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Abstract
This paper is concerned with the numerical solution using sinc-collocation method of nonlinear
Fredholm integro-differential equations. The algorithm is based on replacing the exact solution by
a linear combination of sinc functions. The resulting nonlinear equations are treated using Newton
method. Numerical examples illustrate the pertinent features of the method and its applicability to
a large variety. The examples include convolution type, singular as well as singularly-perturbed
problems.
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1 Introduction
Nonlinear phenomena, that appear in many applications in scientific fields, such as fluid dynamics,
solid state physics, plasma physics, mathematical biology and chemical kinetics, can be modelled by
partial differential equation, integral equations or by integro-differential equations.

Nonlinear integro-differential equations are usually hard to solve analytically and exact solutions
are scarce. Therefore, they are treated numerically or semi analytic-numerical methods are used.
Previous treatments of these equations include: The method of upper and lower solutions was used
to study some problems [1,2,3]. Use of Taylor series [4] and computer algebra for nonlinear Volterra-
Fredholm integro-differential equations in [5]. Adomian’s decomposition [6,7] was employed to treat
coupled nonlinear system of Fredholm integro-differential equations. In [8] Adomian decomposition
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was applied to a first order special nonlinear Fredholm integro-differential in two variables. Optimal
order spline methods were used in [9]. Neta [10] employed Galerkin’s method to a special first order
nonlinear Fredholm integro-differential equation in two unknowns. In [11] orthogonal collocation
was applied to a second order Fredholm integro-differential equation. Homotopy perturbation was
employed in [12,13]. Sine-cosine wavelet-Galerkin was used in [14]. Maleknejad and Nedaiasl [15]
employed sinc-collocation method to a class of nonlinear Fredholm integral equation. Also, Haar
wavelet method was applied in [16].

The technique that we used is the sinc-collocation method, which is based on the Whittaker-
Shannon-Kotel’nikov sampling theorem for entire functions. It is introduced by F. Stenger more than
twenty years ago [17]. The use of sinc functions has received much attention from both mathematicians
and engineers alike because of the comprehensive mathematical power and the good application
potentials of sinc function in many interesting problems. This approach, which uses entire functions as
bases, offers ease of implementation and accurate approximation, even in the presence of singularities
and has many advantages over classical methods that use polynomials as bases. It gives a much
better rate of convergence and accuracy than polynomial methods. Indeed, the sinc method is a
powerful alternative for the numerical solution of both integral and differential equations.

This paper describes a novel procedure for solving nonlinear Fredholm integro-differential equations,
based on sinc methods. The method’s implementation requires no modification in the presence
of singularities. The approximating discrete system depends only on parameters of the differential
equation regardless of whether it is singular or nonsingular. The goals of this method are twofold. We
first aim to confirm that the sinc-collocation method is powerful, efficient, and promising in handling
these problems, linear and nonlinear as well. We second aim to support that our work yields accurate
results for illustrative nonlinear problems and comparison with homotopy perturbation method (HPM)
is made.

This paper is a continuation of the previous work of the authors [18,19] to develop sinc-collocation
method for the numerical computations of nonlinear Fredholm integro-differential equations.

The organization of the paper is as follows. In Section 2, we describe the basic formulation of
sinc functions required for our subsequent development. Section 3 is devoted to derivation of the
discrete system. In Section 4, we report our numerical findings and demonstrate the accuracy of the
proposed scheme by considering numerical examples.

2 Sinc Function
In this study, sinc-collocation method is developed for nonlinear second order Fredholm integro-
differential boundary value problem in the form

2∑
i=0

µi(x)u(i)(x) = f(x) + λ

∫ b

a

K(x, t)un(t) d t, x ∈ J = [a, b]

u(a) = γ u(b) = β

(2.1)

where K(x, t), f(x), u(x) and µi(x), are analytic functions, λ is a parameter,n is integer and γ and
β are real constant. It will always be assumed that (2.1) possesses a unique solution u ∈ Cn(J).

The sinc-collocation procedure for solving the problem (2.1) begins by selecting composite sinc
functions appropriate to the intervals (a, b) so that their translates form basis functions for the expansion
of the approximate solution u(x). A through review of properties of the sinc function and the general
sinc-Collocation method can be found in [17,20].
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The rest of this section contains an overview of properties of the sinc function that are used in
the sequel.

If f(x) is defined on the real line, then for h > 0 the Whittaker cardinal expansion of f

fm(x) =

N∑
k=−N

fk S(k, h) ◦ φ(x), m = 2N + 1

where fk = f(xk), xk = hk and the mesh size is given by

h =

√
2π d

αN
, 0 < α ≤ 1, d ≤ π

2

where N is suitably chosen and α depends on the asymptotic behavior of f(x). The basis functions
on (a, b) are then given by

S(k, h) ◦ φ(x) = sinc
(
φ(x)− k h

h

)
and

φ(x) = ln

(
x− a
b− x

)
(2.2)

The interpolation formula for f(x) over [a, b] takes the form

f(x) ≈
N∑

k=−N

fk S(k, h) ◦ φ(x), (2.3)

where

fk = f(xk), and xk =
a+ bekh

1 + ehk
.

The n-th derivative of the function f at points xk can be approximated using a finite number of terms
as

f (n)(x) ≈
N∑

k=−N

fk
dn

d xn
[S(k, h) ◦ φ(x)] . (2.4)

Integral of f(x) is given by ∫ b

a

f(x) d x ≈ h
N∑

k=−N

fk
φ′(xk)

, (2.5)

Let
di

dφi
[S(j, h) ◦ φ(x)] = S

(i)
j (x), 0 ≤ i ≤ 2, (2.6)

we note

d

dx
[S(j, h) ◦ φ(x)] = S

(1)
j (x)φ′(x)

d2

dx2
[S(j, h) ◦ φ(x)] = S

(2)
j (x)

[
φ′(x)

]2
+ S

(1)
j (x)φ′′(x).

(2.7)

and
δ
(n)
j k = hn

dn

dφn
[S(j, h) ◦ φ(x)]x=xk

which will be used later in Theorem 3.2.
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3 The Sinc-Collocation Method
We assume that u(x), the solution of (2.1), is approximated by the finite expansion of sinc basis
functions

um(x) =

N∑
j=−N

uj S(j, h) ◦ φ(x), m = 2N + 1. (3.1)

Application of equation (2.5) to the kernel integral in (2.1) gives the following lemma

Lemma 3.1. The following relation holds∫ b

a

K(x, t)un(t) d t ≈ h
N∑

j=−N

K(x, tj)

φ′(tj)
unj , (3.2)

where uj denotes an approximate value of u(xj).

If we replace the second term on the right-hand side of (2.1) with the right-hand side of (3.2) we
have

N∑
j=−N

[
2∑
i=0

µi(x)
di

d xi
S(j, h) ◦ φ(x)

]
uj − hλ

N∑
j=−N

K(x, tj)

φ′(tj)
unj = f(x). (3.3)

Using (2.6)and (2.7), and substituting x = xk = φ(k h) in (3.3) and applying the collocation method
to it, we eventually obtain the following theorem

Theorem 3.2. If the assumed approximate solution of problem (2.1) is (3.1), then the discrete sinc-
collocation system for the determination of the unknown coefficients {uj ,−N < j < N} is given by

N∑
j=−N

[
2∑
i=0

gi(xk)
δ
(i)
k j

hi

]
uj − hλ

N∑
j=−N

K(xk, tj)

φ′(tj)
unj = fk, k = −N,−N + 1, . . . , N (3.4)

where

g0(xk) = µ0(xk), g2(xk) = µ2(xk)
[
φ′(xk)

]2
,

g1(xk) = µ1(xk)φ′(xk) + µ2(xk)φ′′(xk).

To obtain a matrix representation of the equations in (3.4), recall the notation of Toeplitz matrices
[21]. We note that

δ
(0)
k j = δ

(0)
j k , δ

(2)
k j = δ

(2)
j k and δ

(1)
k j = −δ(1)j k .

Let D(g(xj)) denote the m×m diagonal matrix with

D(g(x))i j =

{
g(xi) i = j,

0 i 6= j.

Let u be the m-vector with j-th component given by uj , and let un be the m-vectors with j-th
component given by unj and 1 is an m-vector each of whose components is 1. In this notation the
system in (3.4) takes the matrix form

A u + B un = Θ, (3.5)

where
Θ = D (f) 1,

u = [u−N , u−N+1, . . . , uN ]τ ,
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A =

n∑
i=0

1

hi
I(i) D (gi) .

B = −hλ K(xk, tj)

φ′(tj)
,

and
I(i) =

[
δ
(i)
k j

]
, for i = 0, 1, 2.

Now we have a nonlinear system of m equations for the m unknown coefficients, namely, {uj}Nj=−N .
We can obtain the coefficients of the approximate solution by solving this nonlinear system by Newton’s
method, see [22].

4 Numerical Examples
Three examples are given to illustrate the performance of our method. All the experiments are
performed in MATLAB with a machine precision of 10−16. In our tests, the zero vector is the initial
guess and the stopping criterion is

‖uj+1 − uj‖ ≤ 10−7.

In all the examples we take d = π/2, λ = 1, a = 0 , b = 1, and α = 1. Moreover, all the problems
have homogeneous Dirichlet boundary conditions and known solutions.

The maximum absolute error between the numerical approximation and the exact solution at the
sinc grid points is determined and reported as

‖Es‖ = max
−N≤i≤N

∣∣uexact solution(xi)− Usinc-collocation(xi)
∣∣ ,

where

xi =
a+ b ei h

1 + ei h
.

Example 1: For the sake of comparison, we consider the same problem discussed by Biazar,and
Ghazvini [23] , who used the homotopy perturbation method to obtain their numerical solution. Consider
the Fredholm integral equation

u(x) = f(x) +
1

2

∫ 1

0

(x− t)u2(t) d t, 0 < x < 1,

f(x) = x ln x− 53

108
x+

1

3
ln 2

(
8

3
x+ 2− x ln 2

)
− 241

576

whose exact solution is
u(x) = x ln(x+ 1).

Maximum absolute error is tabulated in Table 4.1 for sinc-collocation together with the corresponding
results of Biazar,and Ghazvini [23].

Table 4.1 Maximum absolute error for Example 1

sinc-collocation method for
N = 100

The homotopy perturbation
method [23]

1.3245 E-010 1.80788 E-007

Example 2: [13] Consider the following nonlinear Fredholm integro-differential equations

u′ = 1− x

4
+

∫ 1

0

x t u2(t) d t, 0 < x < 1,

1697



British Journal of Mathematics and Computer Science 4(12), 1693-1700, 2014

and subject to the boundary conditions
u(0) = 0,

then the exact solution is
u(x) = x.

Maximum absolute error is tabulated in Table 4.2 for sinc-collocation together with the corresponding
results of He’s homotopy perturbation method [13] .

Table 4.2 Maximum absolute error for Example 2

sinc-collocation method for
N = 100

The homotopy perturbation
method [13]

3.4564 E-09 2.5739 E-005

Example 3: In the case, µ1(x) = 1/x, µ0(x) = 1/x2 and n = 3 equation (2.1) becomes

u′′ +
1

x
u′ +

1

x2
u = f(x) +

∫ 1

0

K(x, t)u3(t) d t, 0 < x < 1,

If
f(x) = −5 +

2

x
− x and K(x, t) =

30x

t− t2
and subject to the boundary conditions

u(0) = 0 u(1) = 0,

then the exact solution is
u(x) = x (1− x).

The maximum absolute error,‖Es‖, is reported in Table 4.3 as N increases from N = 10 to N = 60.

Table 4.3 ‖Es‖ for Example 3

N ‖Es‖
10 9.9891 E-005
20 1.6552 E-006
30 1.3102 E-007
40 1.1374 E-008
50 2.9187 E-009
60 1.5782 E-010

5 Conclusion
The feasibility of the sinc-collocation method in the numerical solutions of nonlinear integro-differential
equation is investigated. The details of the discretization process is demonstrated and the corresponding
approach is developed. The presented calculations show that this method is effective for solving
such problems. The results play an essential role in extending our method to solve general integro-
differential equations.

In future, since this method is relatively easy to implement and computationally inexpensive, we
would like to extend it to partial integro-differential equations.
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