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ABSTRACT 
 

Face recognition based only on the visible spectrum has shown difficulties in performing 
consistently in uncontrolled operating conditions. Face recognition using different imaging 
modalities, particularly infrared imaging sensors has become an area of growing interest 
in recent years. In this paper, we present a new technique for face recognition that 
exploits the local statistical characteristics of a thermal image. The “whole” face image is 
divided into components of different sizes. The statistical features of these components, 
beside the “whole” image are combined together using fusion methods. Decision level 
fusion finds a combination of multiple statistical patterns to produce an integrated result 
that is enhanced in terms of information content for pattern recognition and classification. 
Local representations offer robustness against variability due to the changes in localized 
regions of the objects. The proposed feature vector consists of different moments’ 
calculations and thermal components’ histograms. The features found from local analysis 
are less sensitive to illumination changes, easier for estimating the rotations, have less 
computational burden and have the potential to achieve higher correct recognition rates. 
The experimental results reveal that the new system can achieve a success rate of 96.4% 
when implemented on the AIAOU Database. 
 

 
Keywords:  Face recognition; thermal image; feature extraction; histogram distribution. 
 
1. INTRODUCTION  
 
Research into several biometric modalities, including face, fingerprint, iris and retina 
recognition has produced varying degrees of success [1]. Face recognition stands as the 
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most appealing modality, since it is the natural mode of identification among humans and 
does not need to interrupt user activities. Despite successes in indoor access control 
applications, imaging in the visible spectrum demonstrates difficulties in recognizing the 
faces in conditions of varying illumination, especially under total darkness conditions [2]. 
Face recognition based only on the visible spectrum has shown difficulties in performing 
consistently in uncontrolled operating conditions [3]. Since the face is essentially a three-
dimensional object, lighting sources from different directions may significantly change visual 
appearances. Light reflected from human faces also varies depending on the skin colour of 
people from different ethnic groups. This variability, coupled with dynamic lighting conditions, 
may cause great difficulties in recognizing the face in applications such as outdoor 
surveillance tasks. 
 
Face recognition using different imaging modalities, particularly infrared (IR) imaging 
sensors has become an area of growing interest [4,5]. The use of thermal IR images can 
improve the performance of face recognition in uncontrolled illumination conditions [6]. IR 
cameras provide a measure of thermal emissivity from the facial surface and their images 
are relatively stable under illumination variation. The anatomical information which is imaged 
by infrared technology involves subsurface features believed to be unique to each person 
[2], though the twin’s images are not necessarily substantially different. These features may 
be imaged at a distance using passive infrared sensor technology, with or without the 
cooperation of the subject. The other advantage is that it is very difficult to alter this 
information purposefully. The thermal IR spectrum that comprises mid-wave IR (3–5 µm) and 
long-wave IR (8–12 µm) bands is used as a source of information for face detection and 
recognition. Thermal IR sensors measure the heat energy that is emitted, not reflected, from 
the object. IR energy can be viewed in any light conditions and is less subject to scattering 
and absorption by smoke or dust than visible light.  
 
In this paper, we present a new technique for face recognition that exploits the local 
characteristics of the thermal image. The “whole” face image is divided into components of 
different sizes. The statistical features of these components, beside the “whole” image are 
combined using fusion methods. Decision-level fusion finds a combination of multiple 
statistical patterns to produce an integrated result that is enhanced in terms of information 
content for pattern recognition and classification. Local representations offer robustness 
against variability due to the changes in localized regions of the objects. The features used 
in the local feature analysis methods are less sensitive to illumination changes, easier for 
estimating the rotations and have less computational burden. Hence, the proposed system 
employs the advantages and the characteristics of thermal images, component-based 
approach, the statistical features and fusion. The evaluation used a database of thermal IR 
face images that has been recently developed by the Artificial Intelligence laboratory at the 
Arab Open University (AIAOU Database) [7]. Our work makes the following contributions: 
First, it proposes a way to achieve thermal face image representation in a simple manner. 
Second, it utilizes the statistical characteristics of thermal components alongside the 
advantages of results fusion. Third, it provides a large number of experimental results that 
show that the proposed method is good enough to recognize a person in a competitive way, 
especially when considering consumed time and speed. The organization of the paper is as 
follows. A brief literature review is given in Section 2. Section 3 discusses the proposed new 
method. A brief description of the system is given in Section 4. The experimental results   
and analysis are discussed in Section 5. Finally, the paper is brought to a conclusion in 
Section 6. 
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2. LITERATURE REVIEW 
 
In thermal imagery of human tissue, the major blood vessels have weak sigmoid edges. This 
is due to the natural phenomenon of heat diffusion, which means that when two objects with 
different temperatures are in contact (e.g. vessel and surrounding tissue), heat conduction 
creates a smooth temperature gradient at the common boundary [8]. Due to its physiology, a 
human face consists of “hot” parts that correspond to tissue areas that are rich in 
vasculature and “cold” parts that correspond to tissue areas with sparse vasculature. Every 
living and non-living object at a finite temperature emits radiation, which can be captured by 
infrared cameras. Early studies by Socolinsky et al. in [9,10,11] suggest that long-wave 
infrared imagery of human faces is not only a valid biometric, but superior to using 
comparable visible-light imagery. However, the testing set size in these studies is relatively 
small, the training and gallery are composed of disjoint sets of images of the same subjects, 
and there is no substantial time lapse between gallery and probe image acquisition. Prokoski 
et al. [5] anticipated the possibility of extracting the vascular network from thermal facial 
images and using it as a feature space for face recognition. However, they did not present 
an algorithmic approach for achieving this. Authors in [12] proposed an approach using 
wide-baseline matching of face vascular networks obtained from thermal images. The 
vascular networks are obtained through skin segmentation and morphological operators. 
The image matching stage uses SIFT descriptors for verifying correspondences and 
generating a final geometrical transformation that relates the vascular networks. However, 
the proposed skin detection model is created by modelling the skin pixel intensity distribution 
of non-skin intensity distribution as mixture of Gaussians. This is a time- and memory-
consuming task. Furthermore, the general parameters for the Gaussians cannot be 
obtained, as they depend on the response of the particular camera to thermal intensity. The 
authors have reported a best recognition rate of 95.7% for a small database that consists of 
156 thermal images. A combination of principal component analysis technique and a 
Bayesian Maximum Likelihood for thermal face image classification was proposed in [13]. 
The Bayesian approach uses a probabilistic measure of similarity based on a Bayesian 
Maximum Likelihood analysis of image differences. In this work authors have developed 
nonlinear technique for multispectral face recognition. However, most of the obtained results 
were poor. Bayesian face recognition needs a sufficient number of face images for 
intrapersonal learning process and if the number of these images is low then the system 
performance will be inefficient.  
 
Bhowmik et al. [14] introduced the role of different IR spectrums and their applications. In 
their experimental work, they fused both thermal and visible images to enhance the 
recognition rate, as it is expected that the fusion process improves the overall performance 
of the system. They tested their method on IRIS and Terravic databases. The images of both 
databases were taken in one session. In other words, the effect of time lapse was not taken 
into consideration. Lu et al. [15] conducted a study on normalization of infrared facial 
images, especially those resulting from variant ambient temperatures. Three normalization 
methods were proposed to eliminate this effect. The experimental results showed that the 
proposed methods can increase the robustness of infrared face recognition system and 
greatly improve its performance on time-lapse data. They recorded a maximum success rate 
of 89.1% using PCA with weigh coefficient. Huang et al. [16] proposed a method called 
discriminative spectral regression to map face images from various modalities, such as the 
visual, the IR modality and the sketch modality into a common discriminative subspace. 
They introduced two regularization terms, which reflect the category relationships among 
data, into the least squares approach where the class information is integrated in the cost 
function. However, the method does not make sufficient use of the discriminative information 
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among the images from different classes. Its performance can be further improved by 
introducing the category relationship into its objective function. In addition, the proposed 
variation of the optimization problem is computationally exhaustive. Nicolo and Schmid [17] 
presented a cross-spectral face recognition scheme that encodes images filtered with a bank 
of Gabor filters followed by three local operators: Simplified Weber Local Descriptor, Local 
Binary Pattern, and Generalized Local Binary Pattern. Both magnitude and phase of filtered 
images are encoded. The proposed technique can be used in challenging atmospheric 
conditions such as rain and mist. Also, it is applicable to scenarios where no IR data are 
available for training the system. However, the authors did not discuss how the filter 
parameters were chosen.  
 
Guzman et al. [18] discussed a thermal imaging framework that consolidates the steps of 
feature extraction through the use of morphological operators and registration using the 
linear image registration tool. The matching showed an average accuracy of 88.46% for 
skeletonized signatures and 90.39% for isotropically diffused signatures. Poursaberi et al. 
[19] developed a concept for decision-making support in biometric-based situational 
awareness systems. Such systems assist users in gathering and analysing biometric data, 
and support the decision-making on the human behavioural pattern and/or authentication. As 
an example, the authors consider a facial biometric assistant that functions based on multi-
spectral biometrics in visible and infrared bands. Seal et al. [20] proposed a human face 
recognition system based on wavelet transform from thermal IR images. Their method 
utilizes a “Haar” wavelet to extract a low frequency band from the cropped face region, and 
the classification is based only on low-frequency components. In general, wavelet transform 
captures both frequency and time (location information). Haar transformation was used 
because of its simplicity. However, the proposed method in [20] ignores details at different 
levels, some of which might be of great importance, especially if they contain important 
discriminant features. The same authors have proposed another work on thermal face 
recognition based on the use of minutiae points [21]. They suggested that there is an 
analogy between thermal imprints of human faces and fingerprints of human beings. 
Thermal imprints of blood vessels may be treated as ridges in fingerprints, and fingerprint 
recognition techniques may be applied to the thermal imprints of the human faces in order to 
recognize them. In this work they used three methods to extract the blood perfusion image: 
bit-plane slicing, morphological erosion and Sobel edge operators. The computational 
complexity of the proposed work is relatively large and can be exhaustive if applied on large 
databases. Authors in [22] proposed using a local binary pattern (LBP) for thermal face 
recognition. Multilayer feed forward neural network and minimum distance classifier were 
used to classify face images. The maximum success rate they obtained was ~95% when 
tested on a locally generated database consisting of 578 images. However, this system is 
applicable only to front views with constant background. It may fail in unconstrained 
environments like natural scenes. 
 
On the other hand, at the level of component-based face recognition techniques, authors in 
[23] demonstrated two local nonlinear techniques for face recognition: Linear Graph 
Embedding and Locality Preserving Projection. These techniques find an embedding that 
preserves local information. The aim was to represent the data in a lower dimensional 
subspace while preserving the local structure of the original image space. They have 
recorded a best recognition rate of 91%. However, their proposed techniques are 
computationally greedy. Tongzhou et al. [24] divided each original image sample into a 
certain number of sub images, where all the training sub images from the same position 
constructed a series of new training sub-pattern sets, and the PCA followed by Gabor 
wavelet were used to extract local projection sub-feature vectors to obtain a set of projection 
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sub-spaces. Zaeri et al. [25] have applied a component-based linear discriminant analysis 
approach to systems requiring high-speed performance. The proposed method enhanced 
the performance of the system and achieved high recognition rates. Recently, a number of 
learning methods using local transform sparse representation have been proposed in visible 
spectrum. Xu et al. [26] and Xu et al. [27] have proposed a two-phase test sample sparse 
representation method. The first phase seeks to represent the test sample as a linear 
combination of all the training samples and exploits the representation ability of each training 
sample to determine M “nearest neighbours” for the test sample. The second phase 
represents the test sample as a linear combination of the determined M nearest neighbours 
and uses the representation result to perform classification. Similarly, Yang et al. [28] has 
focused on sparse representation based classification, where they gave a theoretical 
justification to support the effectiveness of sparse representation-based classifiers.  Also, we 
have recently discussed the feasibility of a new method for face recognition in visible 
spectrum at the component level [29]. Motivated by the abovementioned discussion and by 
the results we have obtained from our previous work in the visible spectrum, we propose a 
new face recognition system that exploits the advantages and characteristics of both the 
thermal images approach and the component-based approach. 
 
3. THERMAL IMAGE HISTOGRAM 
 
The histogram of a thermal image (similar to a digital one) with temperature levels in the 
range [0, L–1] is a discrete function h(rk) = nk , where rk is the kth temperature value and nk is 
the number of “pixels” in the image with temperature rk. The histogram can be normalized by 
dividing each of its components by the total number of pixels in the image, denoted by the 
product MN, where M and N are the row and column dimensions of the image. Thus, a 
normalized histogram is given by 
 

H = p(rk) = nk/MN, for k = 0, 1, 2, …, L – 1. (1) 
 
It is common to consider p(rk) as an estimate of the probability of the occurrence of 
temperature level rk in an image. A plot of pr(rk) versus rk is commonly referred to as a 
“histogram” or histogram distribution. Histograms provide useful image statistics with 
distinctive features that can be used for face image recognition. Further, they are simple to 
calculate in software and also lend themselves to economic hardware implementations, thus 
making them a popular tool for real-time face recognition.  
 
Moreover, if we let r denote a discrete random variable representing temperature values in 
the range (0, L–1) and if we let p(rk) denote the normalized histogram component 
corresponding to value rk, the nth moment of r about its mean is defined as 
 

μ��r� = ��r� − μ��p�r��
��

���
 (2) 

 

 
where� is the mean (average temperature) value of r 

μ = � r�p�r��
��

���
 (3) 
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This is an important image feature that can be considered as an element in the feature 
vector that represents the “centre of gravity” of the face temperature distribution. Another 
important feature to be considered is the spread of these temperature values across the face 
image. This is given by the variance (or standard deviation) of this set, which can be 
obtained from the second moment. 
 

σ� = μ��r� = ��r� − μ��p�r��
��

���
 (4) 

 
In this paper, we propose a feature vector that consists of the following different feature 
parameters: first moment, second moment and the thermal image histogram. The calculation 
of the first and second moments and the histogram distribution is implemented at the 
component level, beside the whole face image. The final decision results depend on the 
local mean, variance and histogram beside the computation of the global mean, variance 
and histogram over the entire thermal face image. These local parameters are more 
powerful in preserving the discriminant features in a neighbourhood of a pixel in an image. 
 
If (x, y) denote the coordinates of any pixel in a given image, and if Sxy denotes a 
neighbourhood (component) of a specified size, centred on (x, y), then the mean value of the 
pixels in this neighbourhood is given by 
 

μ��� = � r�p����r��
��

���
 (5) 

 
where ���� is the histogram of the pixels in region Sxy.  Similarly, the variance of the pixels in 
the neighbourhood is given by  
 

σ���� = � �r� − µ�������

���
p����r�� (6) 

 
As before, the local mean is a measure of average temperature in neighbourhood Sxy and 
the local variance is a measure of temperature spread in that neighbourhood.  
 
We propose the following scheme in dividing the face image:  
 

a) First, we take the whole image as one component. We denote this component as ��  
b) Second, we take only the centre part of the face that consists of the eyes, nose and 

mouth. We denote this component of the face as �� 
c) Third, we divide the thermal image into four different equal-sized components and 

denote them as  ���, ��, ���, ��� 
d) Fourth, we divide the thermal image into 16 different equal-sized components and 

denote them as  ���, ��, ���, … , ��! 
 

Then, we find the average temperature, the variance and the histogram distribution for every 
component as described above. Finally, the feature vector for every component is formed as 
follows: 
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�"# = [�"#, %�"# , &"#]( (7) 
 
Where T denotes the transpose, �"# is the average temperature for the corresponding 

component as defined in equation (5) and %�"# is the corresponding variance as defined in 
equation (6). &"#  is defined by equation (1). The Euclidean distance (L2 norm) is used as the 
system classifier and is given by 
 

)�*, +� = ,��-. − /.��
0

.�
1

/�
 (8) 

 
for vectors a and b both of d dimensions.  
 
The results obtained from the similarity measures from the feature vectors for the different 
number of components are fused together to achieve the final similarity score. Decision-level 
fusion combines the results to yield a final fused decision based on a joint assertion of 
multiple single source results (or decisions) to achieve an improved classification. Prior 
knowledge and domain-specific information can also be incorporated. Fusion techniques 
exploit synergistic integration of the information obtained from different data sources or from 
multiple pattern classifiers to produce a more detailed form than the original and hence 
improve the overall classification accuracy [30]. Fusion methods include AND fusion, OR 
fusion, majority voting and ranked list combination. In our experiments, we have 
implemented AND fusion, as it has proven its superiority among the other fusion methods. It 
is worth mentioning that the study of best fusion method is beyond the scope of this paper. 
Fig. 1 details the proposed technique. 
 
4. SYSTEM DESCRIPTION AND SETUP 
 
To capture the thermal images, we used the Infrared Camera ETIP 7320 (Fig. 2) which 
includes a state-of-the-art thermal infrared imaging radiometer. The core technology used in 
the system is a sophisticated thermal imaging technology using a micro-bolometer 320×240 
focal plane array and a Vanadium Oxide technology base, ensuring very high efficient 
thermal and spatial resolution.  
 
We have built a database of 570 images for 19 different subjects taken in different sessions. 
The database consists of males and females from various ethnic backgrounds. Acquisitions 
were held at different times and most subjects participated in multiple sessions across a 
number of different weeks. Infrared images were acquired in the 7.0–14.0 µm range and 
consist of an un-cooled focal plane array incorporating a 320×240 matrix of microbolometer 
detectors. Examples of thermal images from the AIAOU database for different subjects are 
shown in Fig. 3. Each face-recognition experiment is characterized by three image sets:  
 

a)  The training set: used to form a face space in which the recognition is performed. 
This set consists of five images per subject (class). These images were chosen 
randomly among the 30 available images for each subject.  

b)  The gallery set: contains the set of ‘‘enrolled’’ images of the subjects to be 
recognized and each image is uniquely associated with the identification of a distinct 
subject in the set. This set also consists of five images per subject and were 
similarly chosen randomly among the 30 available images for each subject.  
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c)  The probe (testing) set: is a set of images to be identified via matching against the 
gallery. This set consists of 380 images (20 images per subject × 19 subjects).  

 

 
 

Fig. 1. The proposed new technique 
 

 
 

Fig. 2. Infrared camera ETIP 7320 
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Fig. 3. Examples of thermal images from the AIAOU database for different subjects 
 
5. EXPERIMENTAL RESULTS AND ANALYSIS 
 
Before conducting our experiments, we took several pre-processing steps: 
 

a) Integer to float conversion: After the image is read from a file, it is converted to 
double precision floating point for subsequent image calculations. 

b) Geometric normalization: This aligns images such that the faces are the same size, 
in the same position and at the same orientation. Specifically, the image is scaled 
and rotated to make the eye coordinates coincident with pre-specified locations in 
the output. 

c) Masking: This is used to eliminate less important parts of the image, ensuring that 
the face-recognition system does not respond to features corresponding to 
background, hair, clothing, etc. 
 

Table 1(a) shows skin mean temperature over each block of the different blocks described in 
Fig. 1 for five different images belonging to the same subject (person). Table 1(b) shows the 
corresponding values for another person. Similar results are recorded in Table 2 for 
temperature variance. 
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Table 1. Skin mean temperature (in degrees Celsius) for each block for different 
images: (a) of the same person and (b) of another person  

 
(a) 

 Image 1 Image 2 Image 3 Image 4 Image 5 

��
 29.0 29.9 29.1 30.7 30.4 ��� 22.9 24.1 28.0 26.0 24.9 �� 23.5 24.2 28.0 26.0 25.1 ��� 25.7 27.3 23.6 25.4 25.5 ��� 26.7 27.8 23.8 25.7 26.3 ��� 19.6 19.7 24.3 21.1 19.8 �� 19.9 20.0 26.0 22.3 20.6 ��� 20.2 20.3 25.3 21.9 20.9 ��� 20.8 20.6 24.5 21.7 20.4 ��3 24.7 27.6 30.8 29.9 28.7 ��! 27.5 29.0 31.0 30.7 30.4 ��4 27.3 29.1 31.1 30.6 30.3 ��5 25.5 26.7 31.2 29.9 28.6 ��6 28.9 30.6 25.6 29.3 29.1 ��7 30.5 30.7 27.2 30.7 30.5 ���
 30.8 30.9 27.0 30.9 30.6 ��
 30.8 31.2 25.6 29.4 30.9 ���
 20.8 23.0 20.6 20.6 20.5 ���
 22.7 24.8 20.9 21.2 21.8 ��3
 22.8 25.1 21.1 21.3 22.4 ��!
 22.4 23.8 21.3 21.5 21.4 

 
(b) 

 Image 1 Image 2 Image 3 Image 4 Image 5 

��
 28.3 30.0 30.7 28.3 29.3 ��� 26.8 25.3 25.6 26.1 26.5 �� 28.6 27.1 29.6 28.8 29.3 ��� 26.5 25.5 25.5 25.1 24.9 ��� 29.5 28.0 26.3 26.5 26.3 ��� 27.7 22.7 22.3 24.3 24.7 �� 22.3 23.0 24.9 24.1 25.8 ��� 25.9 22.1 26.0 25.2 25.5 ��� 24.9 22.8 28.1 26.3 27.8 ��3 31.5 27.1 24.5 30.4 28.0 ��! 25.9 28.3 30.6 25.6 27.4 ��4 31.0 31.7 32.1 31.3 31.8 ��5 32.6 31.9 32.1 32.4 32.3 ��6 30.8 28.9 27.4 31.4 29.9 ��7 25.7 28.4 28.9 25.8 27.2 ���
 30.7 31.7 31.5 30.5 31.1 ��
 32.4 32.1 31.5 32.0 32.0 ���
 25.8 22.2 23.1 22.8 21.9 ���
 23.6 22.6 22.7 20.5 20.6 ��3
 26.9 24.4 22.1 22.4 22.1 ��!
 28.2 23.8 20.0 21.1 20.1 



 
 
 
 

British Journal of Applied Science & Technology, 4(6): 945-966, 2014 
 

 

955 
 

Table 2. Skin temperature variance for each block for different images: (a) of the same 
person and (b) of another person   

 
(a) 

 Image 1 Image 2 Image 3 Image 4 Image 5 ��
 12.60 6.01 13.80 1.29 0.95 ��� 21.73 25.28 19.04 24.15 27.14 �� 19.50 22.93 18.62 22.92 25.99 ��� 23.89 21.36 18.96 24.59 24.35 ��� 22.18 20.02 16.20 22.67 23.35 ��� 0.22 0.23 18.69 3.65 1.50 �� 0.21 0.22 21.83 11.69 4.85 ��� 0.26 0.26 19.13 7.65 6.81 ��� 0.69 0.32 15.17 1.56 0.27 ��3 23.61 18.40 0.43 5.30 12.42 ��! 18.76 10.16 0.83 0.98 0.97 ��4 18.19 7.63 0.61 1.56 1.16 ��5 22.26 24.13 0.46 9.19 17.56 ��6 8.85 0.21 23.37 10.78 9.32 ��7 0.92 0.95 19.31 1.03 0.88 ���
 0.45 0.31 19.19 1.30 0.57 ��
 0.40 0.31 17.99 10.42 0.51 ���
 4.53 16.60 0.23 0.38 1.79 ���
 14.33 20.46 0.22 1.32 8.89 ��3
 13.11 17.82 0.19 1.20 10.84 ��!
 7.95 17.10 0.26 0.39 3.55 

 
(b) 

 Image 1 Image 2 Image 3 Image 4 Image 5 ��
 5.8 5.8 9.2 9.7 6.0 ��� 12.6 12.7 15.4 15.5 17.9 �� 10.6 11.6 14.1 14.1 15.4 ��� 11.6 11.5 13.0 12.8 13.2 ��� 13.9 14.3 14.0 12.7 14.6 ��� 16.6 17.0 0.3 0.2 7.6 �� 9.1 10.2 0.2 0.2 8.9 ��� 16.1 15.7 0.2 0.4 4.0 ��� 6.7 7.5 3.8 3.9 3.9 ��3 0.2 0.2 12.3 9.5 1.3 ��! 5.7 5.6 9.1 9.0 4.7 ��4 0.9 1.3 13.0 13.0 7.1 ��5 0.6 0.6 9.9 10.0 2.2 ��6 4.8 6.3 4.2 0.2 3.4 ��7 6.5 6.5 5.3 7.2 6.0 ���
 4.6 4.3 5.7 1.1 6.3 ��
 8.5 8.7 2.0 0.5 2.3 ���
 0.2 0.2 1.8 8.5 0.8 ���
 0.6 0.4 7.8 11.5 4.9 ��3
 0.3 0.3 8.6 13.3 6.6 ��!
 6.3 5.8 4.6 5.5 4.9 
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Fig. 4 shows histogram distribution of a whole face image for one subject (class) for different 
number of bins: 20, 50, 100, 200, 300, 400, and 500 bins. Fig. 5 shows the corresponding 
histograms for another subject. The distinctive and discriminant features between the two 
figures (subjects) are obvious.  
 
In Fig. 6, we show the histogram distribution for four different images for the same person 
(same class) in the case of 20 bins. As can be seen from the figure, the general 
characteristics of all four histograms are similar. Hence, the discriminant features within the 
class are preserved. Fig. 7 shows the histogram distribution for another four different images 
of another person (class) in the case of 100 bins. Again, this figure shows that the 
discriminant features for the same class (person) are preserved among the four images. This 
supports the concept of utilizing this statistical measure as a human identification method. 
 
To further support this idea, we show in Fig. 8 the histogram distribution for 10 different 
persons where each distribution corresponds to a different person (class) for the case of 20 
bins. Similarly, Fig. 9 shows the results for the case of 100 bins. As we can see from Figs 8 
and 9, the discriminant features between classes (that is for different persons) are 
remarkable and every class can be characterized by its own discriminant features.   
 
In order to justify the implementation of the method at the component level, we need to 
analyse the local statistical characteristics for a thermal image. Fig. 10 shows a thermal 
image for one subject and the corresponding temperature distribution over the entire face. 
The temperature variations can be clearly seen over the different parts of the face. This 
shows that these parts have different thermal characteristics, giving the human face its own 
thermal identity. We take a further step in our analysis and show the thermal statistical 
features of the centre part of the face,  ��. The local distinctive features are obvious in Fig. 
11. Similar observation can be obtained when investigating the four thermal components ���, ��, ���, ��� shown in Fig. 12. More distinctive features of thermal face components can be 
found in Fig. 13 when we analyse the 16 components���, ��, ���, … , ��!. Fig. 14 shows the 
histogram distribution for components ���, ��, ���, … , ��!corresponding to Fig. 13(b). Figs. 11 
to 14 justify our rationale for using local thermal features for human identification.  
 
The recognition rates for the different number of bins are recorded in Fig. 15. As can be 
seen from the figure, the rank-1 recognition rate was at its lowest when the number of bins 
was 20, with a success rate of 85.2%. The recognition rate increased as the number of bins 
increased and reached 96.4% when there were 500 bins. We have noticed that the success 
rate saturates as the number of bins becomes greater than 500. Another method to evaluate 
the potential performance of the recognition system is the Cumulative Match Score curve 
(CMS). The CMS illustrates the trade-off of true positive versus false positive results. The Y-
axis represents the true positive rate, and the X-axis is the cumulative rank. We can think of 
the X-axis as the maximum number of images that the system is allowed to report when 
giving an alarm for a given probe. If the system is allowed to report a larger number of 
possible matches, the true positive rate generally increases. The results of the CMS 
evaluation are shown in Fig. 16, where the performance statistics are reported as cumulative 
match scores. Identification is regarded as correct if the true object is in the top Rank n 
matches, with Rank 1 being the best match. 
 
For the sake of comparison, we show in Table 3 experimental results with thermal images 
obtained by different researchers. It should be noted that the databases used by researchers 
in the mentioned works are not the same. This is to be expected since this field of study is 
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relatively new when compared to face recognition in visible spectrum, and the community 
has not yet reached a general agreement on standard tests or benchmark databases.  
 
An important advantage of our system is its speed and efficiency. Table 4 shows the time 
consumed by the system to complete the histogram calculations for different components. 
As can be seen from Tables 3 and 4, the system performance demonstrates its 
effectiveness when both the recognition rate and the time consumed are considered.   
 

 
 

Fig. 4. Histogram distribution for a whole face image for one subject (class) for 
different number of bins: 20, 50, 100, 200, 300, 400 and 500 bins 
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Fig. 5. Histogram distribution for a whole face image for another subject (class) for 
the same number of bins as described in Fig. 4 

 

 
Fig. 6. Histogram distribution for four different images for the same person (same 

class) in the case of 20 bins 
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Fig. 7. Histogram distribution for another four different images for another person 

(class) in the case of 100 bins 
 

  

  

  

  

  
 

Fig. 8. Histogram distribution for 10 different persons in the case of 20 bins 
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Fig. 9. Histogram distribution for 10 different persons in the case of 100 bins 
 

    
(a)   (b) (c)     (d) 

 
Fig. 10. (a) A thermal image corresponding to one person, (b) A colour image showing 

temperature degree distribution of (a), (c) 3D temperature distribution for (a) and (d) 
another 3D perspective for the same thermal face image 
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Fig.11. 3D temperature distribution from two angles corresponding to component 89:for the person shown in Fig. 10 
 

    
(a) 

    
(b) 

 
Fig. 12. (a) Four thermal image components 8;:, 8;9, 8;;, 8;<corresponding to person 

shown in Fig. 10, and (b) the corresponding 3D temperature distributions  
 

  
(a) (b) 

  
Fig. 13. (a) 16 thermal image components 8<:, 8<9, 8<;, … , 8<9= corresponding to person 

shown in Fig. 10, and (b) the corresponding 3D temperature distributions 



 

 

 

 

 

 
 

Fig. 14. Histogram distribution for 16 different components 
corresponding to person shown in 
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Fig. 16. CMS evaluation results for different numbers of bins 
 

Table 3. Comparison between different thermal face recognition methods proposed in 
the literature 

 
Method Success rate (%) 
Seal et al. [20] 95 
Lu et al. [15] 89.1 
Seal et al. [21] 97.6 
Bhattacharjee et al. [22] 95.1 
Hermosilla et al. [12] 95.7 
Socolinsky et al. [10] 93.9 
Bhowmik et al. [31] 93.8 
Our method 96.4 
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Table 4. Time consumed (in seconds) to calculate the histogram for the different 
components for different images of the same subject 

 
 Image 1 Image 2 Image 3 Image 4 Image 5 �� 6.0E-03 6.1E-03 6.0E-03 6.0E-03 5.9E-03 ��� 6.2E-03 5.9E-03 6.0E-03 5.9E-03 5.9E-03 �� 5.9E-03 5.9E-03 5.9E-03 6.3E-03 5.9E-03 ��� 5.9E-03 5.9E-03 5.9E-03 5.9E-03 6.1E-03 ��� 6.0E-03 5.9E-03 6.7E-03 5.9E-03 5.9E-03 ��� 5.6E-03 5.6E-03 5.6E-03 5.6E-03 5.6E-03 �� 5.6E-03 5.5E-03 5.6E-03 5.7E-03 5.6E-03 ��� 5.6E-03 5.6E-03 5.6E-03 5.6E-03 5.5E-03 ��� 5.6E-03 5.6E-03 5.6E-03 5.8E-03 5.6E-03 ��3 5.5E-03 5.6E-03 5.6E-03 5.8E-03 5.6E-03 ��! 5.6E-03 5.7E-03 5.6E-03 5.6E-03 5.6E-03 ��4 5.6E-03 5.6E-03 5.7E-03 5.7E-03 5.7E-03 ��5 5.6E-03 5.6E-03 5.6E-03 5.6E-03 5.6E-03 ��6 5.6E-03 5.6E-03 5.6E-03 5.6E-03 5.6E-03 ��7 5.6E-03 5.6E-03 5.6E-03 5.6E-03 5.7E-03 ��� 5.6E-03 5.6E-03 5.6E-03 5.7E-03 5.6E-03 �� 5.6E-03 5.6E-03 5.6E-03 5.6E-03 5.9E-03 ��� 5.6E-03 5.6E-03 5.9E-03 5.5E-03 5.7E-03 ��� 5.6E-03 5.6E-03 5.6E-03 5.6E-03 5.7E-03 ��3 5.7E-03 5.6E-03 5.6E-03 5.6E-03 5.6E-03 ��! 5.5E-03 5.6E-03 5.5E-03 5.5E-03 5.8E-03 

 
6. CONCLUSION 
 
Face recognition using different imaging modalities, particularly infrared imaging sensors, 
has become an area of growing interest. The use of thermal IR images can improve the 
performance of face recognition in uncontrolled illumination conditions. In this paper, we 
presented a new technique for face recognition using data fusion based on statistical 
calculations of component-based thermal images. Local representations offer robustness 
against variability due to changes in localized regions of the faces. The proposed system 
exploits the advantages and the characteristics of thermal images, a component-based 
approach, the statistical features and fusion. The proposed feature vector consists of first 
moment, second moment and the thermal image histogram, where the calculation of these 
features is implemented at the component level, beside the whole face image. We have 
found that the recognition rate increases as the number of histogram bins increases. The 
best obtained success rate was 96.4% when the number of bins was equal to 500. Our 
future work will consider implementing the method on larger and benchmark databases.  
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