass and
centroidal inertia variations has not been achieved before.
Although this is an achievement of TOWR+ and IHWBC, we
admit that there is a gap between the simulations with other

FIGURE 10 | IHWBC stabilizes the robot along the solution trajectory computed by TOWR+ under unknown disturbances in the physics simulator. (A) ATLAS
walking with a top view of its walking trajectories, and (B) ATLAS climbing a stair with its base trajectories being illustrated.
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robots and the DRACO step-and-stop experiment. In the
following section, we discuss hardware limitations that hinder
simulation like behaviors and future research directions that can
possibly push forward the limits.

6 DISCUSSION

In this paper, we have proposed a trajectory optimization
framework, TOWR+, and a whole-body control formulation,
IHWBC, plus their implementation in an open-source code
repository, PnC. TOWR+ employ a novel composite rigid
body inertia model, CRB, to model humanoid robot dynamics
more accurately than simpler centroidal dynamic model. In
addition, it incorporates extensions to deal with flat feet
contacts including 6D reaction wrenches and SE(3) feet

trajectories. Like TOWR, TOWR+ does not rely on integer
programming or complementarity constraints.

We have demonstrated various advanced locomotion behaviors
on different humanoid robots and conducted a thorough analyses
of complexity of TOWR+. For feedback whole-body control, we
have devised a new algorithm, IHWBC, which establishes implicit
hierarchies between multiple tracking tasks and defines soft
constraints to deal with unilateral contact constraint. This
method allows for smooth task and contact transitions and
provides versatility and ease-of-use for general biped robots and
humanoids. Finally, we have integrated the proposed TOWR+
novel trajectory optimization method and IHWBC to demonstrate
balancing and a step-and-stop behaviors in our real DRACO biped
robot.

Although the step-and-stop experiment has been
implemented in the real hardware, there are a few hardware

FIGURE 11 | A sequence of snapshots for the step-and-stop experiment are shown. Different sets of tasks and contacts are considered for each behavior phase.
Similarly to the balancing experiment, we show the task weights and the maximum normal forces throughout the experiment. The motion in the vertical direction of the
swing foot (i.e., RFoot z) and the lateral COM trajectories (i.e., COM y) are also shown. The normal direction of the reaction force commands (i.e., f *r ) at both feet computed
by IHWBC are also shown. Finally, three sets of desired and actual foot landing locations during the experiments are depicted, where the red and blue color
represent the desired and actual positions, respectively.
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limitations on Draco that hinder more complex demonstrations.
Due to the small line feet and the comparatively heavy distal
mass, the dynamic stability of the robot requires quick swing
motions (<0.3 s) and a small swing height (<3 cm). However,
the physical robot has a motion bandwidth that is upper bounded
by the mechanical linkage structures and the actuation power. In
the step-and-stop experiment, we were able to control the
stepping motion within a 3.6 cm error using IHWBC, which is
enough for one step-and-stop motion but not for continuous
walking.

With that in mind, we consider a few future research
directions. Although TOWR+ is computationally efficient in
discovering novel contact sequences and generating
locomotion trajectories, it is not fast enough to be
implemented as a receding horizon controller, which is
necessary for the robust continuous walking. We are interested
in devising generative models to provide a good initial guess for
warm starting TOWR+. Finally, we are looking forward to
deploying the proposed end-to-end framework in our
upcoming humanoid robot which has biped legs, with 6 DOF
for each of them, and a two arm manipulation torso with an
articulated head equipped with a vision sensor.
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