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Abstract

Let Ao C A1 C --- C Ai—1 C A¢ be achain of unitary commutative rings (each A; is constructed by
the direct product of suitable Galois rings with multiplicative group A; of units) and Ko C K1 C --- C
K:—1 C K. be the corresponding chain of unitary commutative rings (each K; is constructed by the
direct product of corresponding residue fields of given Galois rings, with multiplicative groups ;' of
units), where t is a non negative integer. In this work presents three different types of constructions
of generator polynomials of sequences of BCH codes having entries from A; and K for each i,
where 0 < ¢ < t.
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1 Introduction

Let A be a finite commutative ring with identity. The ring A™, with n € Z*, being a free .A-module
preserve the concept of linear independence among its elements is similar to a vector space over a
field. Though it is the constraint that an » x r submatrix of » x n generator matrix M over A is non-
singular, or equivalently, has determinant unit in .A. The existence of non-singular matrices having
not obligatory the unit elements is, in fact the primary obstacle in working over a local ring instead of
a field. The notion of elementary row operations in a matrix, and its consequences, also carry over
A with the understanding that only multiplication of a row by a unit element in A is allowed, which is
in contrast to the multiplication by any nonzero element in the case of a field. The structure of the
multiplicative group of units of A is the main motivation to calculate the McCoy rank [1] of a matrix M,
that is the largest integer r such that r x r submatrix of M has determinant unit in A.

*Corresponding author: E-mail: andrade@ibilce.unesp.br


www.sciencedomain.org

British Journal of Applied Science & Technology 4(6), 929-944, 2014

Linear codes over finite rings have been discussed in a series of papers initiated by Blake [2],
[3], and Spiegel [4], [5]. However a remarkable development, nonetheless, began by Forney et al.
[6]. The structure of, the multiplicative group of unit elements of certain local finite commutative rings
have recently raised a great interest for its wonderful application in algebraic coding theory. Using
multiplicative group of unit elements of a Galois ring extension of Z,~, Shankar [7] has constructed
BCH codes over Z,~. However, Andrade and Palazzo [8] have further extend these construction of
BCH codes over finite commutative rings with identity. Both construction techniques of [7] and [8]
have been addressed from the approach of specifying a cyclic subgroup of the group of units of an
extension ring of finite commutative rings. The complexity of study is to get the factorization of z° — 1
over the group of units of the appropriate extension ring of the given local ring.

There exist corresponding Galois ring extensions R; = GR(p™, h;), where 0 < i < t, h = b,
b is prime, t is a positive integer and h; = b* (respectively, there residue fields K;, where 0 < i < ¢
and h; = b*) of unitary local ring (R, M) with p™ elements (respectively, p elements and residue
field R/M). For each i, for 0 < i < ¢, it follows that R; has one and only one cyclic subgroup
G, of order n; (divides p"i — 1) relatively to p (an extension in [7, Theorem 2]). Furthermore, if 5¢
generates a cyclic subgroup of order n; in K. Then A% generates a cyclic subgroup of order n;d;
in Ry, where d; is an integer greater than or equal to 1, and (8°)% generates the cyclic subgroup
Gnr, In R} for each ¢ [7, Lemma 1]. Then by extending the given algorithm [7] for constructing a
BCH codes with symbols from the local ring .A for each member in chains of Galois rings and residue
fields, respectively. Consequently there are two situations: s; = b* for i = 2 or s; = b’ fori > 2. By
these motivations in this paper for any t € Z*, we let 4o C A; C --- C A;—1 C A be a chain of
unitary commutative rings, whereas for each ¢, such that 0 < i < ¢, it follows that 4, is direct product
of Galois rings, i.e.,

Ao = Ror X Roz X -+ X TRor
n N N N
Al = Rl,l X RLQ X X Rl,r
n N N N
n N N N
A = Rt,l X RLQ X e X 'Rt,r

Whereas Ro,; C R1,; C --- C Ri—1,; C Ry,j, foreach 1 < j < r, is the chain of Galois rings. In
construction | we have different R;; with same characteristic p. In constructions Il and Ill we take
different R;,; with different characteristic p;, where 1 < j <.

Through of the chain Ao c Ay C--- C Ai—1 C A, Ko C K1 C--- C Ki—1 C K¢ there is a chain
of rings constituted through the direct product of their residue fields, i.e.,

Ko = Koi1 x Koz x -+ x Ko,
n n n N
Ki = Kip x Kig x -+ x Ky,
n n N M
n n n N
ICt = Kt 1 X Kt72 X s X Kt,1‘~

s

Whereas Ko; C Ki; C -+ C Ke—1,; C Ky, foreach 1 < 5 < r, is the chain of corresponding
residue fields. In construction | we have K; ; = K; ;41 and different in remaining types. It follows that
Aj and K7, for each i, where 0 < i < ¢, are multiplicative groups of units of .4; and IC;, respectively.
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2 Construction |

For each j suchthat 1 < j <, letp be any prime and m; be a positive integer. Thenring A; = Zm;
A,

is the unitary finite local commutative ring with maximal ideal AZ; and residue field K = VJ =Zyp. The
natural projection ; : A;[z] — K[z] is defined by 7; (3"} _, arz®) = 31 _, @ex”, where @i, = ax + M;
for k = 0,---,n. Thus, the natural ring morphism A; — K is simply the restrictions of =; to the
constant polynomial. Now, if f;(z) € A;[z] is a collection of basic irreducible polynomials with degree
h = b*, where each b is a prime and ¢ is a positive integer, then R; = (‘;]¥<[;C>]> = GR(p™i,h) is the
Galois ring extension of A; and '

ke Ri o Alel/(fi(@) _ Ajlel  (A/My)le] - Kfz] GF(")

CM; - (M f(@) /(@) (M, fi()  (m(f(@) (i)

is the residue field of R ;, where M; = (Mj, f;(x))/(f;(x)) is the corresponding maximal ideal of R ;.
Since 1,b,b%,--- ,b'"1, b are the only divisors of h, and take ho = 1,h; = b, hy = b%,--- ,hy =

b* = h, therefore by [1, Lemma XVI.7] there exist basic irreducible polynomials f1 ;(x), fa,;(x), - , fi.;(x) €
Aj[x] with degrees hi,he,--- , h:, respectively, such that we can constitute the Galois subrings
Ri; = Zpm M) = GR(p™,hi) of R; with the maximal ideal M ; = (M, fi;(x))/(fi;(x)), for

(fi,5(x)
each i, j, where 0 <i <tand 1 < j <r. Thus the residue field of each R, ; becomes

Rij _ _ AilX]/(fi (@) Ajle]  _ (A/My)[z] _ K[a]

T My (Mg, foy (@) (fos (@)~ (M, fis (@) (m(fig () (fi;(2)

As each h; divides h;4+1 forall 0 < i < t, so by [1, Lemma XVI.7] it follows that

K;

= GF(p").

Aj =Ro; CR1,; CR2; C--- CRi—1,; CRe,; =TR;
is the chain of Galois rings with corresponding chain of residue fields
Zp:KOCK1 CKeC---CKi1 CKL

If Ai=Ri1 XRi2xRisx-- xR, foreach i suchthat 0 <i < ¢, then we get a chain of commutative
rings, i.e.,
AcAicAC---CA1CA=A

with an other chain of rings Ko C K1 C K2 C --- C K¢—1 C K¢ = K where each K; = K7, for each 4
such that 0 <7 <+t.

Let A7, R} ; and K} be the multiplicative groups of units of A;, R; ; and K; respectively, for each
i,7,where 0 < i <tand1 < j <r.Now, the next theorem extended [1, Theorem XVIIl.1], which has
a fundamental role in the decomposition of the polynomial z° — 1 into linear factors over the ring A; .
This theorem asserts that for each element «; € A} there exist unique elements 3; ; € R ;, for each
i,7,where 0 <i<tand1l<j<r, suchthata; = (Bi1, 08,2, ,Bir).

Theorem 2.1. Let A; = Ri1 X Ri2 X Ri3x--- xRy, foreachi such that0 < i <t, where eachR; ;
is a local commutative ring. Then A] = R;1XRis x Ri3 x --- xR}, foreachi,j, where0 <i <t
and1<j<r.

Note that 3, , = B,, = 8,3 = --- = B,, = fB,, and therefore @; = (8,,8,,8,,--- , B,). Following
theorem indicates the condition under which z°¢ — 1 can be factored over A, for each 4, such that
0<i<t.

Theorem 2.2. For each i such that 0 < i < t, the polynomial x°* — 1 can be factored over the

multiplicative group A} as z®t — 1 = (x — a;)(x — oF) - - - (x — f) if and only if B;, has order s; in K,
where gcd(si,p) = 1 and a; = (Bi,1, Bi,2, -+, Bir)-
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Proof. Suppose that the polynomial z°* — 1 can be factored over A} as z° — 1 = (z — ai)(z —
af)--- (x—aj’). Thenz® —1 can be factored over R} ; asz* —1 = (z— Bi;)(x — B;) - - (x = B,
for each i such that0 < i < tand1 < j < r. Now it follows from the extension of [7, Theorem 3]
that B; has order s; in K, for each i such that 0 < i < t. Conversely, suppose that 3; has order
s; in K5, for each i such that 0 < ¢ < t. Again it follows from the extension of [7, Theorem 3] that
the polynomial z* — 1 can be factored over R; ;as z* — 1 = (z — fi;)(x — ;) -~ (z — B;}), for
0<i<tandl <j<r. Sincea; = (Bi1,Biz2 " ,Br), foreachi such that0 < i < t, therefore

% — 1= (x —;)(x—af) - (x — ') over A, for eachi such that0 < i < t.

Let H,, s, denotes the cyclic subgroup of A; generated by «;, for each i suchthat0 <i <t¢,i.e,
H,, s, contains all the roots of 2 — 1 provided the condition of Theorem 2.2 is met. The BCH codes
C; over A can be obtained as the direct product of BCH codes C;,; over R; ;. To construct the cyclic
BCH codes over A;, we need to choose certain elements of Ha, »,, Wwhere n; = s;, as the roots of
generator polynomials g;(x) of the codes. So that, oS, a?,a5?, -+, a;" " are all the roots of g;(z)
in Ha, n,, we construct g;(z) as

gi(x) = lem{M{* (z), M{* (), -, M; """ ()},

where for each i such that 0 < i < ¢, it follows that M,"i () is the minimal polynomial of «;'?, for
I=1,2,---,n; — ki, whereas each a;"" = (8,,5;4, - ,B;+), and M, " (z). The following theorem
is the extension of [7, Lemma 3] and provides us a method for construction of Mf’i (z), the minimal
polynomial of af” over the ring A;, for 0 <4 < t.

Theorem 2.3. For each ¢ such that0 < ¢ < t, let M:’“’ (z) be the minimal polynomial of af” over
Ai, where o't generates H.,, n;, forl; = 1,2,--- ,n; — ki. Then M, " (z) = [] (z — &), where

Bii = {(o' )™ tmi =TI p%9, 1<l <mi— ki, 0< i < hs — 1},

Proof. Let M,' (z) be the projection of M;'i (x) over the field K, and M, (z) be the minimal
polynomial of af” over K;, for each i,j, where 0 < i < tand1 < l; < n; — k;. We can verify
that each M;' (x) (minimal polynomial of a;" ) is divisible by M, '; () (minimal polynomial of B;'*),
for0 <i<tandl <l; <n;— k;. Thus it has, among its roots, distinct elements of the sequences
@l @ P, @) @) for0 < i< tandl <l <n;—ki. Hence M" (z) has, among
its roots, distinct elements of the sequence o', (a " )7, (aS")?" -, (aS")*"" ™", for each i such
that0 < i <tand1 <l <n; — ki. Thus the element&; = (a;'")?""* is the root of M, " (), for each

isuchthat0 <i<t,0<m; <h;—1landl<l; <n;—k;. HenceM:l"'(ac) = HﬁLEBil(‘r—&)

1
§i€B;"

Remark 2.1. Since, for each i such that 0 < i < ¢, it follows that M:' () (minimal polynomial of af"i)
is the projection of M, " () (minimal polynomial of «;'*) over the rings K;. So M, (x) generates the
sequence of codes over the special chain of rings £, = K .

The lower bound on the minimum distances derived in the following theorem applies to any cyclic
code. The BCH codes are a class of cyclic codes whose generator polynomials are chosen so that the
minimum distances are guaranteed by this bound. In this sense, the following extended [8, Theorem
2.5].

Theorem 2.4. [9, Theorem 11] For each i such that 0 < i < ¢, let g;(x) be the generator polynomial
of BCH code C; over the ring A; from the chain Ao C A1 C As C --- C Ai—1 C A4, with length
n; = s;, and let o', af?, af®, - - ,af"i_’“i be the roots of g;(x) in Ha, n;, where o; has order n;. The
minimum Hamming distance of this code is greater than the largest number of consecutive integers

modulo n; in E; = {e1,ez2,e3, -+ ,en,—k, }, foreach i such that0 < i < t.

Corollary 2.5. [8, Theorem 2.5] Let g(x) be the generator polynomial of BCH code over A with length
n = s such thata®',a®?,--- ,a°»—* are the roots of g(z) in Ha,», where « has order n, then minimum
Hamming distance of the code is greater than the largest number of consecutive integers modulo n
inE = {61, €2,€3, " ,6n_k}.
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2.1 Algorithm

We can also use the extension of [7, Theorem 4] for the BCH bound of these codes. The algorithm for
constructing a BCH type cyclic codes over the chainofrings Ao c A1 C Ao C---C A1 C A=A
is then as follows.

1. Choose irreducible polynomial f; ;(x) over Ly of degree h; = b', forl < i < t, which are
also irreducible over GF'(p) and form the chains of Galois rings
Z,m; = GR(p™,ho) CGR(p™ ,h1) C--- C GR(p™,ht—1) C GR(p™ , ht) oOr
A = Roj CR1; SR € CRi-1,; SRey =TR;

and its corresponding chain of residue fields is

Zp = GF(p) C GF(phl) c.---C GF(pht—l) C GF(ph) or
= KoCcK;CKz---CKig CK,

hi) ~ K|[z] ;
where each GF(p") ~ s @) for1 <i<t.
2. Now put A; = Ri1 X Ri2 X Riz X -+ X Ry, for 0 < i < ¢, where each R, ; is a local
commutative ring, and get a chain of rings
ACcACAC---CA1CA=A
with an other chain of rings
KoCKiCKeC---CKio1 CKe =K,

where each K; = K, for0 <i <t.

3. Let®,; ; =7, be the primitive elements in K7, for 0 <4 < t. Then n; ; has order d;,;.n; in R} ;
for some integers d; ;, put 8;,; = (m,j)diu‘. Then o; = (B4,, B2,,03,, -+ , Br,;) has order n; in
Ri; and generates H., n,. For each i, where 0 < i <'t, let a; be any element of Hy, »,.

en. k.
4. Let ai',a5?,a5%, -+ o,

minimal polynomials of a;'i, for; = 1,2, --- , n;—k:, where each o' = (8
Then g;(x) are given by

are chosen to be the roots of g;(x). Find Mf“ (z) are the
ey €l

€. e .
i L?ﬁi 1751‘ L7“' ’51’ L)'

gi(@) = lem{M;* (z), M* (), -~ , M; " " ()}

7

The length of each code in the chain is the Icm of the orders of o, a2, a5, -+, a;" ", and
the minimum distance of the code is greater than the largest number of consecutive integers
in the set E; = {e1,e2,e3, - ,en,—x,; } for each ¢, where 0 < ¢ < ¢.

Example 2.6. We initiate by constructing a chain of codes of lengths 1, 3 and 15, taking A1 = Z4
and A; = Zs. Since M, = {0,2} and M, = {0,2,4,6}, so K; = ]‘3—/7 ~ Zso fori = 1,2. The regular
polynomial f1(z) = 2*+a+1 € Za[z] and fa(x) = 2* +a+1 € Zs[x] is such that w1 (f1(z)) = «* +a+1
and m2(f2(z)) = =* + 2 + 1 are irreducible polynomials with degree h = 2* over Z». By [9, Theorem

3], it follows that fi(x) and f2(x) are irreducible over A, and A, respectively. Let R1 = (fo’(g]) =

GR(22,4) and Ry = % = GR(2%,4) be the Galois rings and K = % = GF(2*) be their
corresponding common residue field. Since 1, 2 and 2% are the only divisors of 4, it follows that put
hi = 1, ha = 2 and hs = 2%. Then there exist irreducible polynomials fi1(z) = z*> — x + 1 and
fi2(x) = fao(x) in Za|z] with degrees ho = 2 and hs = 4 such that we can constitute the Galois

rings Rix = % = GR(2% hi), and Ri2 = % = GR(2%, h;), where 1 < i < 2. So
Zs[z]

Aj = Ro,; C Ri,; C Re,j = Ry, forj = 1,2. Again by the same argument K; = T, @) =
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GF(2,h;) = GF(Q’”), where1 <i<2andl1<j <2 Thatis, Ko =GR(2,1) = Z2, K1 = GR(2,2),
Ko =K = GR(2,4), with K; Cc Ko C K. Now A; = Rq',71 X Ri,z such thatAo - Aq - Az, i.e.,

Ao = Roi1=7Zs X  Roo=17Zs

A = R1,1 = % X R1,2 = (12242_377512)

Az = Roi1 = % X  Rapg = (ZZ%QETI)
and

ICD = Ko = ZQ X Ko = ZQ

Ki = Ki= (12217% x Ky = %

Ke = Koni= mfj_f{ﬂ_l) X Koo = %-

Letu = {z} in R 1 such thatu = {z} inK,;. Thenw + 1 has order 15 in K, s0 B, =+ 1. Butu + 1
has order 30 in Re,1 and Ra,2, S0 put B2.1 = Pae = (u+1)? and get s = (Ba,1, B2,2) Which generate
Hey15. Alsow has order 3 in Ky, so B, = u. Butw has order 6 inR1,1 and R1,2, S0 f1,1 = Bi,2 = u’
and get ax = (B1,1, B1,2) which generates Ho,, 3. Put Bo1 = Bo,2 = 1 and get oy = (Bo,1, Bo,2) which
generates H.,,,1. Choose «; and o to be roots of the generator polynomials g;(x) of the BCH codes
C; over the chain Ay C A1 C As. Then M} (z), Mi(x) and M; (x) has as roots all distinct element
in the sets B} = {ao} C Hag1, Bi = {a1,0l} C Hay 3 and By = {a2,03,03,08} C Hay 15,
respectively. So

M (z) = (z — an), Mi(z) = (z — an)(z — af) and M, (z) = (z — az)(z — a})(z — a3)(z — ab)
Similarly,
M3 (@) = M(2) = (& — a0), Mi(2) = (2 — 1) and M3(z) = (& — a3) (& — a) (¢ — a}?)(z — o).
Thus the polynomials g;(x) = lem (M} (), M2 (x)) are given by
G0(@) = (@~ 1), g1(2) = (@ — D& - ar)(@ — ad),

g2(x) = (x — az) (2 — a3)(z — a3)(x — a3)(z — a3)(z — ab)(z — a3)(z — a3”),
which generates the cyclic BCH codes Cy, C1 and Cs of length 1, 3 and 15 with minimum hamming

distance at least 2, 4 and 5 respectively. Also, if we replace «; with @,, then we get codes over K;, for
0<i<2.

3 Construction Il

Since for any prime p; and a positive integers m, the collection of rings A; = Zyr is the collection of
unitary finite local commutative rings with maximal ideals M; and residue fields K; = JC—IJJ for each
j such that 1 < j < r. The natural projections 7; : A;[z] — K;[z] is defined by 7(3°}_, arz®) =
S o @ex”, where @i = ap+M; fork = 0,--- ,n. Thus, the natural ring morphism A, — K, is simply
the restriction of 7; to the constant polynomial. Now, if f;(z) € A;[z] is a basic irreducible polynomial

with degree h = b, where bis a prime and ¢ is a positive integer, then R ; = % = GR(pj", h)isthe
family of the Galois ring extension of A; and K; = ;\% = (AI?,J}E$QI/§{;((2?3z)) = (Mfff[:(]z)) = E:;(/;tfggf)]
is the collection of residue field of R;, where M; = (Mj, f;(x)) is the corresponding collection of the
maximal ideals of R ;. For the construction of a chain of Galois rings, [1, Lemma XVI.7] facilitate us.
Since 1,b,b%,--- , b1, b are the only divisors of h, and take ho = 1,h1 = b, ha = b%,--- , hs
b* = h, so by [1, Lemma XV1.7] there exist basic irreducible polynomials f1 ;(z), fa,;(x), - - , ft,;(x)
Aj[x] with degrees hi, ha, - - - , he, respectively, such that we can constitute the Galois subrings R, ; =

[ m |l
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sz_n [z]

Tog@y = GR(p;n,hi), of Rj with the maximal ideals ./\/li’j = (Mj, fi,j (:c))/(fw(x)), for each 2,7,
where 0 < i < tand1l < j <r. Then the residue field of each R, ; becomes

L Riy _ AE/(fi@) Ajlel (A /MG)[e]  Kjla] hi
Kij M My, fiy @)/ (fig(@) (M, fig(2)  (m(fii(2)) () Grw;)

As each h; divides h;41 for each i such that 0 < ¢ < ¢, so by [1, Lemma XVI.7], there are chains

Aj=TRo; CR1; CRaj C-+CRi—1; CRej =R,
of Galois rings, with corresponding chain of residue fields
ij =Ko,; CKi1,; CKy ;- CKior,; CKey =K

Let A;i=Ri1 X Ri2 X Riz X --- X R;r, for 0 < i <t¢. Then we get a chain of commutative rings,
i.e.,
AcAicAC---CA1CA=A

with an other chain of commutative rings
KoCcKiCcKeC---CKis CKe =K

where each £; = K; 1 x Kj2 x --- x K; -, for each i such that 0 <i < ¢.

Let A7, K7, R} ; and K] ; be the multiplicative groups of units of A;, K;, R: ; and K, ;, respectively,
for each i, where 0 < i < tand 1 < j < r. Now the next theorem, extension of [1, Theorem XVIII.1]
has a fundamental role in the decomposition of the polynomial z°# — 1 into linear factors over the rings
Aj. This theorem asserts that for each element «; € A; there exist unique elements 3; ; € R ;, for
each i,j, where 0 <i<tand1l <j <r, suchthat o; = (8i1,Bi2, -, Bir)-

Theorem 3.1. Let A; = Rii X Ri2 X Riz X -+ X Ripr, for 0 < i < t, where each R;; is a
local commutative ring. Then for each i,j, where 0 < i < tand1 < j < r, it follows that A; =
Riit X Ria X Rizgx - XRj,.

Note that corresponding @ = (B, ,8,4, - ,B,,). Following theorem indicates the condition
under which z** — 1 can be factored over A;, for 0 < i < t.

Theorem 3.2. For each i, where 0 < ¢ < t, the polynomial x** — 1 can be factored over the
multiplicative groups A; asz*i —1 = (z — i) (z —a?) - (x — o}?) ifand only ifeach B; j, 1 < j < r,
has order s; inK; ;, where ged(s:,p) =1 and a; = (8,1, Bi,2,- -+, Bi,r), foreachi,0 <i <t.

Proof. For each i, where 0 < i < t, suppose that the polynomial x** — 1 can be factored over
Af asz® — 1 = (z — ai)(z — o)+~ (z — oj"). Then z* — 1 can be factored over R} ; as
=1 = (z—Bi;)(@—pB7;) - (x—B;,) for0 < i < tand1 < j < r. Nowitfollows from the extension
of [7, Theorem 3] that j3;. j hasorders; in K7 ;, for0 <i <t and1 < j <r. Conversely, suppose that
Bi,; has order s; inK; ;, for0 <i < tandl < j <r. Again it follows from the extension of [7, Theorem
3] that, the polynomial z° — 1 can be factored over R; ; asz® —1 = (z — Bi;)(x — B7;) - (x — B5),
for each i,j, where 0 < i < tand1 < j < r. Since o; = (Bi1,Bi,2, " ,Bir), for0 < i < t, so
% — 1= (x —ai)(x—af) - (x — ') over A}, for eachi such that0 < i < t.

Corollary 3.3. [8, Theorem 3.4] The polynomials z* — 1 can be factored over the multiplicative group
R*asz® — 1= (z—a)(z—a?)---(z —a®) ifand only if B; has order s in K}, where gcd(s,p;) = 1
and « corresponds to 8 = (81,82, , (), where j =1,2,3,--- ,r.

Let H,, s, denotes the cyclic subgroup of A; generated by «;, for each i suchthat0 <i <t¢,i.e,
H,, s, contains all the roots of z°* — 1 provided the condition of above theorem are met. The BCH
codes C; over A; can be obtained as the direct product of BCH codes C; ; over R; ;. To construct the
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cyclic BCH codes over A}, we need to choose certain elements of H,, », as the roots of generator
polynomials g;(x) of the codes, where n; = ged(p?, phi, phi .- pli). Sothat, o', a2, .- a;"i "
are all the roots of g;(z) in Hq, »,, We construct g;(z) as

gi(x) = lem{ M (), M2 (), , M;" 7" (2)},

k3

where M,"i (z) are the minimal polynomials of a;', for | = 1,2,--- ,n; — k;, where each «,'i =
(BB, -, Biy). The following theorem is the extension of [7, Lemma 3] and provides us a
method for construction of M, " (z), the minimal polynomial of o;'* over the ring A;.

Theorem 3.4. For eachi such that0 < i < t, let M, " () be the minimal polynomial of a;'* over A;,
where af"ﬁ generates Hu,, n;, forl;y =1,2,--- ,n;—k; and0 <14 <t. Then Mfl'i (z) = HgveBlfi (x—¢&),

where Bl = {(c;" )5 tms ;= T[5_ p{*?, for1 <1; <ni— ki, 0 < qi; < h;i — 1 and0 <i< t}.

Proof. Let M," (x) be the projection of M;" (x) over the fields K; ; and M, (x) be the minimal
polynomial ofa?i overK; ;, foreachi suchthat0 <i <t 1<j<randl<l; <n;—k;. Wecan
verify that each M (x) is divisible by M, ; (x), for0 < i < t,1 < j <rand1 <l; <n; — k. Thus
it has, among its roots, distinct elements of the sequences @;" , (@," )Pi, (@, )73 -+ , (@." A
for each i,j such that0 < i < t,1 < j < rand1 < l; < n; — k. Hence M;'(z) has, among

e er. €1\ e ey, hi—1
its roots, distinct elements of the sequence o', (o} )P, (oS )73 -+, (aS")P3" , for eachi, j such
that0 < i <t 1<j<randl <1l <n;—ki. Thus any element~; = (a;'")Pi " of the above
sequence is the root of Mf“' (z), foreachi,j suchthat0 <i <t 1<j53<7r,0<m; <h;—1and
1 <l; < n;—k;. Choose any k intherange 1 < k < r suchthatk # j. Then we know that~; ;. a root of
M} (z) implies that (vi.x)” « is a root of M " (z) (which has coefficients in K, 1), for0 < q; < h; — 1.
i el p iy, er. . . .

Hence (7¢)p2 = (a,'")" P¥ s a root of M, ' (x). Proceeding in this manner, we can show that
M;" (z) necessarily has as roots all distinct member of B'. But the polynomial T| ¢ epl (x — &) has,
by construction, coefficient in the direct product of A;. Hence M:li (z) = 1‘[5 cgli (z — &).

Corollary 3.5. [8, Theorem 3.5] For any positive integer 1, let M,(x) be the minimal polynomial of o'
over R, where o generates Ho,n. Then M,(z) = [[;cp, (z — £), where B, is all distinct elements of

the sequence {(')™ : m = [1}_, q,", ¢; = p; ", where 0 < s; <h —1}.

Remark 3.1. Since Mf’ (z) be the projection of Mf” () over the field K; ;, for each i, j such that
0<i<tand1l <j <r. So H:' (z) generates the sequence of codes over the special chain of
rings K; = Ki1 x Kij2 x -+ xK;,, foreach i such that 0 < i < ¢.

The lower bound on the minimum distances derived in the following theorem applies to any cyclic
code. The BCH codes are a class of cyclic codes whose generator polynomials are chosen so that the
minimum distances are guaranteed by this bound. In this sense, the following extended [8, Theorem
2.5].

Theorem 3.6. [9, Theorem 11] For each i such that0 < i < t, let g;(x) be the generator polynomial
of BCH code C; over A; from the chain Ay C A1 C Ax C --- C Av—1 C Ay, with lengthn; = s;, and
let oSt al? a3, .- a;" " be the roots of g;(x) in Ha, n,, where «; has order n;. The minimum
Hamming distance of this code is greater than the largest number of consecutive integers modulo n;
inE; ={e1,ez,e3, - ,en,—x, }, foreachi such that0 < i < ¢.

Corollary 3.7. [8, Theorem 2.5] Let g(x) be the generator polynomial of BCH code over A with length
n = s such thata®',a®?,--- ,a°»—* are the roots of g(z) in H.,», where « has order n, then minimum
Hamming distance of the code is greater than the largest number of consecutive integers modulo n
inE = {61, €2,€3, " ,6n_k}.
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3.1 Algorithm

The algorithm for constructing a BCH type cyclic codes over the chain of such type of commutative
rings Ao C A1 C A2 C --- C Ai—1 C Ay = Alis then as follows.

1. Choose irreducible polynomial f; ;(z) over Zp;_n, of degree h; = b, for 1 < i < t, which are
also irreducible over GF'(p) and form the chains of Galois rings
ij_n = GR(p}',ho) C GR(p}*,h1) C --- C GR(p]", ht—1) C GR(p]", ht) or
Aj Ro,;j CR1; CR23 €+ CRe—15 CRej =R

and its corresponding chains of residue fields are

Z,, = GF(p;)CGF@!)C---C GF(p;'™") C GF(p}) or
Ko,j CKy,; CKoj - CKior,y CKey =Ky,

K, [z]
- <7r7(f 3 (@)’
2. Now put A; = Ri1xRi2 X Rigx---XRsp, for 0 < ¢ < ¢, where each R;; is a local
commutative ring, and get a chain of rings

where each GF(p}}') ~ for1 <i<t.

ACcAACAC--CA1CA=A
with an other chain of rings
KoCKiCKeC---CKi1 CK =K

where each K; =K, 1 x K; 2 x --- x K; ., the direct product of corresponding residue fields r
times, for0 < < t.

3. Let 7, ; be the primitive elements in K} ;, for 0 < i < tand 1 < j < r. Then 7, ; has order
di jn; in R} ; for some integers d; ;, put 8;; = (m,j)dw'. Then a; = (B1,, 82,83, , Br;)
has order n; in R ; and generates H.,,»,. Assume for each i, where 0 < i < ¢, let a; be any
element of Hy, ;-

4. Let o', af?,a%, - o, " are chosen to be the roots of g;(z). Find M;"i (z) are the
minimal polynomials of a;'i, for; = 1,2, --- ,n;—k:, where each o} = (8", 8;'1, B:'1,- -, B;').
Then g¢;(X) are given by

gi(w) = lem{M{* (z), M{* (x),--- , M; " ™" ().

3

The length of each code in the chain is the Icm of the orders of aS*, a2, a5, -+ o™ ", and
the minimum distance of the code is greater than the largest number of consecutive integers
in the set E; = {e1,e2,e3, -+ ,en,—x,; } for each ¢, where 0 < ¢ < ¢.

Example 3.8. We initiate by constructing a chain of codes of lengths 1, 8 and 16, taking A1 = Z¢ and
Az = Zas. Since My = {0,3,6} and M> = {0 5,10, 15,20}, it follows that K1 = Al ~ Zs and K> =

ﬁ ~ Zs. The regularpo/ynom/alsfl( Y=a'+ 48 € Zolz] and f2(X) = z* +a: +xz+1€E Zos[z]
are such that i (f1(z)) = z* +x +2 and w2 (f2(x)) = &* 4+ 2 +  + 1 are irreducible polynomials with
degree h = 22 over Zsz and Zs, respective/y By [9, Theorem 3], it fol/ows that f1(x) and f2(x) are

irreducible over A, and As. Let R, = (f ) = GR(3%,4), Ra = (f (I = GR(5%4) be the Galois
rings and Ky = i — GF(3%), Ko = 5l = GF(5*) be their corresponding residue

fields. Since 1, 2 and 2* are the only divisors of 4, therefore let b1 = 1, hs = 2, hs = 22. Then
there exist irreducible polynomials fi1(x) = 2* + 1, f21(z) = fi(x) in Zs[z], and f12(z) = 2 + 2,
f2,2(z) = fa(z) in Zas[x] with degrees hy = 2 and hs = 4 such that we can constitute the Galois rings
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Ro,l = Al, R1,1 = (fz%z])) = GR(327h2), Rz,l =TR1 andR072 = Az, Rl)z = % = GR(52, hg)

andRi 2 =R2. So
Aj=Ro,; CR1; CR2j; =Ry, forj=1,2.

Again by the same argument Ko,i = Zz, K11 = 28 = GF(3%), Kon = Ky and Ko,z =
Zs, Ky o = % = GF(5%),Ka2 = Ka. So we get chains of fields

A; =Ko,; CKi; CKoy =Ky, forj=1,2.

Now A; = 'Rz‘,1 X 'Ri,z such thatAo - Ai C AQ, i.e.,

Ao = Roi1=%Zo X Ro,2 = Zas

A = Rin= (Zafiﬁ]) X Riz= (2152275])

Az = Ron= % X Rz = (144%237%
and

Ko = Ko,l =73 X KD,Q =17Zs

Ki = Ki1= % X Kiqo= %

Letu = {z} inR; ; suchthatw = {z} inK, ;. Thenu+1 has order8, 24, 80 and 624 in K1, K1 2, Ko 1
andKs 2, respectively. So B, | = B, 5 = By1 = By, = U+1. Butu+1 has order 24, 120, 240 and 3120
in Rlyl, Rlyz, R2’1 andRzyg, So ,DUfﬁm = (u+ 1)3, ﬂlyz = 52,1 = (u—|— 1)15 andﬁg,g = (u+ 1)195 and
getas = (B2,1, B2,2) Which generates H,., 16 and ax = (81,1, 81,2) which generates H.,, 5. Also 2 has
order 4 inKo,» and has order2 inKo,1, $0 B, , = B, , = 2. But2 has order 20 in Ro,» and has order 6
inRo.1, S0 Bo1 = 8 and Bo,2 = 24 get ap = (Bo,1, Bo,2) which generates H,,, ». Choose a; and o to
be roots of the generator polynomials g;(x) of the BCH codes C; over the chain Ay C A1 C Az. Then
Mg (x), M{i(z) and M (z) has as roots all distinct element in the sets B} = {0} C Hay,2, Bi =
{o1,03,03,a]} C Hay s @and By = {az, a3, a3, 08,03, ad, 0d®, a3’} C Ha, 16, respectively. So

Mo () = (& — an), Mi(2) = (¢ — an)(z — a})(z — a])(z - a]),

and
MQI(I) =(z—a2)(x — ag)(m — ozg)(x — a;)(az — ag)(:c — a%l)(aj — ozéS)(x — a%S).

Similarly,
Mg () = (z — 1), Mi(z) = (z — ai)(z — af) and M3 (z) = (z — a3)(z — ab)(z — a3’) (z — a3”).
Thus the polynomials g;(x) = lem (M} (), M?(x)) are given by
5

g0(z) = (z = 1)@ — an), g1(2) = (x — a1)(z — ai)(z — af)(x — a7)(z — ai)(z — o), and

g2(7) = (z—a2)(z—0a3)(z—a3)(z—a3)(z—af) (z—a3) (z—a}) (z—2") (z—a3" ) (z—”) (2—a3") (z—a3”)

which generates the cyclic BCH codes Cy, C1 and C» of length 2, 8 and 16 with minimum hamming
distance at least 3, 4 and 4, respectively. Similarly we can construct a sequence of cyclic codes over
K if we replace «; with@;, for0 <i < 2.

4 Construction lli

For any j suchthat 1 < j < r, let p; be a prime and m; a positive integer. The ring A; = me]- is a
J

unitary finite local commutative ring with maximal ideals M; and residue fields K; = 1‘3—;] The natural
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projections 7; : Aj[z] — K;[z] is defined by 7(3"}_, axz®) = S°7_, awa®, where @z = aj, + M;
for k = 0,1,--- ,n. Thus, the natural ring morphism A; — Kj is simply the restriction of «; to the
constant polynomial. Now, if f;(x) € A,[z] is a basic irreducible polynomial with degree h = b,
where b is a prime and ¢ is a positive integer, then R; = (Aﬂ = GR(p;"j,h) is the collection of

5 (@)))
Rj _ Ajlz]/(£5(=)) Ajlz] (Aj/M;)[x] is the

the Galois ring extension of A; and K; = My = WL,V E) = o @) = (@)
residue field of R ;, where M; = (Mj, f;(x)) is the corresponding maximal ideal of R ; for each j such
that 1 < j < r. For the construction of a chain of Galois ring, [1, Lemma XV1.7] facilitate us.

Since 1,b,b%,--- ,b'"1, b" are the only divisors of h, and take ho = 1,h; = b, hy = b%,--- ,hy =

b* = h, so by [1, Lemma XVI.7], there exist basic irreducible polynomials f1 ;(z), fa,;(z), -+ , ft.;(x) €
Aj|z] with degrees hi, ho, - - - , hy, respectively, such that we can constitute the Galois subring R; ; =
Z m; [z]

P

m = GR(p;"’f,h,-), of R; with the maximal ideal Mij = (Mj, fi,;(2))/(fi,;(x)), for each i such
that 0 <i <tand 1 < j <r. Then the residue fields of each R; ; becomes

_ Ry A/ fig() Ajle]  (A/My)la]  Kjle] hi
S My T Bl oy @) s @)~ O fos @)~ (s @)~ Grglay) ~ CF @)

As each h; divides h;41 for all 0 < i < ¢, so by [1, Lemma XVI.7], there is a chain

K

Aj =Ro; CR1,; CR2; C-+- CRi—1,; CRej =R;
of Galois rings with corresponding chain of residue fields
ij =Ko,; CKy; CKoj; C--- CKior,; CKj.

Let A; = Ri1 X Ri2 X Riz X -+ X Ry, for each ¢ such that 0 < ¢ < t. Then we get a chain of
commutative rings, i.e.,
AvcAiCcAC--CA 1 C A=A

with an other chain of commutative rings
KoCcKiCcKoeC---CKioy CKe =K,

where each K; = K, x Ky, x --- x K, for each i such that 0 <i <¢.

Let A}, K7, R;; and K] ; be the multiplicative groups of units of A;, K;, Ri; and K, ;, for
1 < j < r, respectively, for each ¢ such that 0 < i < ¢. Now the next theorem, extension of [1,
Theorem XVIII.1], is fundamental in the decomposition of the polynomial z* — 1 into linear factors
over the rings A;. This theorem asserts that for each element «; € A} there exist unique elements
Bi,; € Ri;, foreachi,where 0 <i <tand1<j<r, suchthata; = (8i,1,8i2, -, Bir)

Theorem 4.1. Foreachi suchthat0 < i <t,let A; = Ri1 X Ri2 X Riz X -+ X Rir, where each
Ri,j, for1 < j <r,is a local commutative ring. Then A; =R}, X Ria x Riz x---x R;, foreachi
such that0 < ¢ < t.

Note thata; = (8,1, 8,4, , B; ). Following theorem indicates the condition under which z* —1
can be factored over A, for each i such that 0 < <t.

Theorem 4.2. For each i, where 0 < ¢ < t, the polynomial x** — 1 can be factored over the
multiplicative group A; as z°* — 1 = (z — a;)(z — o) ---(x — «f) if and only if B; ;, for each j
suchthat1 < j < r, has order s; in K} ; such that gcd(s:,p) =1 and a; = (Bs,1,Bi,2, -+ 5 Bir)-

Proof. Suppose that the polynomial x°* — 1 can be factored over A; as z°* — 1 = (z — a;)(x —
a?) <+ (x — i), for each i such that 0 < ¢ < t. Then z* — 1 can be factored over R;; as
% — 1= (x—Bij)(x—B;) - (x—B,), foreach 1 < j < r. Now it follows from the extension of
[7, theorem 3] that Bm has order s; in K ;, foreach 0 < i <t and for each1 < j < r. Conversely,

suppose that j3;; has order s; in K; ;, for each i,j, where 0 < i < tand1 < j < r. Again it
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follows, from the extension of [7, theorem 3], that the polynomial x*: — 1 can be factored over R; ;
asz® —1=(z—Bij)(x—B7) - (z — B;5), for each i, j, where 0 < i <t and1 < j < r. Since
a; = (Bij, Bis 5 Bir), for0<i<t,s0z% —1=(z—a;)(x —al)---(x—at) over A}, for each
i, where 0 <1 < t.

Corollary 4.3. [8, Theorem 3.4] The polynomial z* — 1 can be factored over the multiplicative group
R*asaz® — 1= (z —a)(x —a?)---(z —a°) ifand only if B; has order s in K3, where ged(s, p;) = 1
and « corresponds to 8 = (1, B2, ,Br), where j =1,2,3,--- | r.

Let H,, s, denotes the cyclic subgroup of A} generated by «;, for each i, where 0 < i <t i.e.,
H,,,s; contains all the roots of z°* — 1 provided the condition of above theorem are met. The BCH
codes C; over A; can be obtained as the direct product of BCH codes C; ; over R; ;. To construct the
cyclic BCH codes over A}, we need to choose certain elements of H,, », as the roots of generator
polynomials g;(x) of the codes, where n; = ged(pl't, pht, phi .- pli). Sothat, o', a2, .- a;"i "
are all the roots of g;(x) in Ha, »,, we construct g;(z) as

gl(z) = lcm{Mzel (1")7 Mzez (CE), e 7M7,'eniikl (I)}v
where M;"i (x) are the minimal polynomials of o', for I = 1,2,--- ,n; — k;, where each a;'i =
(B85, Biy). The following theorem is the extension of [7, Lemma 3] and provides us a

method for construction of M " (z), the minimal polynomial of a;'* over the ring A..

Theorem 4.4. For eachi such that0 < i < t, let M, " () be the minimal polynomial of ;' over A;,
where af’i generates Hu, n;, forl; =1,2,--- ,n;—k; and0 < i <t. Then M:'“' (z) = Hg,-eBl.i (x—&),

where Bl = {(a;'")™i i my 5 = [T, p;"7, where1 <1; <ni—ki, 0 < qi; <hi—1}.
Proof. Let M," () be the projection of M;" (x) over the fields K; ; and M, (x) be the minimal
polynomial ofaf’i overK; ;, foreach i, where 0 < i <t,1 <j<randl<l; <n;—k. Wecan
verify that each M (x) is divisible by M, ; (z), for0 < i < t,1 < j <rand1 <l; <n; — k. Thus
it has, among its roots, distinct elements of the sequences a." , (&;" )7, (@, )3, - , (@, )pé‘wl,
for each i,j, where 0 < i < t,1 < j<randl <1; <mn; —k;. Hence M:” (z) has, among its
roots, distinct elements of the sequence o', (o' )Pi, (" )?5, -+, (aS"i Vi for each i, j, where
0<i<t,1<j<randl<l; <n;—k;. Thus any element~; = (af’i)p;ni of the above sequence
is the root of M, " (z), for each i, j, where 0 < i < t,1 < j <r,0<m; <hi—1land1 <1l <n; —ki.
Choose any k in the range 1 < k < r such that k # j. Then we know that if v, i is a root of M?k (z)
implies that (%,k)”zi is a root of M " () (which has coefficients in K; 1), for0 < ¢; < h; — 1. Hence
(vo)PE = (oY% 'Pi is a root of M. (x). Proceeding in this manner, we can show that M."" (x)
necessarily has as roots all distinct member of B':. But the polynomial ] cieBli (x — &) has, by

construction, coefficient in the direct product of A;. Hence M, " (z) = Héie Bl (T —&).

Corollary 4.5. [8, Theorem 3.5] For any positive integer 1, let M,(x) be the minimal polynomial of o'
over R, where o generates Ho,n. Then M,(z) = [[;cp, (x — £), where B, is all distinct elements of

the sequence {(')™ : m =[]/_,q,", ¢ =p;”, 0 < s; <h—1}.

The lower bound on the minimum distances derived in the following theorem applies to any cyclic
code. The BCH codes are a class of cyclic codes whose generator polynomials are chosen so that
the minimum distances are guaranteed by this bound. In this sense, the following extend [8, Theorem
2.5]
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Theorem 4.6. [9, Theorem 11] For each i such that0 < i < t, let g;(x) be the generator polynomial
of BCH code C; over A; from the chain Ay C A1 C A2 C --- C Ai—1 C Ay, with lengthn; = s;, and
let o', al?, %, - a; " be the roots of g;(x) in Ha, n,, where a; has order n;. The minimum
Hamming distance of this code is greater than the largest number of consecutive integers modulo n;

in E; = {61,62,63, s ,eni,ki}.

Corollary 4.7. [8, Theorem 2.5] Let g(x) be the generator polynomial of BCH code over A with length
n = s such thata®',a®?, .- ,a°~~* are the roots of g(z) in H.,», where « has order n, then minimum
Hamming distance of the code is greater than the largest number of consecutive integers modulo n
inE ={ei,ez,e3, -+ ,en_r}.

4.1 Algorithm

The algorithm for constructing a BCH type cyclic codes over the chain of such type of commutative
rings Ao C Ay C A2 C--- C A1 C Ay = Alis then as follows.

1. Choose irreducible polynomial f; ;(x) over ZP;vzj of degree h; = b, for 1 < i < t, which are
also irreducible over GF'(p) and form the chains of Galois rings
Zp;nj = GR(p;’, ho) CGR(p;”,h1) C--- C GR(p;” ,hi—1) C GR(p; ", ht) or
Aj = Ro; CR1; CR2j C--- CRi—1,; CRej =R,
and its corresponding chains of residue fields are

Lp; = GF(p;) C GF(p;”) cC.---C GF(p;"tfl) c GF(p;") or
Ko CKij CKaj--- CKeo1y CKey = K,

where each GF(p]*) ~ % for1 <i <t

2. Nowput A; = Ri1xRi2XRizx---XR;n, for0 <i <t whereeachR; ; is local commutative
ring, and get a chain of rings

ACcACAC---CA1CA=A
with an other chain of rings
KoCKiCcKeC---CKim1 CKy =K

where each ; = K}, for 0 <7 < t.

3. Let7; ; =7, be the primitive elements in K7, for 0 < i < ¢. Then n; ; has order d; jn; in Rj ;

for some integers d;.;, put fi,; = (1:,;)%. Then ai = (Br;, Bz;, B3, -+ , Br,) has order n; in
Ri; and generates H., n,. Assume for each i, where 0 < ¢ < t, o; be any element of Ha, n, .

4. Let a',a?,a%,.-- ,a." " are chosen to be the roots of g:(x). Find M ' (z) are the
It T It A} ’ T g e e é e e
minimal polynomials of o, ", forl; = 1,2,--- ,n;—k;, where each a,'* = (B, ,8;", B, ,--- , B;"").

Then g;(x) are given by

gi(w) = lem{M{* (z), M{? (), -+, M; " 7" ().

7

The length of each code in the chain is the Icm of the orders of aS*, a2, a5, -+, a;" ", and
the minimum distance of the code is greater than the largest number of consecutive integers
in the set E; = {e1,e2,e3, -+ ,en,—x, } for each ¢, where 0 < ¢ < ¢.
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Example 4.8. We initiate by constructing a chain of codes of lengths 1, 8 and 16, taking A1 = 7o

and As = Zs.

Since M, = {0,3,6} and M, =

My

{0}, so K1 = & ~ 74 andKz =

Mo

~ Zs.

The regular polynomials fi(x) = z* + x +8 € Zo[z] and fo(x) = 2* + 2> + 2+ 1 € Z5[ | are
such that w1 (fi(z)) = «* + = + 2 and mo(f2(x)) = 2* + 2® + 2 + 1 are irreducible polynomials with
degree h = 22 over Zs and Zs, respectively. By [9, Theorem 3], it follows that f1(x) and f2(x) are

irreducible over A1 and As.

rings and K; = Za[z]

there exist irreducible polynomials fi1(z) = 2% + 1, fo.1(z)
fa2(z) =
Ro1 = A1, Ri1 =

(Wl(fl(l‘)))

Zy2 [#]

andRm =TR2. So

Again by the same argument Ko,1 = Zs, K11 =

K,

Now A; =

and

Zsle]
= .y = GF6

Ao
Ay
As

Ko
K1
Ko

(f1,1(=))

Let R =

= GF(3
fields. Since 1, 2 and 2 are the only divisors of 4, it follows that hy = 1, ho = 2 and hs = 2%. Then
= fl (l‘) in ZQ[IL and f1,2(13) = I2 —+ 2,

ol

(f (@))

Z32 [2]

= GR(
K, = Zs [x]

(m2(f2(z)))

3%, 4),

Ra =

(fz(w))

Aj=Ro,j CR1; CRaj =Ry, forj=1,2.

Z3[x]
(m1(f1,1(2)))

2), Ko,2 = Ko. So we get chains of fields

A; =Ko,; C Ky; C Koy =Kj, forj =1,2.

Ro,1
Ri1

Roq1 =

Ko,1

K11 =

Ka 1

’Ri,1 X 'Rgz such thatAo - A - A2, i.e.,

:Zg X

Zy2 (2]

(2+1)
Zy2 [7]

(zt+z—1)

Zg X
Z3[zx]
@241 x
Z3[x]
(zt+z-1)

X

Ro,2 = 7Zs

Rz = Gridiern
Ko,2 = Zs

Kiz = 535

Koz = Grgdiarsy

(f1 2(2))

= GR(5,4) be the Galois
= GF(5%) be their corresponding residue

f2(z) in Zs[x] with degrees ho = 2 and hs = 4 such that we can constitute the Galois rings
= GR(3%,h2), Re,1 = R1 and Roz = A2, Ri12 =

= GR(5, ha)

= GF( ) Kg,l =Ky andKo,z = Z{,,

Letu = {z} inR;; suchthatw = {X} inK; ;. Thentu+1 has order8, 24, 80 and 624 inK1,1, K1,2, Ka,1

andKs,», respectively. So 3, ; = B, ,

Ri,1, Ri,2, R2;1 @andRa 2, SOPUtﬁl,l = (u+1) Bz = (u+1)'?, Bay =

= By = Bao = U+1. Butu+1 has order24, 120, 80 and 624 in

(u+1) andﬁzyz = (u+1)39

and get az = (B2,1, B2,2) which generates Ha,,16 and cn = (B1,1, B1,2) which generates H., 5. Also2
has order 4 inKo 2 and has order2 inKo,1, S0 8, = By, = 2. But2 has order 4 inRo,» and has order

6 in Ro,1, SO Bo,1 = 2 and Bo,2 = 24 get oy =
to be roots of the generator polynomials g;(X

(Bo,1, Bo,2) which generates H,, ». Choose o; and o?
) of the BCH codes C; over the chain Ao C A1 C As.

Then Mg (x), Mi(x) and M;(x) has as roots all distinct element in the sets By = {ao} C Hag 2,

1 _ 3 5 7
By = {1,070, a1

So

and

Mg (z) =

(x — o), Mi(z) =

(x —an)(z — ai)(z — af)(

T — aZ)7

M; (2) = (x — az)(z — a3)(z — ab)(z — a2)(z — a3)(z — a3 ) (2 — a2”) (z — @)

Similarly,

Thus the polynomials g;(z) =

go(z) = (z — 1)(z — ao), g1(z) =

g2(x) =

Mg (z) = (x
M3 (z) =

-1, M12($) =

(@ = a3) (@ — a3)(z — a3”)(z — a3

(z — al)(z - a1),

14)

lem(M;} (x), MZ(x)) are given by

(z—az)(z—a3)(z—a3)(z—a3)(z—a3)(z—a3)(

(z — a)(z — ai)(

9
T—0o

)(@—az”)(z—az")(

13
T—Qo

)N

T — a?)(z - a?)(az - a?)(m - a{),

14
T—0Q

} C Hay s and B = {az2,03,03,0%, 03, a3', a3, ad®} C Ha, 16, respectively.

)(@—az”)
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which generates the cyclic BCH codes Cy, C1 and C» of length 2, 8 and 16 with minimum hamming
distance 2, 3 and 3, respectively. Similarly, we can construct cyclic codes over K; if we replace «;
witha;, for0 < i < 2.

5 Conclusion

For a non negative integer ¢, let 4o C A; C --- C A;—1 C A, be a chain of unitary commutative rings
(each A; is constructed by the direct product of suitable Galois rings with multiplicative group A; of
units) and Ko C K1 C --- C Ki—1 C K: be the corresponding chain of unitary commutative rings
(each K; is constructed by the direct product of corresponding residue fields of given Galois rings,
with multiplicative groups K; of units).

Despite [8], the construction of BCH codes with symbols from the commutative ring .4;, the direct
product of local commutative rings R, j, where 0 < ¢ < ¢t and 0 < j < ¢ having residue fields K; ;,
where 0 < ¢ < ¢. For each member in the chain of direct product of Galois rings and residue fields,

respectively, we obtain the sequence of BCH codes Co,C1,- -+ ,C:—1,C over the direct product of local
commutative rings R, ; with different lengths and sequence of BCH codes C;,C1, -+ ,Ci_,,C’ over
the direct product of residue fields K; ; with proper lengths, i.e.,

Co = Coo x Co1 x -+ X Conr

Ci = Co x Cipg x -+ x Cir

C = Cpo x Ca1 X X Cepr
and ,

CO = 6670 X C(/),l X s X C(/),'r

Ci = Clo x Ci x -+ x C,

C/ = Czlg’() X Cé,l X X Cé,'r‘

In fact this technique provides a choice to select a most suitable BCH code C; (respectively,
BCH code C;), where 0 < i < ¢, with required error correction capabilities and code rate but with
compromising length.
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