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Abstract

The purpose of this paper is to introduce and study some sequence spaces which are defined by
combining the concepts of sequences of Musielak-Orlicz functions, invariant means and lacunary
convergence. We establish some inclusion relations between these spaces under some conditions.

This study generalized some results [1].
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1 Introduction

Let w be the set of all sequences of real numbers [1] and ¢, ¢ and ¢y be respectively the Banach
spaces of bounded, convergent and null sequences = = (z1) with (zx) € R or C the usual norm
||lz|| = sup,, |zk|, where k € N = 1,2, 3....., the positive integers.

The idea of difference sequence spaces was first introduced by Kizmaz [18] and then the concept
was generalized by Et and Golak [7]. Later on Et and Esi [8] extended the difference sequence spaces
to the sequence spaces:

X(AY) = {1’ = (zx) : (AY'T) € X}7
for X = ¢, cand co, where v = (vi) be any fixed sequence of non zero complex numbers and
(AT'zr) = (AT oy — AT Mgp).

The generalized difference operator has the following binomial representation,

m

ATy, = 2(71)1 (TZ”) VkiThad, Torall ke N.

1=0

*Corresponding author: E-mail: maiyub2002@gmail.com


www.sciencedomain.org

British Journal of Mathematics and Computer Science 4(12), 1682-1692, 2014

The sequence spaces A7 (¢s), AT (c) and A7 (co) are Banach spaces normed by

m

lzlla = lvizi| + [|AT 2]|oo-

i=1

Let o be a mapping of the positive integers into itself. A continuous linear functional ¢ on /. is said
to be an invariant mean or ¢ -mean if and only if

(¢) ¢(z) > 0, when the sequence = = (z,) has, z, > 0 forall n

(i) o(e) =1l,e=(1,1,1,...)

(113) P(To(n)) = @(x) forall z € lo.
fx

If 2 = (x1), where Tz = (Txz) = (z,())- It can be shown that

Vo = {:r € loo : liin ten(x) =1, uniformly in n}

| = o — limx. where

Tn + Tpl(n) + To2(n) + eeeee + T k(n)

In the case o is the translation mapping n — n + 1, o-mean is often called a Banach limit and V.,
the set of bounded sequences of all whose invariant means are equal is the set of almost convergent
sequence (see[20]),

By Lacunary sequence 6 = (k,.),r = 0, 1,2... where ko = 0 we mean an increasing sequence of
non negative integers h, = (kr—kr—1) — oo (r — o0). The intervals determined by 6 are denoted by
I, = [kr—1 — k-] and the ratio kfjl will be denoted by ¢,. The space of lacunary strongly convergent

sequence Ny was defined by Freedman et al [9] as follow:

. 1
Ny = {a: = (zi)+ lim . k; |z, — 1| = 0 for some E}.
An Orlicz function is a function M : [0, c0) — [0, co) which is continuous, non-decreasing and convex
with M (0) =0, M(x) > 0forz > 0and M(z) — oo as x — oo.

It is well known that if M is convex function and M (0) = 0 then M (Az) < AM (z), for all A with
0< AL

Lindenstrauss and Tzafriri [21] use the idea of Orlicz function and defined the sequence space
which is called an Orlicz sequence space ¢, such as

EM_{x_(xk):iM(m;l) < 00, forsomep>0}
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which is a Banach space with the norm

. = |z |
flz[| =infip>0:> M(—)<1;.
all = inf {p ; () <1j

Which is called an Orlicz sequence space. The ¢ is closely related to the space ¢, which is
an Orlicz sequence space with M(t) = |¢t|?, for 1 < p < oco. Later the Orlicz sequence spaces were
investigated by Prashar and Choudhry [25], Maddox [22], Tripathy et al.[27-29] and many others.

2 Definitions and Notations

A sequence of function M = (M) of Orlicz function is called a Musielak — Orlicz function [23,24].
Also a Musielak -Orlicz function ® = (@) is called complementary function of a Musielak-Orlicz
function M if

@k(t):sup{\ﬂska(s) :SZO}, fork =1,2.3..

For a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space [y, and its subspaces
har are defined as follow:

I = {x =z, €w: Ipm(ex) < oo, forsome c¢ > 0}

har = {x:xk € w: In(cx) < oo, forall c>0}

Where I,/ is a convex modular defined by

oo

Iv(z) = ZMk(xk), z = (xr) € lnm.

k=1

We consider 1), equipped with the Luxemburg norm

. T
|| = 1nf{k >0: L (F) < 1}
or equipped with the Orlicz norm

z]° = inf {%(1 + D(ka) k> 0}

The main purpose of this paper is to introduce the following sequence spaces and examine
some properties of the resulting sequence spaces. Let p = (px) denote the sequences of positive
real numbers, for all & € N. Let M = (M;) be a Musielak-Orlicz function and u = (uy) such that
ur # 0 (k= 1,2,3,..). Let s be any real number such that s > 0. Then we define the following
sequence spaces:
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[w?, M, p,u,s]3° (AT {x—(xk) buph Z k™% uy [ (Mpﬂrk)\)]pk < 0
kel,

p>0,szo}

[w M, p,u, slo(AL") {iU— Zr) hm—Zk_ [ w)rk:o

kel p

for some !, p > 0,s > O}

[w?, M, p,u,s]o(AT) {J;— Zk) hm—Zk_ [ =0.

kel,

|751m(A wk)|
(]t

p>0,520}

Definition 2.1 A sequence space F is said to be solid or normal if () € E whenever (zi) € E
and for all sequences of scalar (ax) with |ax| <1 [16]

Definition 2.2 A sequence space E is said to be monotone if it contains the canonical pre-images
of all its steps spaces, [16]

Definition 2.3 If X is a Banach space normed by || . ||, then A™(X) is also Banach space
normed by

Iz lla=_ lzel + f(A™2)

k=1

Remark. The following inequality will be used throughout the paper. Let p = (px) be a positive
sequence of real numbers with 0 < pr, < suppr = G, D = max (1, 2G‘1). Then for all a, bx, € C for
all k € N. We have

lax 4 bk ["* < D(lax|”* 4 [bx[7F) (1)

3 Main Results

Theorem 3.1 Let M = (M) be a Musielak-Orlicz function, p = (px) be a bounded sequence of

positive real number and § = (k,.) be a lacunary sequence. Then [w?, M, p, u, s]° (AT, w8, M, p, u, s]o (AT

and [w’, M, p, u, s]2 (A7) are linear space over the field of complex numbers.
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Proof. Letz = (zx),y = (yx) € [w?, M,p,u,s]2(AT) and a, 8 € C. In order to prove the result we
need to find some ps such that,

1 |tnk(AZ"(aack + Byr)) NP ; ;
Jim Z upk™ [ P )] =0, uniformly in n.

hr kel

Since (zx), (yx) € [w?, M, p,u, s]3(AT), there exist positive p1, p2 such that
lim — Z upk™ [ M)]pk =0 uniformly in n
r—00 T hel. P1

and

|tnk AT (yx))[\1P* - -
lim — Wk~ EnklS0 WIR)JIVITY — 0 uniformly in n.

Define ps = max (2|alp1, 2\5|p2). Since (My) is non decreasing and convex

Z upk™ [ |tnk(A:;n(Oé$k + ﬁyk))|>]pk

" kel, p3

3 pP3

hi Z wk— [ |tnk(A’J‘(a;ck))| n |tnk(AT(ﬁyk))|)]pk

<= Z k™ [ (Itnk(AL"mm N |tnk(Avmyk)|)]Pk

keI p1 p2
D |tnk(A mk |tnk(Avmyk)| Pk
= k PEnElA=e 2RJT = k PPnkA=w JRJT
e e R W G S
— 0, as r — oo, uniformly in n.

So that (i) + (Byx) € [, M, p,u, s]%(AT"). This completes the proof. Similarly, we can prove that
[wW?, M, p,u,s],(AT) and [w?, M, p,u, s]3°(AT) are linear spaces. O

Theorem 3.2 Let M = (M) be a Musielak-Orlicz function, p = (px) be a bounded sequence of
positive real number and 6 = (k) be a lacunary sequence. Then [w?, M, p,u, s]2(A™) is a topological
linear space totalparanormed by

@) =3l i {7 (15wt [ (L APy 1

k=1 kEIT

for some p, r = 1.2..}

Proof. Clearly ga(z) = gA( x). Since My(0) = 0, for all k € N. we get ga(d) = 0, for z = 6.
Letz = (zx), ¥y = (yx) € [w®, M, p,u, s]2(A™) and let us choose p; > 0 and ps > 0 such that

suph Zukk [ M)]”gl r=1,2,3.
kel, P
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and

suph Zukk [ w}#lﬁ))l)rkgl r=1,23.
k€l

Let p = p1 + p2, then we have

suph ! Z urk™ [ |tnk(AT($k +yk))|)}pk

kel P

\tnk(AZ”(fﬂk))l Pk
<msuph Zuk [ 7)}

r kel, 1
k(A
7suph Z urk™ [ 7“ K ykm)]
p1+p2 » el P2
<1.

Since p > 0, we have

m

ga@+y%:§jhm+yk%HM{M”H:( > wk™ M kOt“AT@k+%H)rﬂuH§1

k=1 " kel, p

forsome p > 0, r = 1.2..}

xk|+lnf{Pv/H.( S ik~ [w (w)rk)wg

k=1 " kel, p

IN

for some p1 >0, r = 1.2..}

o - (L (LS )

" kel, P

for some p2 > 0, r = 1.2..}

ga(z +y) < ga(z) + galy).

Finally, we prove that the scalar multiplication is continuous. Let A be a given non zero scalar in
C. Then the continuity of the product follows from the following expression.

030 =52 i {7 (52 i o (00
" kel

k=1
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forsome p >0, r = 1.2..}

:)\i|xk|+inf{(|)\‘om/f1;( Zukk [ (w”m)l/ligl

k=1 " kel,

forsome (>0, r= 1.2..}

Where ¢ = 1§ > 0. Since [A[P" < max(1, [A[)>™P*r,

A

ga(Az) = max(1,|A])*"PP" + inf {ppT/H : ( Z urk” [ (M‘M)rk)l/fl <1,

ke],

forsome p > 0, r = 1.2..}.

This completes the proof of this theorem. O

Theorem 3.3 Let M = (M},) be a Musielak-Orlicz function, p = (px) be a bounded sequence
of positive real number and § = (k) be a lacunary sequence. Then [w?, M, p,u,s](AT) C
[w?, M,p,u, 5o (AT) C [w¥, M, p,u, s]g(AT).

Proof. Theinclusion [w?, M, p,u, s]2(A™) C [w?, M, p,u, s, (A7) is obvious. Let zy € [w’, M,p,u, s], (AT).
Then there exists some positive number p; such that

lim — Z urk™ [ —lt"k(A Tk —le)\)} —0
e e, 1

as r — oo, uniformly in n. Define p = 2p1. Since M}, is non decreasing and convex for all k € N,
we have

e 3 ek [ (PR

kel

< hB Z upk™*® [Mk(—ﬁnk(Avamc —le) )rk + hli Z [Mk(Mrk

p1

D |tnkA Tk —le)] \1p, lle| \1a
SF; T)] +Dmax{1,[M(z)] }

Where G = sup,,(px), D = max (1,29 — 1) by(1).
Thus zx € [W¥, M, p,u, s|o (AT) O
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Theorem 3.4 Let M/
then

[UJG’ M7 p7 u7 S]U(Avm) C

Proof. Letxy € [w97M7p, u, 8o

< 3 [

Since sup,,
This complete the proof.

[WG7M7p7 u7 S]O’

(A7) by using(1), we have

1 Z“ = [ \tnk(Ap :z:k)|)]

keIT
‘tnk A T — l€)|)] D

p " kel,

= (M) be a Musielak-Orlicz functions. If sup,, [Mx(2)]”

o (AL

|le| 1Pk
> M)

k< coforall z > 0,

M (2)]P* < oo, we can take the sup, [M (z)]P* = K. Hence we can get z, € [w’, M, p,u, so(

O

Theorem 3.5 Let m > 1 be fixed integer. Then the following statements are equivalent:

(i) [w, M, pu, 8|5 (A7) C
(’I/L) [w ’M’p7uvs}U(ALﬂ 1) C
(iid) [’ M, p,u, s]g(AT1) €

W’ M, p, u, s]5°(A}")
[("Je’ M7p7u7 S}U(AT)
[weﬂ M7p7 ’LL, S}S(Agl)

Proof. Letxy € [wg, M, p,u, s]o(AT~1). Then there exist p > 0 such that

|t”k (Av 117k)|

Jim o ek~ [ag (St )

kel,

Since M, is non decreasing and convex, we have

1 _ tok (AY

kggzm;y+izwk[

Taking lim,_, ~,, we have

hy

—>O.

‘tnk (Amilmk —

xk|] hzukk [

kel

kel,.

k [tk (AT )| ]p —|—— Zu k:_g[

P he keI,

tnk A Tk
LS e [t % NG

kel

2p

Amflwk«fl)' ):| Pr

‘tnk(Am

|tnk(Am

=0,

2p

p

1$k+1)| )]pk

lx,&l)\)}pk-

i.e xx € [w’, M, p,u,s]o(A71). The rest of these cases can be proved in similar way.

Theorem 3.6 Let M =

(Mk) and T = (Tk

) be two Musielak-Orlicz functions. Then we have

1689
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(@) [wf, M, p,u,s](A™) N [W?, T, p,u, s]° (A7) C (W0, M +T,p,u,s](AT)
(i1) [w?, M,p,u, 8o (A7) N [wW?, T, p,u, s]o(AT) C [w?, M 4+ T,p, u, s]o (AT
(i31) [w®, M,p,u, s|2(AT) N [w?, T, p, u, s|2(AT) C [w?, M + T,p,u, s|2(AT).

Proof. Let zy, € [W¥) M, p,u, s|°(A™) N [w?, T, p,u, s]°(AT). Then

" kel,

and

sup— Zukk [ M)] < 00
har keI,

uniformly in n. We have

[(Mk +T@(M)rk

gD[Mk(

M)rk + D[ Ti(

|tnk (AT z1)| )]"k
p
by(1). Applying >, c, and multiplying by wy, ler and £~ ° both side of this inequality, we get.

— Z urk™ [ (M + Tk)(Ltnk(AUmIk)| )]pk7

" kel,

< D5 ok [ BT e D e [y B

kel, kel
uniformly in n. This completes the proof.(i:) and (iii) can be proved similar to (z) O
Theorem 3.7 (i) The sequence spaces [w’, M, p,u, 5] and [w?, M, p,u, s]% are solid and hence

they are monotone.
(ii) The space [w’, M, p, u, s, is not monotone and neither solid nor perfect.

Proof. We give the proof for [w?, M, p,u, s]%. Let 2 € [w’, M,p,u,s] and (o) be a sequence of
scalars such that |ax| < 1 for all k£ € N. Then we have

Z“ = [ |tnk(6;k£rk ] Z“ - [Mk(ﬁnkﬁ)xk)\)rk_)o
" kel, " kel

(r — o0), uniformly in n. Hence (akxk) € WM Pyt s]% for all sequence of scalars (ay) with
|| < 1forall k € N, whenever z, € [w?, M,p,u,s]2. The spaces are monotone follows from the
remark(1) O
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