

## British Journal of Applied Science & Technology 4(6): 929-944, 2014

#### **SCIENCEDOMAIN** international



www.sciencedomain.org

# Construction Techniques of Generator Polynomials of BCH Codes

T. Shah<sup>1</sup>, A. Qamar<sup>1</sup> and A. A. Andrade<sup>2\*</sup>

<sup>1</sup>Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan <sup>2</sup>Department of Mathematics, São Paulo State University at São José do Rio Preto, São Paulo, Brazil

Original Research Article

> Received: 22 July 2013 Accepted: 21 November 2013 Published: 27 December 2013

#### **Abstract**

Let  $\mathcal{A}_0 \subset \mathcal{A}_1 \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_t$  be a chain of unitary commutative rings (each  $\mathcal{A}_i$  is constructed by the direct product of suitable Galois rings with multiplicative group  $\mathcal{A}_i^*$  of units) and  $\mathcal{K}_0 \subset \mathcal{K}_1 \subset \cdots \subset \mathcal{K}_{t-1} \subset \mathcal{K}_t$  be the corresponding chain of unitary commutative rings (each  $\mathcal{K}_i$  is constructed by the direct product of corresponding residue fields of given Galois rings, with multiplicative groups  $\mathcal{K}_i^*$  of units), where t is a non negative integer. In this work presents three different types of constructions of generator polynomials of sequences of BCH codes having entries from  $\mathcal{A}_i^*$  and  $\mathcal{K}_i^*$  for each i, where 0 < i < t.

Keywords: Units of a ring, BCH code, Galois rings

2010 Mathematics Subject Classification: 11T71, 94A15, 14G50

#### 1 Introduction

Let  $\mathcal A$  be a finite commutative ring with identity. The ring  $\mathcal A^n$ , with  $n\in\mathbb Z^+$ , being a free  $\mathcal A$ -module preserve the concept of linear independence among its elements is similar to a vector space over a field. Though it is the constraint that an  $r\times r$  submatrix of  $r\times n$  generator matrix M over  $\mathcal A$  is non-singular, or equivalently, has determinant unit in  $\mathcal A$ . The existence of non-singular matrices having not obligatory the unit elements is, in fact the primary obstacle in working over a local ring instead of a field. The notion of elementary row operations in a matrix, and its consequences, also carry over  $\mathcal A$  with the understanding that only multiplication of a row by a unit element in  $\mathcal A$  is allowed, which is in contrast to the multiplication by any nonzero element in the case of a field. The structure of the multiplicative group of units of  $\mathcal A$  is the main motivation to calculate the McCoy rank [1] of a matrix M, that is the largest integer r such that  $r\times r$  submatrix of M has determinant unit in  $\mathcal A$ .

<sup>\*</sup>Corresponding author: E-mail: andrade@ibilce.unesp.br

Linear codes over finite rings have been discussed in a series of papers initiated by Blake [2], [3], and Spiegel [4], [5]. However a remarkable development, nonetheless, began by Forney et al. [6]. The structure of, the multiplicative group of unit elements of certain local finite commutative rings have recently raised a great interest for its wonderful application in algebraic coding theory. Using multiplicative group of unit elements of a Galois ring extension of  $\mathbb{Z}_{p^m}$ , Shankar [7] has constructed BCH codes over  $\mathbb{Z}_{p^m}$ . However, Andrade and Palazzo [8] have further extend these construction of BCH codes over finite commutative rings with identity. Both construction techniques of [7] and [8] have been addressed from the approach of specifying a cyclic subgroup of the group of units of an extension ring of finite commutative rings. The complexity of study is to get the factorization of  $x^s-1$  over the group of units of the appropriate extension ring of the given local ring.

There exist corresponding Galois ring extensions  $\mathcal{R}_i = GR(p^m,h_i)$ , where  $0 \leq i \leq t, \ h = b^t, b$  is prime, t is a positive integer and  $h_i = b^i$  (respectively, there residue fields  $\mathbb{K}_i$ , where  $0 \leq i \leq t$  and  $h_i = b^i$ ) of unitary local ring  $(\mathcal{R},\mathcal{M})$  with  $p^m$  elements (respectively, p elements and residue field  $\mathcal{R}/\mathcal{M}$ ). For each i, for  $0 \leq i \leq t$ , it follows that  $\mathcal{R}_i^*$  has one and only one cyclic subgroup  $G_{n_i}$  of order  $n_i$  (divides  $p^{h_i} - 1$ ) relatively to p (an extension in [7, Theorem 2]). Furthermore, if  $\beta^i$  generates a cyclic subgroup of order  $n_i$  in  $\mathbb{K}_i^*$ . Then  $\beta^i$  generates a cyclic subgroup of order  $n_i d_i$  in  $\mathcal{R}_i^*$ , where  $d_i$  is an integer greater than or equal to 1, and  $(\beta^i)^{d_i}$  generates the cyclic subgroup  $G_{n_i}$  in  $\mathcal{R}_i^*$  for each i [7, Lemma 1]. Then by extending the given algorithm [7] for constructing a BCH codes with symbols from the local ring  $\mathcal{A}$  for each member in chains of Galois rings and residue fields, respectively. Consequently there are two situations:  $s_i = b^i$  for i = 2 or  $s_i = b^i$  for  $i \geq 2$ . By these motivations in this paper for any  $t \in \mathbb{Z}^+$ , we let  $\mathcal{A}_0 \subset \mathcal{A}_1 \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_t$  be a chain of unitary commutative rings, whereas for each i, such that  $0 \leq i \leq t$ , it follows that  $\mathcal{A}_i$  is direct product of Galois rings, i.e.,

Whereas  $\mathcal{R}_{0,j} \subset \mathcal{R}_{1,j} \subset \cdots \subset \mathcal{R}_{t-1,j} \subset \mathcal{R}_{t,j}$ , for each  $1 \leq j \leq r$ , is the chain of Galois rings. In construction I we have different  $\mathcal{R}_{i,j}$  with same characteristic p. In constructions II and III we take different  $\mathcal{R}_{i,j}$  with different characteristic  $p_j$ , where  $1 \leq j \leq r$ .

Through of the chain  $A_0 \subset A_1 \subset \cdots \subset A_{t-1} \subset A_t$ ,  $K_0 \subset K_1 \subset \cdots \subset K_{t-1} \subset K_t$  there is a chain of rings constituted through the direct product of their residue fields, i.e.,

Whereas  $\mathbb{K}_{0,j} \subset \mathbb{K}_{1,j} \subset \cdots \subset \mathbb{K}_{t-1,j} \subset \mathbb{K}_{t,j}$ , for each  $1 \leq j \leq r$ , is the chain of corresponding residue fields. In construction I we have  $\mathbb{K}_{i,j} = \mathbb{K}_{i,j+1}$  and different in remaining types. It follows that  $\mathcal{A}_i^*$  and  $\mathcal{K}_i^*$ , for each i, where  $0 \leq i \leq t$ , are multiplicative groups of units of  $\mathcal{A}_i$  and  $\mathcal{K}_i$ , respectively.

## 2 Construction I

For each j such that  $1 \leq j \leq r$ , let p be any prime and  $m_j$  be a positive integer. Then ring  $A_j = \mathbb{Z}_{p^{m_j}}$  is the unitary finite local commutative ring with maximal ideal  $M_j$  and residue field  $K = \frac{A_j}{M_j} = \mathbb{Z}_p$ . The natural projection  $\pi_j : A_j[x] \to K[x]$  is defined by  $\pi_j(\sum_{k=0}^n a_k x^k) = \sum_{k=0}^n \overline{a_k} x^k$ , where  $\overline{a_k} = a_k + M_j$  for  $k = 0, \cdots, n$ . Thus, the natural ring morphism  $A_j \to K$  is simply the restrictions of  $\pi_j$  to the constant polynomial. Now, if  $f_j(x) \in A_j[x]$  is a collection of basic irreducible polynomials with degree  $h = b^t$ , where each b is a prime and t is a positive integer, then  $\mathcal{R}_j = \frac{A_j[x]}{(f_j(x))} = GR(p^{m_j}, h)$  is the Galois ring extension of  $A_j$  and

$$\mathbb{K} = \frac{\mathcal{R}_j}{\mathcal{M}_j} = \frac{A_j[x]/(f_j(x))}{(M_j, f_j(x))/(f_j(x))} = \frac{A_j[x]}{(M_j, f_j(x))} = \frac{(A_j/M_j)[x]}{(\pi_j(f_j(x)))} = \frac{\mathbb{K}[x]}{(\pi_j(f_j(x)))} = GF(p^h)$$

is the residue field of  $\mathcal{R}_j$ , where  $\mathcal{M}_j=(M_j,f_j(x))/(f_j(x))$  is the corresponding maximal ideal of  $\mathcal{R}_j$ . Since  $1,b,b^2,\cdots,b^{t-1},b^t$  are the only divisors of h, and take  $h_0=1,h_1=b,h_2=b^2,\cdots,h_t=b^t=h$ , therefore by [1, Lemma XVI.7] there exist basic irreducible polynomials  $f_{1,j}(x),f_{2,j}(x),\cdots,f_{t,j}(x)\in A_j[x]$  with degrees  $h_1,h_2,\cdots,h_t$ , respectively, such that we can constitute the Galois subrings  $\mathcal{R}_{i,j}=\frac{\mathbb{Z}_p^{m_j}[x]}{(f_{i,j}(x))}=GR(p^{m_j},h_i)$  of  $\mathcal{R}_j$  with the maximal ideal  $\mathcal{M}_{i,j}=(M_j,f_{i,j}(x))/(f_{i,j}(x))$ , for each i,j, where  $0\leq i\leq t$  and  $1\leq j\leq r$ . Thus the residue field of each  $\mathcal{R}_{i,j}$  becomes

$$\mathbb{K}_i = \frac{\mathcal{R}_{i,j}}{\mathcal{M}_{i,j}} = \frac{A_j[X]/(f_{i,j}(x))}{(M_j, f_{i,j}(x))/(f_{i,j}(x))} = \frac{A_j[x]}{(M_j, f_{i,j}(x))} = \frac{(A_j/M_j)[x]}{(\pi_j(f_{i,j}(x)))} = \frac{\mathbb{K}[x]}{(\overline{f}_{i,j}(x))} = GF(p^{h_i}).$$

As each  $h_i$  divides  $h_{i+1}$  for all  $0 \le i \le t$ , so by [1, Lemma XVI.7] it follows that

$$A_j = \mathcal{R}_{0,j} \subset \mathcal{R}_{1,j} \subset \mathcal{R}_{2,j} \subset \cdots \subset \mathcal{R}_{t-1,j} \subset \mathcal{R}_{t,j} = \mathcal{R}_j$$

is the chain of Galois rings with corresponding chain of residue fields

$$\mathbb{Z}_p = \mathbb{K}_0 \subset \mathbb{K}_1 \subset \mathbb{K}_2 \subset \cdots \subset \mathbb{K}_{t-1} \subset \mathbb{K}.$$

If  $A_i = \mathcal{R}_{i,1} \times \mathcal{R}_{i,2} \times \mathcal{R}_{i,3} \times \cdots \times \mathcal{R}_{i,r}$ , for each i such that  $0 \le i \le t$ , then we get a chain of commutative rings, i.e.,

$$\mathcal{A}_0 \subset \mathcal{A}_1 \subset \mathcal{A}_2 \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_t = \mathcal{A}$$

with an other chain of rings  $\mathcal{K}_0 \subset \mathcal{K}_1 \subset \mathcal{K}_2 \subset \cdots \subset \mathcal{K}_{t-1} \subset \mathcal{K}_t = \mathcal{K}$  where each  $\mathcal{K}_i = \mathbb{K}_i^r$ , for each i such that 0 < i < t.

Let  $\mathcal{A}_i^*$ ,  $\mathcal{R}_{i,j}^*$  and  $\mathbb{K}_i^*$  be the multiplicative groups of units of  $\mathcal{A}_i$ ,  $\mathcal{R}_{i,j}$  and  $\mathbb{K}_i$  respectively, for each i,j, where  $0 \leq i \leq t$  and  $1 \leq j \leq r$ . Now, the next theorem extended [1, Theorem XVIII.1], which has a fundamental role in the decomposition of the polynomial  $x^{s_i}-1$  into linear factors over the ring  $\mathcal{A}_i^*$ . This theorem asserts that for each element  $\alpha_i \in \mathcal{A}_i^*$  there exist unique elements  $\beta_{i,j} \in \mathcal{R}_{i,j}^*$ , for each i,j, where  $0 \leq i \leq t$  and  $1 \leq j \leq r$ , such that  $\alpha_i = (\beta_{i,1},\beta_{i,2},\cdots,\beta_{i,r})$ .

**Theorem 2.1.** Let  $\mathcal{A}_i = \mathcal{R}_{i,1} \times \mathcal{R}_{i,2} \times \mathcal{R}_{i,3} \times \cdots \times \mathcal{R}_{i,r}$  for each i such that  $0 \le i \le t$ , where each  $\mathcal{R}_{i,j}$  is a local commutative ring. Then  $\mathcal{A}_i^* = \mathcal{R}_{i,1}^* \times \mathcal{R}_{i,2}^* \times \mathcal{R}_{i,3}^* \times \cdots \times \mathcal{R}_{i,r}^*$ , for each i,j, where  $0 \le i \le t$  and  $1 \le j \le r$ .

Note that  $\overline{\beta}_{i,1} = \overline{\beta}_{i,2} = \overline{\beta}_{i,3} = \cdots = \overline{\beta}_{i,r} = \overline{\beta}_i$ , and therefore  $\overline{\alpha}_i = (\overline{\beta}_i, \overline{\beta}_i, \overline{\beta}_i, \cdots, \overline{\beta}_i)$ . Following theorem indicates the condition under which  $x^{s_i} - 1$  can be factored over  $\mathcal{A}_i^*$ , for each i, such that  $0 \le i \le t$ .

**Theorem 2.2.** For each i such that  $0 \le i \le t$ , the polynomial  $x^{s_i} - 1$  can be factored over the multiplicative group  $\mathcal{A}_i^*$  as  $x^{s_i} - 1 = (x - \alpha_i)(x - \alpha_i^2) \cdots (x - \alpha_i^s)$  if and only if  $\bar{\beta}_i$ , has order  $s_i$  in  $\mathbb{K}_i^*$ , where  $\gcd(s_i, p) = 1$  and  $\alpha_i = (\beta_{i,1}, \beta_{i,2}, \cdots, \beta_{i,r})$ .

**Proof.** Suppose that the polynomial  $x^{s_i}-1$  can be factored over  $\mathcal{A}_i^*$  as  $x^{s_i}-1=(x-\alpha_i)(x-\alpha_i^2)\cdots(x-\alpha_i^{s_i})$ . Then  $x^{s_i}-1$  can be factored over  $\mathcal{R}_{i,j}^*$  as  $x^{s_i}-1=(x-\beta_{i,j})(x-\beta_{i,j}^2)\cdots(x-\beta_{i,j}^{s_i})$ , for each i such that  $0\leq i\leq t$  and  $1\leq j\leq r$ . Now it follows from the extension of [7, Theorem 3] that  $\bar{\beta}_i$  has order  $s_i$  in  $\mathbb{K}_i^*$ , for each i such that  $0\leq i\leq t$ . Conversely, suppose that  $\bar{\beta}_i$  has order  $s_i$  in  $\mathbb{K}_i^*$ , for each i such that  $0\leq i\leq t$ . Again it follows from the extension of [7, Theorem 3] that the polynomial  $x^{s_i}-1$  can be factored over  $\mathcal{R}_{i,j}^*$  as  $x^{s_i}-1=(x-\beta_{i,j})(x-\beta_{i,j}^2)\cdots(x-\beta_{i,j}^{s_i})$ , for  $0\leq i\leq t$  and  $1\leq j\leq r$ . Since  $\alpha_i=(\beta_{i,1},\beta_{i,2},\cdots,\beta_{i,r})$ , for each i such that  $0\leq i\leq t$ , therefore  $x^{s_i}-1=(x-\alpha_i)(x-\alpha_i^2)\cdots(x-\alpha_i^{s_i})$  over  $\mathcal{A}_i^*$ , for each i such that  $0\leq i\leq t$ .

Let  $H_{\alpha_i,s_i}$  denotes the cyclic subgroup of  $\mathcal{A}_i^*$  generated by  $\alpha_i$ , for each i such that  $0 \leq i \leq t$ , i.e.,  $H_{\alpha_i,s_i}$  contains all the roots of  $x^{s_i}-1$  provided the condition of Theorem 2.2 is met. The BCH codes  $\mathcal{C}_i$  over  $\mathcal{A}_i^*$  can be obtained as the direct product of BCH codes  $\mathcal{C}_{i,j}$  over  $\mathcal{R}_{i,j}^*$ . To construct the cyclic BCH codes over  $\mathcal{A}_i^*$ , we need to choose certain elements of  $H_{\alpha_i,n_i}$ , where  $n_i=s_i$ , as the roots of generator polynomials  $g_i(x)$  of the codes. So that,  $\alpha_i^{e_1},\alpha_i^{e_2},\alpha_i^{e_3},\cdots,\alpha_i^{e_{n_i-k_i}}$  are all the roots of  $g_i(x)$  in  $H_{\alpha_i,n_i}$ , we construct  $g_i(x)$  as

$$g_i(x) = lcm\{M_i^{e_1}(x), M_i^{e_2}(x), \cdots, M_i^{e_{n_i-k_i}}(x)\},\$$

where for each i such that  $0 \leq i \leq t$ , it follows that  $M_i^{e_{l_i}}(x)$  is the minimal polynomial of  $\alpha_i^{e_{l_i}}$ , for  $l=1,2,\cdots,n_i-k_i$ , whereas each  $\alpha_i^{e_{l_i}}=(\beta_{i,1}^{e_{l_i}},\beta_{i,2}^{e_{l_i}},\cdots,\beta_{i,r}^{e_{l_i}})$ , and  $M_i^{e_{l_i}}(x)$ . The following theorem is the extension of [7, Lemma 3] and provides us a method for construction of  $M_i^{e_{l_i}}(x)$ , the minimal polynomial of  $\alpha_i^{e_{l_i}}$  over the ring  $\mathcal{A}_i$ , for  $0\leq i\leq t$ .

**Theorem 2.3.** For each i such that  $0 \le i \le t$ , let  $M_i^{el_i}(x)$  be the minimal polynomial of  $\alpha_i^{el_i}$  over  $\mathcal{A}_i$ , where  $\alpha_i^{el_i}$  generates  $H_{\alpha_i,n_i}$ , for  $l_i=1,2,\cdots,n_i-k_i$ . Then  $M_i^{el_i}(x)=\prod_{\xi_i\in B_i^{l_i}}(x-\xi_i)$ , where  $B_i^{l_i}=\{(\alpha_i^{el_i})^{m_{i,j}}:m_{i,j}=\prod_{i=1}^r p^{q_{i,j}},\ 1\le l_i\le n_i-k_i,\ 0\le q_{i,j}\le h_i-1\}.$ 

 $B_i^{l_i} = \{(\alpha_i^{e_{l_i}})^{m_{i,j}} : m_{i,j} = \prod_{j=1}^r p^{q_{i,j}}, \ 1 \leq l_i \leq n_i - k_i, \ 0 \leq q_{i,j} \leq h_i - 1\}.$  **Proof.** Let  $\overline{M}_i^{e_{l_i}}(x)$  be the projection of  $M_i^{e_{l_i}}(x)$  over the field  $\mathbb{K}_i$  and  $\overline{M}_i^{e_{l_i}}(x)$  be the minimal polynomial of  $\overline{\alpha}_i^{e_{l_i}}$  over  $\mathbb{K}_i^*$ , for each i,j, where  $0 \leq i \leq t$  and  $1 \leq l_i \leq n_i - k_i$ . We can verify that each  $\overline{M}_i^{e_{l_i}}(x)$  (minimal polynomial of  $\overline{\alpha}_i^{e_{l_i}}$ ) is divisible by  $\overline{M}_{i,j}^{e_{l_i}}(x)$  (minimal polynomial of  $\overline{\beta}_i^{e_{l_i}}(x)$ ), for  $0 \leq i \leq t$  and  $1 \leq l_i \leq n_i - k_i$ . Thus it has, among its roots, distinct elements of the sequences  $\overline{\alpha}_i^{e_{l_i}}(\overline{\alpha}_i^{e_{l_i}})^p, (\overline{\alpha}_i^{e_{l_i}})^{p^2}, \cdots, (\overline{\alpha}_i^{e_{l_i}})^{p^{h_i-1}}$ , for  $0 \leq i \leq t$  and  $1 \leq l_i \leq n_i - k_i$ . Hence  $M_i^{e_{l_i}}(x)$  has, among its roots, distinct elements of the sequence  $\alpha_i^{e_{l_i}}(\overline{\alpha}_i^{e_{l_i}})^p, (\alpha_i^{e_{l_i}})^p, (\alpha_i^{e_{l_i}})^p, \cdots, (\alpha_i^{e_{l_i}})^{p^{h_i-1}}$ , for each i such that  $0 \leq i \leq t$  and  $1 \leq l_i \leq n_i - k_i$ . Thus the element  $\xi_i = (\alpha_i^{e_{l_i}})^p$  is the root of  $M_i^{e_{l_i}}(x)$ , for each i such that  $0 \leq i \leq t$ ,  $0 \leq m_i \leq h_i - 1$  and  $1 \leq l_i \leq n_i - k_i$ . Hence  $M_i^{e_{l_i}}(x) = \prod_{\xi_i \in B^{l_i}} (x - \xi_i)$ .

Remark 2.1. Since, for each i such that  $0 \le i \le t$ , it follows that  $\overline{M}_i^{e_{l_i}}(x)$  (minimal polynomial of  $\overline{\alpha}_i^{e_{l_i}}$ ) is the projection of  $M_i^{e_{l_i}}(x)$  (minimal polynomial of  $\alpha_i^{e_{l_i}}$ ) over the rings  $\mathcal{K}_i$ . So  $\overline{M}_i^{e_{l_i}}(x)$  generates the sequence of codes over the special chain of rings  $\mathcal{K}_i = K_i^r$ .

The lower bound on the minimum distances derived in the following theorem applies to any cyclic code. The BCH codes are a class of cyclic codes whose generator polynomials are chosen so that the minimum distances are guaranteed by this bound. In this sense, the following extended [8, Theorem 2.5].

**Theorem 2.4.** [9, Theorem 11] For each i such that  $0 \le i \le t$ , let  $g_i(x)$  be the generator polynomial of BCH code  $\mathcal{C}_i$  over the ring  $\mathcal{A}_i$  from the chain  $\mathcal{A}_0 \subset \mathcal{A}_1 \subset \mathcal{A}_2 \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_t$ , with length  $n_i = s_i$ , and let  $\alpha_i^{e_1}, \alpha_i^{e_2}, \alpha_i^{e_3}, \cdots, \alpha_i^{e_{n_i-k_i}}$  be the roots of  $g_i(x)$  in  $H_{\alpha_i,n_i}$ , where  $\alpha_i$  has order  $n_i$ . The minimum Hamming distance of this code is greater than the largest number of consecutive integers modulo  $n_i$  in  $E_i = \{e_1, e_2, e_3, \cdots, e_{n_i-k_i}\}$ , for each i such that  $0 \le i \le t$ .

**Corollary 2.5.** [8, Theorem 2.5] Let g(x) be the generator polynomial of BCH code over A with length n=s such that  $\alpha^{e_1},\alpha^{e_2},\cdots,\alpha^{e_{n-k}}$  are the roots of g(x) in  $H_{\alpha,n}$ , where  $\alpha$  has order n, then minimum Hamming distance of the code is greater than the largest number of consecutive integers modulo n in  $E=\{e_1,e_2,e_3,\cdots,e_{n-k}\}$ .

#### 2.1 Algorithm

We can also use the extension of [7, Theorem 4] for the BCH bound of these codes. The algorithm for constructing a BCH type cyclic codes over the chain of rings  $\mathcal{A}_0 \subset \mathcal{A}_1 \subset \mathcal{A}_2 \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_t = \mathcal{A}$  is then as follows.

1. Choose irreducible polynomial  $f_{i,j}(x)$  over  $\mathbb{Z}_{p^{m_j}}$  of degree  $h_i = b^i$ , for  $1 \leq i \leq t$ , which are also irreducible over GF(p) and form the chains of Galois rings

$$\mathbb{Z}_{p^{m_j}} = GR(p^{m_j}, h_0) \subset GR(p^{m_j}, h_1) \subset \cdots \subset GR(p^{m_j}, h_{t-1}) \subset GR(p^{m_j}, h_t) \text{ or } A_j = \mathcal{R}_{0,j} \subseteq \mathcal{R}_{1,j} \subseteq \mathcal{R}_{2,j} \subseteq \cdots \subseteq \mathcal{R}_{t-1,j} \subseteq \mathcal{R}_{t,j} = \mathcal{R}_j$$

and its corresponding chain of residue fields is

$$\mathbb{Z}_p = GF(p) \subset GF(p^{h_1}) \subset \cdots \subset GF(p^{h_{t-1}}) \subset GF(p^h) \text{ or}$$
$$= \mathbb{K}_0 \subset \mathbb{K}_1 \subset \mathbb{K}_2 \cdots \subset \mathbb{K}_{t-1} \subset \mathbb{K},$$

where each  $GF(p^{h_i}) \simeq \frac{K[x]}{(\pi(f_{i,j}(x)))}$ , for  $1 \leq i \leq t$ .

2. Now put  $A_i = \mathcal{R}_{i,1} \times \mathcal{R}_{i,2} \times \mathcal{R}_{i,3} \times \cdots \times \mathcal{R}_{i,r}$ , for  $0 \leq i \leq t$ , where each  $\mathcal{R}_{i,j}$  is a local commutative ring, and get a chain of rings

$$A_0 \subset A_1 \subset A_2 \subset \cdots \subset A_{t-1} \subset A_t = A$$

with an other chain of rings

$$\mathcal{K}_0 \subset \mathcal{K}_1 \subset \mathcal{K}_2 \subset \cdots \subset \mathcal{K}_{t-1} \subset \mathcal{K}_t = \mathcal{K},$$

where each  $K_i = \mathbb{K}_i^r$ , for  $0 \le i \le t$ .

- 3. Let  $\overline{\eta}_{i,j}=\overline{\eta}_i$  be the primitive elements in  $\mathbb{K}_i^*$ , for  $0\leq i\leq t$ . Then  $\eta_{i,j}$  has order  $d_{i,j}.n_i$  in  $\mathcal{R}_{i,j}^*$  for some integers  $d_{i,j}$ , put  $\beta_{i,j}=(\eta_{i,j})^{d_{i,j}}$ . Then  $\alpha_i=(\beta_{1_i},\beta_{2_i},\beta_{3_i},\cdots,\beta_{r_i})$  has order  $n_i$  in  $\mathcal{R}_{i,j}^*$  and generates  $H_{\alpha_i,n_i}$ . For each i, where  $0\leq i\leq t$ , let  $\alpha_i$  be any element of  $H_{\alpha_i,n_i}$ .
- 4. Let  $\alpha_i^{e_1}, \alpha_i^{e_2}, \alpha_i^{e_3}, \cdots, \alpha_i^{e_{n_i-k_i}}$  are chosen to be the roots of  $g_i(x)$ . Find  $M_i^{e_{l_i}}(x)$  are the minimal polynomials of  $\alpha_i^{e_{l_i}}$ , for  $l_i=1,2,\cdots,n_i-k_i$ , where each  $\alpha_i^{e_{l_i}}=(\beta_i^{e_{l_i}},\beta_i^{e_{l_i}},\beta_i^{e_{l_i}},\cdots,\beta_i^{e_{l_i}})$ . Then  $g_i(x)$  are given by

$$g_i(x) = lcm\{M_i^{e_1}(x), M_i^{e_2}(x), \cdots, M_i^{e_{n_i-k_i}}(x)\}.$$

The length of each code in the chain is the lcm of the orders of  $\alpha_i^{e_1}, \alpha_i^{e_2}, \alpha_i^{e_3}, \cdots, \alpha_i^{e_{n_i-k_i}}$ , and the minimum distance of the code is greater than the largest number of consecutive integers in the set  $E_i = \{e_1, e_2, e_3, \cdots, e_{n_i-k_i}\}$  for each i, where  $0 \le i \le t$ .

**Example 2.6.** We initiate by constructing a chain of codes of lengths 1, 3 and 15, taking  $A_1=\mathbb{Z}_4$  and  $A_2=\mathbb{Z}_8$ . Since  $M_1=\{0,2\}$  and  $M_2=\{0,2,4,6\}$ , so  $K_j=\frac{A_j}{M_j}\simeq\mathbb{Z}_2$  for i=1,2. The regular polynomial  $f_1(x)=x^4+x+1\in\mathbb{Z}_4[x]$  and  $f_2(x)=x^4+x+1\in\mathbb{Z}_8[x]$  is such that  $\pi_1(f_1(x))=x^4+x+1$  and  $\pi_2(f_2(x))=x^4+x+1$  are irreducible polynomials with degree  $h=2^2$  over  $\mathbb{Z}_2$ . By [9, Theorem 3], it follows that  $f_1(x)$  and  $f_2(x)$  are irreducible over  $A_1$  and  $A_2$ , respectively. Let  $\mathcal{R}_1=\frac{\mathbb{Z}_2[x]}{(f_1(x))}=GR(2^2,4)$  and  $\mathcal{R}_2=\frac{\mathbb{Z}_23[x]}{(f_2(x))}=GR(2^3,4)$  be the Galois rings and  $\mathbb{K}=\frac{\mathbb{Z}_2[x]}{(\pi_j(f_j(x)))}=GF(2^4)$  be their corresponding common residue field. Since 1, 2 and  $2^2$  are the only divisors of 4, it follows that put  $h_1=1$ ,  $h_2=2$  and  $h_3=2^2$ . Then there exist irreducible polynomials  $f_{i,1}(x)=x^2-x+1$  and  $f_{i,2}(x)=f_2(x)$  in  $\mathbb{Z}_4[x]$  with degrees  $h_2=2$  and  $h_3=4$  such that we can constitute the Galois rings  $\mathcal{R}_{i,1}=\frac{\mathbb{Z}_2[x]}{(f_{i,1}(x))}=GR(2^2,h_i)$ , and  $\mathcal{R}_{i,2}=\frac{\mathbb{Z}_23[x]}{(f_{i,2}(x))}=GR(2^3,h_i)$ , where  $1\leq i\leq 2$ . So  $A_j=\mathcal{R}_{0,j}\subset\mathcal{R}_{1,j}\subset\mathcal{R}_{2,j}=\mathcal{R}_j$ , for j=1,2. Again by the same argument  $\mathbb{K}_i=\frac{\mathbb{Z}_2[x]}{(\pi_j(f_{i,j}(x)))}$ 

 $GF(2,h_i)=GF(2^{h_i})$ , where  $1\leq i\leq 2$  and  $1\leq j\leq 2$ . That is,  $\mathbb{K}_0=GR(2,1)=Z_2$ ,  $\mathbb{K}_1=GR(2,2)$ ,  $\mathbb{K}_2=\mathbb{K}=GR(2,4)$ , with  $\mathbb{K}_1\subset\mathbb{K}_2\subset\mathbb{K}$ . Now  $\mathcal{A}_i=\mathcal{R}_{i,1}\times\mathcal{R}_{i,2}$  such that  $\mathcal{A}_0\subseteq\mathcal{A}_1\subseteq\mathcal{A}_2$ , i.e.,

$$\begin{array}{lclcl} \mathcal{A}_0 & = & \mathcal{R}_{0,1} = \mathbb{Z}_4 & \times & \mathcal{R}_{0,2} = \mathbb{Z}_8 \\ \mathcal{A}_1 & = & \mathcal{R}_{1,1} = \frac{\mathbb{Z}_{2^2}[x]}{(x^2 + 3x + 1)} & \times & \mathcal{R}_{1,2} = \frac{\mathbb{Z}_{2^3}[x]}{(x^2 + 7x + 2)} \\ \mathcal{A}_2 & = & \mathcal{R}_{2,1} = \frac{\mathbb{Z}_{2^2}[x]}{(x^4 + x + 1)} & \times & \mathcal{R}_{2,2} = \frac{\mathbb{Z}_{2^3}[x]}{(x^4 + x + 1)} \end{array}$$

and

Let  $u=\{x\}$  in  $\mathcal{R}_{i,1}$  such that  $\overline{u}=\{x\}$  in  $\mathbb{K}_i$ . Then  $\overline{u}+1$  has order 15 in  $\mathbb{K}_2$ , so  $\overline{\beta}_2=\overline{u}+1$ . But u+1 has order 30 in  $\mathcal{R}_{2,1}$  and  $\mathcal{R}_{2,2}$ , so put  $\beta_{2,1}=\beta_{2,2}=(u+1)^2$  and get  $\alpha_2=(\beta_{2,1},\beta_{2,2})$  which generate  $H_{\alpha_2,15}$ . Also  $\overline{u}$  has order 3 in  $\mathbb{K}_1$ , so  $\overline{\beta}_1=\overline{u}$ . But u has order 6 in  $\mathcal{R}_{1,1}$  and  $\mathcal{R}_{1,2}$ , so  $\beta_{1,1}=\beta_{1,2}=u^2$  and get  $\alpha_1=(\beta_{1,1},\beta_{1,2})$  which generates  $H_{\alpha_1,3}$ . Put  $\beta_{0,1}=\beta_{0,2}=1$  and get  $\alpha_0=(\beta_{0,1},\beta_{0,2})$  which generates  $H_{\alpha_0,1}$ . Choose  $\alpha_i$  and  $\alpha_i^3$  to be roots of the generator polynomials  $g_i(x)$  of the BCH codes  $\mathcal{C}_i$  over the chain  $\mathcal{A}_0\subseteq\mathcal{A}_1\subseteq\mathcal{A}_2$ . Then  $M_0^1(x)$ ,  $M_1^1(x)$  and  $M_2^1(x)$  has as roots all distinct element in the sets  $B_0^1=\{\alpha_0\}\subset H_{\alpha_0,1}$ ,  $B_1^1=\{\alpha_1,\alpha_1^2\}\subset H_{\alpha_1,3}$  and  $B_2^1=\{\alpha_2,\alpha_2^2,\alpha_2^4,\alpha_2^8\}\subset H_{\alpha_2,15}$ , respectively. So

$$M_0^1(x)=(x-\alpha_0),\ M_1^1(x)=(x-\alpha_1)(x-\alpha_1^2)$$
 and  $M_2^1(x)=(x-\alpha_2)(x-\alpha_2^2)(x-\alpha_2^4)(x-\alpha_2^8)$ 

Similarly,

$$M_0^1(x) = M_0^3(x) = (x - \alpha_0), \ M_1^3(x) = (x - 1) \ \text{and} \ M_2^3(x) = (x - \alpha_2^3)(x - \alpha_2^6)(x - \alpha_2^{12})(x - \alpha_2^9).$$

Thus the polynomials  $g_i(x) = lcm(M_i^1(x), M_i^3(x))$  are given by

$$g_0(x) = (x-1), \ g_1(x) = (x-1)(x-\alpha_1)(x-\alpha_1^2),$$
$$g_2(x) = (x-\alpha_2)(x-\alpha_2^2)(x-\alpha_2^3)(x-\alpha_2^4)(x-\alpha_2^6)(x-\alpha_2^8)(x-\alpha_2^9)(x-\alpha_2^{12}),$$

which generates the cyclic BCH codes  $C_0$ ,  $C_1$  and  $C_2$  of length 1, 3 and 15 with minimum hamming distance at least 2, 4 and 5 respectively. Also, if we replace  $\alpha_i$  with  $\overline{\alpha}_i$ , then we get codes over  $K_i$ , for  $0 \le i \le 2$ .

#### 3 Construction II

Since for any prime  $p_j$  and a positive integers m, the collection of rings  $A_j = \mathbb{Z}_{p_j^m}$  is the collection of unitary finite local commutative rings with maximal ideals  $M_j$  and residue fields  $\mathbb{K}_j = \frac{A_j}{M_j}$ , for each j such that  $1 \leq j \leq r$ . The natural projections  $\pi_j : A_j[x] \to \mathbb{K}_j[x]$  is defined by  $\pi(\sum_{k=0}^n a_k x^k) = \sum_{k=0}^n \overline{a_k} x^k$ , where  $\overline{a_k} = a_k + M_j$  for  $k = 0, \cdots, n$ . Thus, the natural ring morphism  $A_j \to \mathbb{K}_j$  is simply the restriction of  $\pi_j$  to the constant polynomial. Now, if  $f_j(x) \in A_j[x]$  is a basic irreducible polynomial with degree  $h = b^t$ , where b is a prime and t is a positive integer, then  $\mathcal{R}_j = \frac{A_j[x]}{(f_j(x))} = GR(p_j^m, h)$  is the family of the Galois ring extension of  $A_j$  and  $\mathbb{K}_j = \frac{\mathcal{R}_j}{M_j} = \frac{A_j[x]/(f_j(x))}{(M_j,f_j(x))/(f_j(x))} = \frac{A_j[x]}{(M_j,f_j(x))} = \frac{(A_j/M_j)[x]}{(\pi_j,f_j(x))}$  is the collection of residue field of  $\mathcal{R}_j$ , where  $M_j = (M_j,f_j(x))$  is the corresponding collection of the maximal ideals of  $\mathcal{R}_j$ . For the construction of a chain of Galois rings, [1, Lemma XVI.7] facilitate us.

Since  $1, b, b^2, \dots, b^{t-1}, b^t$  are the only divisors of h, and take  $h_0 = 1, h_1 = b, h_2 = b^2, \dots, h_t = b^t = h$ , so by [1, Lemma XVI.7] there exist basic irreducible polynomials  $f_{1,j}(x), f_{2,j}(x), \dots, f_{t,j}(x) \in A_j[x]$  with degrees  $h_1, h_2, \dots, h_t$ , respectively, such that we can constitute the Galois subrings  $\mathcal{R}_{i,j} = h_i$ 

 $\frac{\mathbb{Z}_{p_j^m}[x]}{(f_{i,j}(x))} = GR(p_j^m, h_i)$ , of  $\mathcal{R}_j$  with the maximal ideals  $\mathcal{M}_{i,j} = (M_j, f_{i,j}(x))/(f_{i,j}(x))$ , for each i, j, where  $0 \le i \le t$  and  $1 \le j \le r$ . Then the residue field of each  $\mathcal{R}_{i,j}$  becomes

$$\mathbb{K}_{i,j} = \frac{\mathcal{R}_{i,j}}{\mathcal{M}_{\mathbf{i},\mathbf{j}}} = \frac{A_j[x]/(f_{i,j}(x))}{(M_j,f_{i,j}(x))/(f_{i,j}(x))} = \frac{A_j[x]}{(M_j,f_{i,j}(x))} = \frac{(A_j/M_j)[x]}{(\pi_j(f_{i,j}(x)))} = \frac{K_j[x]}{(\overline{f}_{i,j}(x))} = GF(p_j^{h_i})$$

As each  $h_i$  divides  $h_{i+1}$  for each i such that  $0 \le i \le t$ , so by [1, Lemma XVI.7], there are chains

$$A_j = \mathcal{R}_{0,j} \subset \mathcal{R}_{1,j} \subset \mathcal{R}_{2,j} \subset \cdots \subset \mathcal{R}_{t-1,j} \subset \mathcal{R}_{t,j} = \mathcal{R}_j$$

of Galois rings, with corresponding chain of residue fields

$$\mathbb{Z}_{p_j} = \mathbb{K}_{0,j} \subset \mathbb{K}_{1,j} \subset \mathbb{K}_{2,j} \cdots \subset \mathbb{K}_{t-1,j} \subset \mathbb{K}_{t,j} = \mathbb{K}_j$$

Let  $A_i = \mathcal{R}_{i,1} \times \mathcal{R}_{i,2} \times \mathcal{R}_{i,3} \times \cdots \times \mathcal{R}_{i,r}$ , for  $0 \le i \le t$ . Then we get a chain of commutative rings, i.e.,

$$\mathcal{A}_0 \subset \mathcal{A}_1 \subset \mathcal{A}_2 \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_t = \mathcal{A}$$

with an other chain of commutative rings

$$\mathcal{K}_0 \subset \mathcal{K}_1 \subset \mathcal{K}_2 \subset \cdots \subset \mathcal{K}_{t-1} \subset \mathcal{K}_t = \mathcal{K}$$

where each  $K_i = \mathbb{K}_{i,1} \times \mathbb{K}_{i,2} \times \cdots \times \mathbb{K}_{i,r}$ , for each i such that  $0 \le i \le t$ .

Let  $\mathcal{A}_i^*$ ,  $\mathcal{K}_i^*$ ,  $\mathcal{R}_{i,j}^*$  and  $\mathbb{K}_{i,j}^*$  be the multiplicative groups of units of  $\mathcal{A}_i$ ,  $\mathcal{K}_i$ ,  $\mathcal{R}_{i,j}$  and  $\mathbb{K}_{i,j}$ , respectively, for each i,j where  $0 \leq i \leq t$  and  $1 \leq j \leq r$ . Now the next theorem, extension of [1, Theorem XVIII.1] has a fundamental role in the decomposition of the polynomial  $x^{s_i}-1$  into linear factors over the rings  $\mathcal{A}_i^*$ . This theorem asserts that for each element  $\alpha_i \in \mathcal{A}_i^*$  there exist unique elements  $\beta_{i,j} \in \mathcal{R}_{i,j}^*$ , for each i,j, where  $0 \leq i \leq t$  and  $1 \leq j \leq r$ , such that  $\alpha_i = (\beta_{i,1},\beta_{i,2},\cdots,\beta_{i,r})$ .

**Theorem 3.1.** Let  $A_i = \mathcal{R}_{i,1} \times \mathcal{R}_{i,2} \times \mathcal{R}_{i,3} \times \cdots \times \mathcal{R}_{i,r}$ , for  $0 \leq i \leq t$ , where each  $\mathcal{R}_{i,j}$  is a local commutative ring. Then for each i, j, where  $0 \leq i \leq t$  and  $1 \leq j \leq r$ , it follows that  $A_i^* = \mathcal{R}_{i,1}^* \times \mathcal{R}_{i,2}^* \times \mathcal{R}_{i,3}^* \times \cdots \times \mathcal{R}_{i,r}^*$ .

Note that corresponding  $\overline{\alpha}_i=(\overline{\beta}_{i,1},\overline{\beta}_{i,2},\cdots,\overline{\beta}_{i,r})$ . Following theorem indicates the condition under which  $x^{s_i}-1$  can be factored over  $\mathcal{A}_i^*$ , for  $0\leq i\leq t$ .

**Theorem 3.2.** For each i, where  $0 \le i \le t$ , the polynomial  $x^{s_i} - 1$  can be factored over the multiplicative groups  $\mathcal{A}_i^*$  as  $x^{s_i} - 1 = (x - \alpha_i)(x - \alpha_i^2) \cdots (x - \alpha_i^{s_i})$  if and only if each  $\bar{\beta}_{i,j}$ ,  $1 \le j \le r$ , has order  $s_i$  in  $\mathbb{K}_{i,j}^*$ , where  $\gcd(s_i,p) = 1$  and  $\alpha_i = (\beta_{i,1},\beta_{i,2},\cdots,\beta_{i,r})$ , for each  $i,0 \le i \le t$ .

**Proof.** For each i, where  $0 \leq i \leq t$ , suppose that the polynomial  $x^{s_i} - 1$  can be factored over  $\mathcal{A}^*_i$  as  $x^{s_i} - 1 = (x - \alpha_i)(x - \alpha_i^2) \cdots (x - \alpha_i^{s_i})$ . Then  $x^{s_i} - 1$  can be factored over  $\mathcal{R}^*_{i,j}$  as  $x^{s_i} - 1 = (x - \beta_{i,j})(x - \beta_{i,j}^2) \cdots (x - \beta_{i,j}^{s_i})$  for  $0 \leq i \leq t$  and  $1 \leq j \leq r$ . Now it follows from the extension of [7, Theorem 3] that  $\bar{\beta}_{i,j}$  has order  $s_i$  in  $\mathbb{K}^*_{i,j}$ , for  $0 \leq i \leq t$  and  $1 \leq j \leq r$ . Conversely, suppose that  $\bar{\beta}_{i,j}$  has order  $s_i$  in  $\mathbb{K}^*_{i,j}$ , for  $0 \leq i \leq t$  and  $1 \leq j \leq r$ . Again it follows from the extension of [7, Theorem 3] that, the polynomial  $x^{s_i} - 1$  can be factored over  $\mathcal{R}^*_{i,j}$  as  $x^{s_i} - 1 = (x - \beta_{i,j})(x - \beta_{i,j}^2) \cdots (x - \beta_{i,j}^{s_i})$ , for each i,j, where  $0 \leq i \leq t$  and  $1 \leq j \leq r$ . Since  $\alpha_i = (\beta_{i,1},\beta_{i,2},\cdots,\beta_{i,r})$ , for  $0 \leq i \leq t$ , so  $x^{s_i} - 1 = (x - \alpha_i)(x - \alpha_i^2) \cdots (x - \alpha_i^{s_i})$  over  $\mathcal{A}^*_i$ , for each i such that  $0 \leq i \leq t$ .

**Corollary 3.3.** [8, Theorem 3.4] The polynomials  $x^s-1$  can be factored over the multiplicative group  $\mathbb{R}^*$  as  $x^s-1=(x-\alpha)(x-\alpha^2)\cdots(x-\alpha^s)$  if and only if  $\overline{\beta_j}$  has order s in  $\mathbb{K}_j^*$ , where  $\gcd(s,p_j)=1$  and  $\alpha$  corresponds to  $\beta=(\beta_1,\beta_2,\cdots,\beta_r)$ , where  $j=1,2,3,\cdots,r$ .

Let  $H_{\alpha_i,s_i}$  denotes the cyclic subgroup of  $\mathcal{A}_i^*$  generated by  $\alpha_i$ , for each i such that  $0 \leq i \leq t$ , i.e.,  $H_{\alpha_i,s_i}$  contains all the roots of  $x^{s_i}-1$  provided the condition of above theorem are met. The BCH codes  $\mathcal{C}_i$  over  $\mathcal{A}_i^*$  can be obtained as the direct product of BCH codes  $\mathcal{C}_{i,j}$  over  $\mathcal{R}_{i,j}^*$ . To construct the

cyclic BCH codes over  $\mathcal{A}_i^*$ , we need to choose certain elements of  $H_{\alpha_i,n_i}$  as the roots of generator polynomials  $g_i(x)$  of the codes, where  $n_i = gcd(p_1^{h_i}, p_2^{h_i}, p_3^{h_i}, \cdots, p_r^{h_i})$ . So that,  $\alpha_i^{e_1}, \alpha_i^{e_2}, \cdots, \alpha_i^{e_{n_i-k_i}}$  are all the roots of  $g_i(x)$  in  $H_{\alpha_i,n_i}$ , we construct  $g_i(x)$  as

$$g_i(x) = lcm\{M_i^{e_1}(x), M_i^{e_2}(x), \cdots, M_i^{e_{n_i-k_i}}(x)\},\$$

where  $M_i^{el_i}(x)$  are the minimal polynomials of  $\alpha_i^{el_i}$ , for  $l=1,2,\cdots,n_i-k_i$ , where each  $\alpha_i^{el_i}=(\beta_{i,1}^{el_i},\beta_{i,2}^{el_i},\cdots,\beta_{i,r}^{el_i})$ . The following theorem is the extension of [7, Lemma 3] and provides us a method for construction of  $M_i^{el_i}(x)$ , the minimal polynomial of  $\alpha_i^{el_i}$  over the ring  $\mathcal{A}_i$ .

Theorem 3.4. For each i such that  $0 \leq i \leq t$ , let  $M_i^{el_i}(x)$  be the minimal polynomial of  $\alpha_i^{el_i}$  over  $A_i$ , where  $\alpha_i^{el_i}$  generates  $H_{\alpha_i,n_i}$ , for  $l_i=1,2,\cdots,n_i-k_i$  and  $0 \leq i \leq t$ . Then  $M_i^{el_i}(x)=\prod_{\xi_i \in B_i^{l_i}}(x-\xi_i)$ , where  $B_i^{l_i}=\{(\alpha_i^{el_i})^{m_{i,j}}:m_{i,j}=\prod_{j=1}^r p_j^{q_{i,j}}$ , for  $1 \leq l_i \leq n_i-k_i$ ,  $0 \leq q_{i,j} \leq h_i-1$  and  $0 \leq i \leq t\}$ . Proof. Let  $\overline{M}_i^{el_i}(x)$  be the projection of  $M_i^{el_i}(x)$  over the fields  $\mathbb{K}_{i,j}$  and  $\overline{M}_{i,j}^{el_i}(x)$  be the minimal polynomial of  $\overline{\alpha}_i^{el_i}$  over  $\mathbb{K}_{i,j}^*$ , for each i such that  $0 \leq i \leq t, 1 \leq j \leq r$  and  $1 \leq l_i \leq n_i-k_i$ . We can verify that each  $\overline{M}_i^{el_i}(x)$  is divisible by  $\overline{M}_{i,j}^{el_i}(x)$ , for  $0 \leq i \leq t, 1 \leq j \leq r$  and  $1 \leq l_i \leq n_i-k_i$ . Thus it has, among its roots, distinct elements of the sequences  $\overline{\alpha}_i^{el_i}(\overline{\alpha}_i^{el_i})^{p_j}, (\overline{\alpha}_i^{el_i})^{p_j^2}, \cdots, (\overline{\alpha}_i^{el_i})^{p_j^2}$ , for each i,j such that  $0 \leq i \leq t, 1 \leq j \leq r$  and  $1 \leq l_i \leq n_i-k_i$ . Hence  $M_i^{el_i}(x)$  has, among its roots, distinct elements of the sequence  $\alpha_i^{el_i}(\overline{\alpha}_i^{el_i})^{p_j}, (\alpha_i^{el_i})^{p_j^2}, \cdots, (\alpha_i^{el_i})^{p_j^{h_i-1}}$ , for each i,j such that  $0 \leq i \leq t, 1 \leq j \leq r$  and  $1 \leq l_i \leq n_i-k_i$ . Thus any element  $\gamma_i = (\alpha_i^{el_i})^{p_j^{m_i}}$  of the above sequence is the root of  $M_i^{el_i}(x)$ , for each i,j such that  $0 \leq i \leq t, 1 \leq j \leq r$ ,  $0 \leq m_i \leq h_i-1$  and  $1 \leq l_i \leq n_i-k_i$ . Choose any k in the range  $1 \leq k \leq r$  such that  $k \neq j$ . Then we know that  $\gamma_{i,k}$  a root of  $\overline{M}_{i,k}^{el_i}(x)$  implies that  $(\gamma_{i,k})^{p_i^{q_i}}$  is a root of  $M_i^{el_i}(x)$ . Proceeding in this manner, we can show that  $M_i^{el_i}(x)$  necessarily has as roots all distinct member of  $B_i^{l_i}$ . But the polynomial  $\prod_{\xi_i \in B_i^{l_i}}(x-\xi_i)$  has, by construction, coefficient in the direct product of  $A_j$ . Hence  $M_i^{el_i}(x) = \prod_{\xi_i \in B_i^{l_i}}(x-\xi_i)$ 

**Corollary 3.5.** [8, Theorem 3.5] For any positive integer l, let  $M_l(x)$  be the minimal polynomial of  $\alpha^l$  over  $\mathcal{R}$ , where  $\alpha$  generates  $H_{\alpha,n}$ . Then  $M_l(x) = \prod_{\xi \in B_l} (x - \xi)$ , where  $B_l$  is all distinct elements of the sequence  $\{(\alpha^l)^m : m = \prod_{j=1}^r q_j^{s_j}, \ q_j = p_j^{m_j}, \ \text{where } 0 \leq s_j \leq h-1\}$ .

Remark 3.1. Since  $\overline{M}_i^{e_{l_i}}(x)$  be the projection of  $M_i^{e_{l_i}}(x)$  over the field  $\mathbb{K}_{i,j}$ , for each i,j such that  $0 \leq i \leq t$  and  $1 \leq j \leq r$ . So  $\overline{M}_i^{e_{l_i}}(x)$  generates the sequence of codes over the special chain of rings  $\mathcal{K}_i = \mathbb{K}_{i,1} \times \mathbb{K}_{i,2} \times \cdots \times \mathbb{K}_{i,r}$ , for each i such that  $0 \leq i \leq t$ .

The lower bound on the minimum distances derived in the following theorem applies to any cyclic code. The BCH codes are a class of cyclic codes whose generator polynomials are chosen so that the minimum distances are guaranteed by this bound. In this sense, the following extended [8, Theorem 2.5].

**Theorem 3.6.** [9, Theorem 11] For each i such that  $0 \le i \le t$ , let  $g_i(x)$  be the generator polynomial of BCH code  $\mathcal{C}_i$  over  $\mathcal{A}_i$  from the chain  $\mathcal{A}_0 \subset \mathcal{A}_1 \subset \mathcal{A}_2 \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_t$ , with length  $n_i = s_i$ , and let  $\alpha_i^{e_1}, \alpha_i^{e_2}, \alpha_i^{e_3}, \cdots, \alpha_i^{e_{n_i-k_i}}$  be the roots of  $g_i(x)$  in  $H_{\alpha_i,n_i}$ , where  $\alpha_i$  has order  $n_i$ . The minimum Hamming distance of this code is greater than the largest number of consecutive integers modulo  $n_i$  in  $E_i = \{e_1, e_2, e_3, \cdots, e_{n_i-k_i}\}$ , for each i such that  $0 \le i \le t$ .

**Corollary 3.7.** [8, Theorem 2.5] Let g(x) be the generator polynomial of BCH code over A with length n=s such that  $\alpha^{e_1},\alpha^{e_2},\cdots,\alpha^{e_{n-k}}$  are the roots of g(x) in  $H_{\alpha,n}$ , where  $\alpha$  has order n, then minimum Hamming distance of the code is greater than the largest number of consecutive integers modulo n in  $E=\{e_1,e_2,e_3,\cdots,e_{n-k}\}$ .

#### 3.1 Algorithm

The algorithm for constructing a BCH type cyclic codes over the chain of such type of commutative rings  $A_0 \subset A_1 \subset A_2 \subset \cdots \subset A_{t-1} \subset A_t = A$  is then as follows.

1. Choose irreducible polynomial  $f_{i,j}(x)$  over  $\mathbb{Z}_{p_j^m}$ , of degree  $h_i = b^i$ , for  $1 \le i \le t$ , which are also irreducible over GF(p) and form the chains of Galois rings

$$\mathbb{Z}_{p_j^m} = GR(p_j^m, h_0) \subset GR(p_j^m, h_1) \subset \cdots \subset GR(p_j^m, h_{t-1}) \subset GR(p_j^m, h_t) \text{ or } A_i = \mathcal{R}_{0,i} \subseteq \mathcal{R}_{1,i} \subseteq \mathcal{R}_{2,i} \subseteq \cdots \subseteq \mathcal{R}_{t-1,i} \subseteq \mathcal{R}_{t,i} = \mathcal{R}_i$$

and its corresponding chains of residue fields are

$$\mathbb{Z}_{p_j} = GF(p_j) \subset GF(p_j^{h_1}) \subset \cdots \subset GF(p_j^{h_{t-1}}) \subset GF(p_j^h) \text{ or}$$
$$= \mathbb{K}_{0,j} \subset \mathbb{K}_{1,j} \subset \mathbb{K}_{2,j} \cdots \subset \mathbb{K}_{t-1,j} \subset \mathbb{K}_{t,j} = \mathbb{K}_j,$$

where each  $GF(p_j^{h_i}) \simeq \frac{\mathbb{K}_j[x]}{(\pi_j(f_{i,j}(x)))},$  for  $1 \leq i \leq t.$ 

2. Now put  $A_i = \mathcal{R}_{i,1} \times \mathcal{R}_{i,2} \times \mathcal{R}_{i,3} \times \cdots \times \mathcal{R}_{i,r}$ , for  $0 \leq i \leq t$ , where each  $\mathcal{R}_{i,j}$  is a local commutative ring, and get a chain of rings

$$A_0 \subset A_1 \subset A_2 \subset \cdots \subset A_{t-1} \subset A_t = A$$

with an other chain of rings

$$\mathcal{K}_0 \subset \mathcal{K}_1 \subset \mathcal{K}_2 \subset \cdots \subset \mathcal{K}_{t-1} \subset \mathcal{K}_t = \mathcal{K}$$

where each  $K_i = \mathbb{K}_{i,1} \times \mathbb{K}_{i,2} \times \cdots \times \mathbb{K}_{i,r}$ , the direct product of corresponding residue fields r times, for  $0 \le i \le t$ .

- 3. Let  $\overline{\eta}_{i,j}$  be the primitive elements in  $\mathbb{K}_{i,j}^*$ , for  $0 \leq i \leq t$  and  $1 \leq j \leq r$ . Then  $\eta_{i,j}$  has order  $d_{i,j}n_i$  in  $\mathcal{R}_{i,j}^*$  for some integers  $d_{i,j}$ , put  $\beta_{i,j} = (\eta_{i,j})^{d_{i,j}}$ . Then  $\alpha_i = (\beta_{1_i}, \beta_{2_i}, \beta_{3_i}, \cdots, \beta_{r_i})$  has order  $n_i$  in  $\mathcal{R}_{i,j}^*$  and generates  $H_{\alpha_i,n_i}$ . Assume for each i, where  $0 \leq i \leq t$ , let  $\alpha_i$  be any element of  $H_{\alpha_i,n_i}$ .
- 4. Let  $\alpha_i^{e_1}, \alpha_i^{e_2}, \alpha_i^{e_3}, \cdots, \alpha_i^{e_{n_i-k_i}}$  are chosen to be the roots of  $g_i(x)$ . Find  $M_i^{e_{l_i}}(x)$  are the minimal polynomials of  $\alpha_i^{e_{l_i}}$ , for  $l_i=1,2,\cdots,n_i-k_i$ , where each  $\alpha_i^{e_{l_i}}=(\beta_i^{e_{l_i}},\beta_i^{e_{l_i}},\beta_i^{e_{l_i}},\cdots,\beta_i^{e_{l_i}})$ . Then  $g_i(X)$  are given by

$$g_i(x) = lcm\{M_i^{e_1}(x), M_i^{e_2}(x), \cdots, M_i^{e_{n_i-k_i}}(x)\}.$$

The length of each code in the chain is the lcm of the orders of  $\alpha_i^{e_1}, \alpha_i^{e_2}, \alpha_i^{e_3}, \cdots, \alpha_i^{e_{n_i-k_i}}$ , and the minimum distance of the code is greater than the largest number of consecutive integers in the set  $E_i = \{e_1, e_2, e_3, \cdots, e_{n_i-k_i}\}$  for each i, where  $0 \le i \le t$ .

**Example 3.8.** We initiate by constructing a chain of codes of lengths 1, 8 and 16, taking  $A_1 = \mathbb{Z}_9$  and  $A_2 = \mathbb{Z}_{25}$ . Since  $M_1 = \{0,3,6\}$  and  $M_2 = \{0,5,10,15,20\}$ , it follows that  $K_1 = \frac{A_1}{M_1} \simeq \mathbb{Z}_3$  and  $K_2 = \frac{A_2}{M_2} \simeq \mathbb{Z}_5$ . The regular polynomials  $f_1(x) = x^4 + x + 8 \in \mathbb{Z}_9[x]$  and  $f_2(X) = x^4 + x^2 + x + 1 \in \mathbb{Z}_{25}[x]$  are such that  $\pi_1(f_1(x)) = x^4 + x + 2$  and  $\pi_2(f_2(x)) = x^4 + x^2 + x + 1$  are irreducible polynomials with degree  $h = 2^2$  over  $\mathbb{Z}_3$  and  $\mathbb{Z}_5$ , respectively. By [9, Theorem 3], it follows that  $f_1(x)$  and  $f_2(x)$  are irreducible over  $A_1$  and  $A_2$ . Let  $\mathcal{R}_1 = \frac{\mathbb{Z}_3^2[x]}{(f_1(x))} = GR(3^2, 4)$ ,  $\mathcal{R}_2 = \frac{\mathbb{Z}_5^2[x]}{(f_2(x))} = GR(5^2, 4)$  be the Galois rings and  $\mathbb{K}_1 = \frac{\mathbb{Z}_3[x]}{(\pi_1(f_1(x)))} = GF(3^4)$ ,  $\mathbb{K}_2 = \frac{\mathbb{Z}_5[x]}{(\pi_2(f_2(x)))} = GF(5^4)$  be their corresponding residue fields. Since 1, 2 and  $2^2$  are the only divisors of 4, therefore let  $h_1 = 1$ ,  $h_2 = 2$ ,  $h_3 = 2^2$ . Then there exist irreducible polynomials  $f_{1,1}(x) = x^2 + 1$ ,  $f_{2,1}(x) = f_1(x)$  in  $\mathbb{Z}_9[x]$ , and  $f_{1,2}(x) = x^2 + 2$ ,  $f_{2,2}(x) = f_2(x)$  in  $\mathbb{Z}_2[x]$  with degrees  $h_2 = 2$  and  $h_3 = 4$  such that we can constitute the Galois rings

 $\mathcal{R}_{0,1} = A_1, \, \mathcal{R}_{1,1} = \frac{\mathbb{Z}_{3^2}[x]}{(f_{1,1}(x))} = GR(3^2,h_2), \, \mathcal{R}_{2,1} = \mathcal{R}_1 \, \text{ and } \mathcal{R}_{0,2} = A_2, \, \mathcal{R}_{1,2} = \frac{\mathbb{Z}_{5^2}[x]}{(f_{1,2}(x))} = GR(5^2,h_2) \, \text{ and } \mathcal{R}_{1,2} = \mathcal{R}_2. \, \text{So}$ 

$$A_j = \mathcal{R}_{0,j} \subset \mathcal{R}_{1,j} \subset \mathcal{R}_{2,j} = \mathcal{R}_j, \text{ for } j = 1, 2.$$

Again by the same argument  $\mathbb{K}_{0,1} = \mathbb{Z}_2$ ,  $\mathbb{K}_{1,1} = \frac{\mathbb{Z}_3[x]}{(\pi_1(f_{1,1}(x)))} = GF(3^2)$ ,  $\mathbb{K}_{2,1} = \mathbb{K}_1$  and  $\mathbb{K}_{0,2} = \mathbb{Z}_5$ ,  $\mathbb{K}_{1,2} = \frac{\mathbb{Z}_5[x]}{(\pi_2(f_{1,2}(x)))} = GF(5^2)$ ,  $\mathbb{K}_{2,2} = \mathbb{K}_2$ . So we get chains of fields

$$A_j = \mathbb{K}_{0,j} \subset \mathbb{K}_{1,j} \subset \mathbb{K}_{2,j} = \mathbb{K}_j$$
, for  $j = 1, 2$ .

Now  $A_i = \mathcal{R}_{i,1} \times \mathcal{R}_{i,2}$  such that  $A_0 \subseteq A_1 \subseteq A_2$ , i.e.,

and

Let  $u=\{x\}$  in  $\mathcal{R}_{i,j}$  such that  $\overline{u}=\{x\}$  in  $\mathbb{K}_{i,j}$ . Then  $\overline{u}+1$  has order 8,24,80 and 624 in  $\mathbb{K}_{1,1},\mathbb{K}_{1,2},\mathbb{K}_{2,1}$  and  $\mathbb{K}_{2,2}$ , respectively. So  $\overline{\beta}_{1,1}=\overline{\beta}_{1,2}=\overline{\beta}_{2,1}=\overline{\beta}_{2,2}=\overline{u}+1$ . But u+1 has order 24,120,240 and 3120 in  $\mathcal{R}_{1,1},\mathcal{R}_{1,2},\mathcal{R}_{2,1}$  and  $\mathcal{R}_{2,2}$ , so put  $\beta_{1,1}=(u+1)^3$ ,  $\beta_{1,2}=\beta_{2,1}=(u+1)^{15}$  and  $\beta_{2,2}=(u+1)^{195}$  and get  $\alpha_2=(\beta_{2,1},\beta_{2,2})$  which generates  $H_{\alpha_2,16}$  and  $\alpha_1=(\beta_{1,1},\beta_{1,2})$  which generates  $H_{\alpha_1,8}$ . Also 2 has order 4 in  $\mathbb{K}_{0,2}$  and has order 2 in  $\mathbb{K}_{0,1}$ , so  $\overline{\beta}_{0,1}=\overline{\beta}_{0,2}=2$ . But 2 has order 20 in  $\mathcal{R}_{0,2}$  and has order 6 in  $\mathcal{R}_{0,1}$ , so  $\beta_{0,1}=8$  and  $\beta_{0,2}=24$  get  $\alpha_0=(\beta_{0,1},\beta_{0,2})$  which generates  $H_{\alpha_0,2}$ . Choose  $\alpha_i$  and  $\alpha_i^2$  to be roots of the generator polynomials  $g_i(x)$  of the BCH codes  $\mathcal{C}_i$  over the chain  $\mathcal{A}_0\subset\mathcal{A}_1\subset\mathcal{A}_2$ . Then  $M_0^1(x)$ ,  $M_1^1(x)$  and  $M_2^1(x)$  has as roots all distinct element in the sets  $B_0^1=\{\alpha_0\}\subset H_{\alpha_0,2}, B_1^1=\{\alpha_1,\alpha_1^3,\alpha_1^5,\alpha_1^7\}\subset H_{\alpha_1,8}$  and  $B_2^1=\{\alpha_2,\alpha_2^3,\alpha_2^5,\alpha_2^7,\alpha_2^9,\alpha_2^{11},\alpha_2^{13},\alpha_2^{15}\}\subset H_{\alpha_2,16}$ , respectively. So

$$M_0^1(x) = (x - \alpha_0), \ M_1^1(x) = (x - \alpha_1)(x - \alpha_1^3)(x - \alpha_1^5)(x - \alpha_1^7),$$

and

$$M_2^1(x) = (x - \alpha_2)(x - \alpha_2^3)(x - \alpha_2^5)(x - \alpha_2^7)(x - \alpha_2^9)(x - \alpha_2^{11})(x - \alpha_2^{13})(x - \alpha_2^{15}).$$

Similarly,

$$M_0^2(x) = (x-1), \ M_1^2(x) = (x-\alpha_1^2)(x-\alpha_1^6)$$
 and  $M_2^3(x) = (x-\alpha_2^2)(x-\alpha_2^6)(x-\alpha_2^{10})(x-\alpha_2^{14}).$ 

Thus the polynomials  $g_i(x) = lcm(M_i^1(x), M_i^2(x))$  are given by

$$g_0(x)=(x-1)(x-\alpha_0), \ g_1(x)=(x-\alpha_1)(x-\alpha_1^2)(x-\alpha_1^3)(x-\alpha_1^5)(x-\alpha_1^6)(x-\alpha_1^7),$$
 and

$$g_2(x) = (x - \alpha_2)(x - \alpha_2^2)(x - \alpha_2^3)(x - \alpha_2^5)(x - \alpha_2^6)(x - \alpha_2^6)(x - \alpha_2^9)(x - \alpha_2^{10})(x - \alpha_2^{11})(x - \alpha_2^{13})(x - \alpha_2^{14})(x - \alpha_2^{15})(x - \alpha_2^{15})$$

which generates the cyclic BCH codes  $C_0$ ,  $C_1$  and  $C_2$  of length 2, 8 and 16 with minimum hamming distance at least 3, 4 and 4, respectively. Similarly we can construct a sequence of cyclic codes over  $\mathcal{K}_i$  if we replace  $\alpha_i$  with  $\overline{\alpha}_i$ , for  $0 \le i \le 2$ .

### 4 Construction III

For any j such that  $1 \leq j \leq r$ , let  $p_j$  be a prime and  $m_j$  a positive integer. The ring  $A_j = \mathbb{Z}_{p_j^{m_j}}$  is a unitary finite local commutative ring with maximal ideals  $M_j$  and residue fields  $\mathbb{K}_j = \frac{A_j}{M_j}$ . The natural

projections  $\pi_j:A_j[x]\to\mathbb{K}_j[x]$  is defined by  $\pi(\sum_{k=0}^n a_kx^k)=\sum_{k=0}^n \overline{a_k}x^k$ , where  $\overline{a_k}=a_k+M_j$  for  $k=0,1,\cdots,n$ . Thus, the natural ring morphism  $A_j\to K_j$  is simply the restriction of  $\pi_j$  to the constant polynomial. Now, if  $f_j(x)\in A_j[x]$  is a basic irreducible polynomial with degree  $h=b^t$ , where b is a prime and t is a positive integer, then  $\mathcal{R}_j=\frac{A_j[x]}{(f_j(x))}=GR(p_j^{m_j},h)$  is the collection of the Galois ring extension of  $A_j$  and  $\mathbb{K}_j=\frac{\mathcal{R}_j}{\mathcal{M}_j}=\frac{A_j[x]/(f_j(x))}{(M_j,f_j(x))/(f_j(x))}=\frac{A_j[x]}{(M_j,f_j(x))}=\frac{(A_j/M_j)[x]}{(\pi_j(f_j(x)))}$  is the residue field of  $\mathcal{R}_j$ , where  $M_j=(M_j,f_j(x))$  is the corresponding maximal ideal of  $\mathcal{R}_j$  for each j such that  $1\leq j\leq r$ . For the construction of a chain of Galois ring, [1, Lemma XVI.7] facilitate us.

Since  $1,b,b^2,\cdots,b^{t-1},b^t$  are the only divisors of h, and take  $h_0=1,h_1=b,h_2=b^2,\cdots,h_t=b^t=h$ , so by [1, Lemma XVI.7], there exist basic irreducible polynomials  $f_{1,j}(x),f_{2,j}(x),\cdots,f_{t,j}(x)\in A_j[x]$  with degrees  $h_1,h_2,\cdots,h_t$ , respectively, such that we can constitute the Galois subring  $\mathcal{R}_{i,j}=\frac{\mathbb{Z}_{m_j}[x]}{(f_{i,j}(x))}=GR(p_j^{m_j},h_i),$  of  $\mathcal{R}_j$  with the maximal ideal  $\mathcal{M}_{\mathbf{i},\mathbf{j}}=(M_j,f_{i,j}(x))/(f_{i,j}(x)),$  for each i such that  $0\leq i\leq t$  and  $1\leq j\leq r$ . Then the residue fields of each  $\mathcal{R}_{i,j}$  becomes

$$\mathbb{K}_{i,j} = \frac{\mathcal{R}_{i,j}}{\mathcal{M}_{i,j}} = \frac{A_j[x]/(f_{i,j}(x))}{(M_j, f_{i,j}(x))/(f_{i,j}(x))} = \frac{A_j[x]}{(M_j, f_{i,j}(x))} = \frac{(A_j/M_j)[x]}{(\pi_j(f_{i,j}(x)))} = \frac{K_j[x]}{(\bar{f}_{i,j}(x))} = GF(p_j^{h_i}).$$

As each  $h_i$  divides  $h_{i+1}$  for all  $0 \le i \le t$ , so by [1, Lemma XVI.7], there is a chain

$$A_j = \mathcal{R}_{0,j} \subset \mathcal{R}_{1,j} \subset \mathcal{R}_{2,j} \subset \cdots \subset \mathcal{R}_{t-1,j} \subset \mathcal{R}_{t,j} = \mathcal{R}_j$$

of Galois rings with corresponding chain of residue fields

$$\mathbb{Z}_{p_j} = \mathbb{K}_{0,j} \subset \mathbb{K}_{1,j} \subset \mathbb{K}_{2,j} \subset \cdots \subset \mathbb{K}_{t-1,j} \subset \mathbb{K}_j.$$

Let  $A_i = \mathcal{R}_{i,1} \times \mathcal{R}_{i,2} \times \mathcal{R}_{i,3} \times \cdots \times \mathcal{R}_{i,r}$ , for each i such that  $0 \leq i \leq t$ . Then we get a chain of commutative rings, i.e.,

$$\mathcal{A}_0 \subset \mathcal{A}_1 \subset \mathcal{A}_2 \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_t = \mathcal{A}$$

with an other chain of commutative rings

$$\mathcal{K}_0 \subset \mathcal{K}_1 \subset \mathcal{K}_2 \subset \cdots \subset \mathcal{K}_{t-1} \subset \mathcal{K}_t = \mathcal{K}_t$$

where each  $K_i = \mathbb{K}_{1_i} \times \mathbb{K}_{2_i} \times \cdots \times \mathbb{K}_{r_i}$ , for each i such that  $0 \le i \le t$ .

Let  $\mathcal{A}_i^*$ ,  $\mathcal{K}_i^*$ ,  $\mathcal{R}_{i,j}^*$  and  $\mathbb{K}_{i,j}^*$  be the multiplicative groups of units of  $\mathcal{A}_i$ ,  $\mathcal{K}_i$ ,  $\mathcal{R}_{i,j}$  and  $\mathbb{K}_{i,j}$ , for  $1 \leq j \leq r$ , respectively, for each i such that  $0 \leq i \leq t$ . Now the next theorem, extension of [1, Theorem XVIII.1], is fundamental in the decomposition of the polynomial  $x^{s_i} - 1$  into linear factors over the rings  $\mathcal{A}_i^*$ . This theorem asserts that for each element  $\alpha_i \in \mathcal{A}_i^*$  there exist unique elements  $\beta_{i,j} \in \mathcal{R}_{i,j}^*$ , for each i, where  $0 \leq i \leq t$  and  $1 \leq j \leq r$ , such that  $\alpha_i = (\beta_{i,1}, \beta_{i,2}, \cdots, \beta_{i,r})$ .

**Theorem 4.1.** For each i such that  $0 \le i \le t$ , let  $\mathcal{A}_i = \mathcal{R}_{i,1} \times \mathcal{R}_{i,2} \times \mathcal{R}_{i,3} \times \cdots \times \mathcal{R}_{i,r}$ , where each  $\mathcal{R}_{i,j}$ , for  $1 \le j \le r$ , is a local commutative ring. Then  $\mathcal{A}_i^* = \mathcal{R}_{i,1}^* \times \mathcal{R}_{i,2}^* \times \mathcal{R}_{i,3}^* \times \cdots \times \mathcal{R}_{i,r}^*$  for each i such that  $0 \le i \le t$ .

Note that  $\overline{\alpha}_i = (\overline{\beta}_{i,1}, \overline{\beta}_{i,2}, \cdots, \overline{\beta}_{i,r})$ . Following theorem indicates the condition under which  $x^{s_i} - 1$  can be factored over  $\mathcal{A}_i^*$ , for each i such that  $0 \le i \le t$ .

**Theorem 4.2.** For each i, where  $0 \le i \le t$ , the polynomial  $x^{s_i} - 1$  can be factored over the multiplicative group  $\mathcal{A}_i^*$  as  $x^{s_i} - 1 = (x - \alpha_i)(x - \alpha_i^2) \cdots (x - \alpha_i^s)$  if and only if  $\bar{\beta}_{i,j}$ , for each j such that  $1 \le j \le r$ , has order  $s_i$  in  $\mathbb{K}_{i,j}^*$  such that  $\gcd(s_i,p) = 1$  and  $\alpha_i = (\beta_{i,1},\beta_{i,2},\cdots,\beta_{i,r})$ . **Proof.** Suppose that the polynomial  $x^{s_i} - 1$  can be factored over  $\mathcal{A}_i^*$  as  $x^{s_i} - 1 = (x - \alpha_i)(x - \alpha_i^2) \cdots (x - \alpha_i^{s_i})$ , for each i such that  $0 \le i \le t$ . Then  $x^{s_i} - 1$  can be factored over  $\mathcal{R}_{i,j}^*$  as  $x^{s_i} - 1 = (x - \beta_{i,j})(x - \beta_{i,j}^2) \cdots (x - \beta_{i,j}^{s_i})$ , for each  $1 \le j \le r$ . Now it follows from the extension of [7, theorem 3] that  $\bar{\beta}_{i,j}$  has order  $s_i$  in  $\mathbb{K}_{i,j}^*$ , for each  $0 \le i \le t$  and for each  $1 \le j \le r$ . Conversely, suppose that  $\bar{\beta}_{i,j}$  has order  $s_i$  in  $\mathbb{K}_{i,j}^*$ , for each i,j, where  $0 \le i \le t$  and  $1 \le j \le r$ . Again it

follows, from the extension of [7, theorem 3], that the polynomial  $x^{s_i}-1$  can be factored over  $\mathcal{R}^*_{i,j}$  as  $x^{s_i}-1=(x-\beta_{i,j})(x-\beta_{i,j}^2)\cdots(x-\beta_{i,j}^{s_i})$ , for each i,j, where  $0\leq i\leq t$  and  $1\leq j\leq r$ . Since  $\alpha_i=(\beta_{i,1},\beta_{i,2},\cdots,\beta_{i,r})$ , for  $0\leq i\leq t$ , so  $x^{s_i}-1=(x-\alpha_i)(x-\alpha_i^2)\cdots(x-\alpha_i^{s_i})$  over  $\mathcal{A}^*_i$ , for each i, where  $0\leq i\leq t$ .

**Corollary 4.3.** [8, Theorem 3.4] The polynomial  $x^s-1$  can be factored over the multiplicative group  $\mathcal{R}^*$  as  $x^s-1=(x-\alpha)(x-\alpha^2)\cdots(x-\alpha^s)$  if and only if  $\overline{\beta_j}$  has order s in  $\mathbb{K}_j^*$ , where  $\gcd(s,p_j)=1$  and  $\alpha$  corresponds to  $\beta=(\beta_1,\beta_2,\cdots,\beta_r)$ , where  $j=1,2,3,\cdots,r$ .

Let  $H_{\alpha_i,s_i}$  denotes the cyclic subgroup of  $\mathcal{A}_i^*$  generated by  $\alpha_i$ , for each i, where  $0 \leq i \leq t$ , i.e.,  $H_{\alpha_i,s_i}$  contains all the roots of  $x^{s_i}-1$  provided the condition of above theorem are met. The BCH codes  $\mathcal{C}_i$  over  $\mathcal{A}_i^*$  can be obtained as the direct product of BCH codes  $\mathcal{C}_{i,j}$  over  $\mathcal{R}_{i,j}^*$ . To construct the cyclic BCH codes over  $\mathcal{A}_i^*$ , we need to choose certain elements of  $H_{\alpha_i,n_i}$  as the roots of generator polynomials  $g_i(x)$  of the codes, where  $n_i = \gcd(p_1^{h_i}, p_2^{h_i}, p_3^{h_i}, \cdots, p_r^{h_i})$ . So that,  $\alpha_i^{e_1}, \alpha_i^{e_2}, \cdots, \alpha_i^{e_{n_i-k_i}}$  are all the roots of  $g_i(x)$  in  $H_{\alpha_i,n_i}$ , we construct  $g_i(x)$  as

$$g_i(x) = lcm\{M_i^{e_1}(x), M_i^{e_2}(x), \cdots, M_i^{e_{n_i-k_i}}(x)\},$$

where  $M_i^{e_{l_i}}(x)$  are the minimal polynomials of  $\alpha_i^{e_{l_i}}$ , for  $l=1,2,\cdots,n_i-k_i$ , where each  $\alpha_i^{e_{l_i}}=(\beta_{i,1}^{e_{l_i}},\beta_{i,2}^{e_{l_i}},\cdots,\beta_{i,r}^{e_{l_i}})$ . The following theorem is the extension of [7, Lemma 3] and provides us a method for construction of  $M_i^{e_{l_i}}(x)$ , the minimal polynomial of  $\alpha_i^{e_{l_i}}$  over the ring  $\mathcal{A}_i$ .

Theorem 4.4. For each i such that  $0 \leq i \leq t$ , let  $M_i^{e_{l_i}}(x)$  be the minimal polynomial of  $\alpha_i^{e_{l_i}}$  over  $\mathcal{A}_i$ , where  $\alpha_i^{e_{l_i}}$  generates  $H_{\alpha_i,n_i}$ , for  $l_i=1,2,\cdots,n_i-k_i$  and  $0 \leq i \leq t$ . Then  $M_i^{e_{l_i}}(x) = \prod_{\xi_i \in B_l^{l_i}}(x-\xi_i)$ , where  $B_i^{l_i} = \{(\alpha_i^{e_{l_i}})^{m_{i,j}} : m_{i,j} = \prod_{j=1}^r p_j^{q_{i,j}}$ , where  $1 \leq l_i \leq n_i - k_i$ ,  $0 \leq q_{i,j} \leq h_i - 1\}$ . Proof. Let  $\overline{M}_i^{e_{l_i}}(x)$  be the projection of  $M_i^{e_{l_i}}(x)$  over the fields  $\mathbb{K}_{i,j}$  and  $\overline{M}_{i,j}^{e_{l_i}}(x)$  be the minimal polynomial of  $\overline{\alpha}_i^{e_{l_i}}$  over  $\mathbb{K}_{i,j}^*$ , for each i, where  $0 \leq i \leq t$ ,  $1 \leq j \leq r$  and  $1 \leq l_i \leq n_i - k_i$ . We can verify that each  $\overline{M}_i^{e_{l_i}}(x)$  is divisible by  $\overline{M}_{i,j}^{e_{l_i}}(x)$ , for  $0 \leq i \leq t$ ,  $1 \leq j \leq r$  and  $1 \leq l_i \leq n_i - k_i$ . Thus it has, among its roots, distinct elements of the sequences  $\overline{\alpha}_i^{e_{l_i}}(\overline{\alpha}_i^{e_{l_i}})^{p_j}, (\overline{\alpha}_i^{e_{l_i}})^{p_j^2}, \cdots, (\overline{\alpha}_i^{e_{l_i}})^{p_{j-1}^{h_{i-1}}}$ , for each i,j, where  $0 \leq i \leq t$ ,  $1 \leq j \leq r$  and  $1 \leq l_i \leq n_i - k_i$ . Hence  $M_i^{e_{l_i}}(x)$  has, among its roots, distinct elements of the sequence  $\alpha_i^{e_{l_i}}, (\alpha_i^{e_{l_i}})^{p_j}, (\alpha_i^{e_{l_i}})^{p_j^2}, \cdots, (\alpha_i^{e_{l_i}})^{p_{j-1}^{h_{i-1}}}$ , for each i,j, where  $0 \leq i \leq t$ ,  $1 \leq j \leq r$  and  $1 \leq l_i \leq n_i - k_i$ . Thus any element  $\gamma_i = (\alpha_i^{e_{l_i}})^{p_{j-1}^{h_{i-1}}}$ , for each i,j, where  $0 \leq i \leq t$ ,  $1 \leq j \leq r$ ,  $0 \leq m_i \leq h_i - 1$  and  $1 \leq l_i \leq n_i - k_i$ . Choose any k in the range  $1 \leq k \leq r$  such that  $k \neq j$ . Then we know that if  $\gamma_{i,k}$  is a root of  $\overline{M}_i^{e_{l_i}}(x)$  implies that  $(\gamma_{i,k})^{p_{j}^{k_i}}$  is a root of  $M_i^{e_{l_i}}(x)$ . Proceeding in this manner, we can show that  $M_i^{e_{l_i}}(x)$  necessarily has as roots all distinct member of  $B_i^{l_i}$ . But the polynomial  $\prod_{\xi_i \in B_i^{l_i}}(x - \xi_i)$  has, by construction, coefficient in the direct product of  $A_j$ . Hence  $M_i^{e_{l_i}}(x) = \prod_{\xi_i \in B_i^{l_i}}(x - \xi_i)$  has, by

**Corollary 4.5.** [8, Theorem 3.5] For any positive integer l, let  $M_l(x)$  be the minimal polynomial of  $\alpha^l$  over  $\mathcal{R}$ , where  $\alpha$  generates  $H_{\alpha,n}$ . Then  $M_l(x) = \prod_{\xi \in B_l} (x - \xi)$ , where  $B_l$  is all distinct elements of the sequence  $\{(\alpha^l)^m : m = \prod_{j=1}^r q_j^{s_j}, \ q_j = p_j^{m_j}, \ 0 \le s_j \le h-1\}$ .

The lower bound on the minimum distances derived in the following theorem applies to any cyclic code. The BCH codes are a class of cyclic codes whose generator polynomials are chosen so that the minimum distances are guaranteed by this bound. In this sense, the following extend [8, Theorem 2.5]

**Theorem 4.6.** [9, Theorem 11] For each i such that  $0 \le i \le t$ , let  $g_i(x)$  be the generator polynomial of BCH code  $C_i$  over  $A_i$  from the chain  $A_0 \subset A_1 \subset A_2 \subset \cdots \subset A_{t-1} \subset A_t$ , with length  $n_i = s_i$ , and let  $\alpha_i^{e_1}, \alpha_i^{e_2}, \alpha_i^{e_3}, \cdots, \alpha_i^{e_{n_i-k_i}}$  be the roots of  $g_i(x)$  in  $H_{\alpha_i,n_i}$ , where  $\alpha_i$  has order  $n_i$ . The minimum Hamming distance of this code is greater than the largest number of consecutive integers modulo  $n_i$  in  $E_i = \{e_1, e_2, e_3, \cdots, e_{n_i-k_i}\}$ .

**Corollary 4.7.** [8, Theorem 2.5] Let g(x) be the generator polynomial of BCH code over A with length n=s such that  $\alpha^{e_1},\alpha^{e_2},\cdots,\alpha^{e_{n-k}}$  are the roots of g(x) in  $H_{\alpha,n}$ , where  $\alpha$  has order n, then minimum Hamming distance of the code is greater than the largest number of consecutive integers modulo n in  $E=\{e_1,e_2,e_3,\cdots,e_{n-k}\}$ .

#### 4.1 Algorithm

The algorithm for constructing a BCH type cyclic codes over the chain of such type of commutative rings  $A_0 \subset A_1 \subset A_2 \subset \cdots \subset A_{t-1} \subset A_t = A$  is then as follows.

1. Choose irreducible polynomial  $f_{i,j}(x)$  over  $\mathbb{Z}_{p_j^{m_j}}$  of degree  $h_i = b^i$ , for  $1 \leq i \leq t$ , which are also irreducible over GF(p) and form the chains of Galois rings

$$\mathbb{Z}_{p_j^{m_j}} = GR(p_j^{m_j}, h_0) \subset GR(p_j^{m_j}, h_1) \subset \cdots \subset GR(p_j^{m_j}, h_{t-1}) \subset GR(p_j^{m_j}, h_t) \text{ or }$$

$$A_j = \mathcal{R}_{0,j} \subseteq \mathcal{R}_{1,j} \subseteq \mathcal{R}_{2,j} \subseteq \cdots \subseteq \mathcal{R}_{t-1,j} \subseteq \mathcal{R}_{t,j} = \mathcal{R}_j$$

and its corresponding chains of residue fields are

$$\mathbb{Z}_{p_j} = GF(p_j) \subset GF(p_j^{h_1}) \subset \cdots \subset GF(p_j^{h_{t-1}}) \subset GF(p_j^h) \text{ or}$$

$$= \mathbb{K}_{0,j} \subset \mathbb{K}_{1,j} \subset \mathbb{K}_{2,j} \cdots \subset \mathbb{K}_{t-1,j} \subset \mathbb{K}_{t,j} = \mathbb{K}_j,$$

where each  $GF(p_j^{h_i}) \simeq \frac{K_j[x]}{(\pi_j(f_{i,j}(x)))},$  for  $1 \leq i \leq t.$ 

2. Now put  $A_i = \mathcal{R}_{i,1} \times \mathcal{R}_{i,2} \times \mathcal{R}_{i,3} \times \cdots \times \mathcal{R}_{i,r}$ , for  $0 \le i \le t$ , where each  $\mathcal{R}_{i,j}$  is local commutative ring, and get a chain of rings

$$A_0 \subset A_1 \subset A_2 \subset \cdots \subset A_{t-1} \subset A_t = A$$

with an other chain of rings

$$\mathcal{K}_0 \subset \mathcal{K}_1 \subset \mathcal{K}_2 \subset \cdots \subset \mathcal{K}_{t-1} \subset \mathcal{K}_t = \mathcal{K}$$

where each  $K_i = \mathbb{K}_i^r$ , for  $0 \le i \le t$ .

- 3. Let  $\overline{\eta}_{i,j}=\overline{\eta}_i$  be the primitive elements in  $\mathbb{K}_i^*$ , for  $0\leq i\leq t$ . Then  $\eta_{i,j}$  has order  $d_{i,j}n_i$  in  $\mathcal{R}_{i,j}^*$  for some integers  $d_{i,j}$ , put  $\beta_{i,j}=(\eta_{i,j})^{d_{i,j}}$ . Then  $\alpha_i=(\beta_{1_i},\beta_{2_i},\beta_{3_i},\cdots,\beta_{r_i})$  has order  $n_i$  in  $\mathcal{R}_{i,j}^*$  and generates  $H_{\alpha_i,n_i}$ . Assume for each i, where  $0\leq i\leq t$ ,  $\alpha_i$  be any element of  $H_{\alpha_i,n_i}$ .
- 4. Let  $\alpha_i^{e_1}, \alpha_i^{e_2}, \alpha_i^{e_3}, \cdots, \alpha_i^{e_{n_i-k_i}}$  are chosen to be the roots of  $g_i(x)$ . Find  $M_i^{e_{l_i}}(x)$  are the minimal polynomials of  $\alpha_i^{e_{l_i}}$ , for  $l_i=1,2,\cdots,n_i-k_i$ , where each  $\alpha_i^{e_{l_i}}=(\beta_i^{e_{l_i}},\beta_i^{e_{l_i}},\beta_i^{e_{l_i}},\cdots,\beta_i^{e_{l_i}})$ . Then  $g_i(x)$  are given by

$$g_i(x) = lcm\{M_i^{e_1}(x), M_i^{e_2}(x), \cdots, M_i^{e_{n_i-k_i}}(x)\}.$$

The length of each code in the chain is the lcm of the orders of  $\alpha_i^{e_1}, \alpha_i^{e_2}, \alpha_i^{e_3}, \cdots, \alpha_i^{e_{n_i-k_i}}$ , and the minimum distance of the code is greater than the largest number of consecutive integers in the set  $E_i = \{e_1, e_2, e_3, \cdots, e_{n_i-k_i}\}$  for each i, where  $0 \le i \le t$ .

**Example 4.8.** We initiate by constructing a chain of codes of lengths 1, 8 and 16, taking  $A_1=\mathbb{Z}_9$  and  $A_2=\mathbb{Z}_5$ . Since  $M_1=\{0,3,6\}$  and  $M_2=\{0\}$ , so  $K_1=\frac{A_1}{M_1}\simeq\mathbb{Z}_3$  and  $K_2=\frac{A_2}{M_2}\simeq\mathbb{Z}_5$ . The regular polynomials  $f_1(x)=x^4+x+8\in\mathbb{Z}_9[x]$  and  $f_2(x)=x^4+x^2+x+1\in\mathbb{Z}_5[x]$  are such that  $\pi_1(f_1(x))=x^4+x+2$  and  $\pi_2(f_2(x))=x^4+x^2+x+1$  are irreducible polynomials with degree  $h=2^2$  over  $\mathbb{Z}_3$  and  $\mathbb{Z}_5$ , respectively. By [9, Theorem 3], it follows that  $f_1(x)$  and  $f_2(x)$  are irreducible over  $A_1$  and  $A_2$ . Let  $\mathcal{R}_1=\frac{\mathbb{Z}_3[x]}{(f_1(x))}=GR(3^2,4)$ ,  $\mathcal{R}_2=\frac{\mathbb{Z}_5[x]}{(f_2(x))}=GR(5,4)$  be the Galois rings and  $\mathbb{K}_1=\frac{\mathbb{Z}_3[x]}{(\pi_1(f_1(x)))}=GF(3^4)$ ,  $\mathbb{K}_2=\frac{\mathbb{Z}_5[x]}{(\pi_2(f_2(x)))}=GF(5^4)$  be their corresponding residue fields. Since 1, 2 and  $2^2$  are the only divisors of 4, it follows that  $h_1=1$ ,  $h_2=2$  and  $h_3=2^2$ . Then there exist irreducible polynomials  $f_{1,1}(x)=x^2+1$ ,  $f_{2,1}(x)=f_1(x)$  in  $\mathbb{Z}_9[x]$ , and  $f_{1,2}(x)=x^2+2$ ,  $f_{2,2}(x)=f_2(x)$  in  $\mathbb{Z}_5[x]$  with degrees  $h_2=2$  and  $h_3=4$  such that we can constitute the Galois rings  $\mathcal{R}_{0,1}=A_1$ ,  $\mathcal{R}_{1,1}=\frac{\mathbb{Z}_3[x]}{(f_{1,1}(x))}=GR(3^2,h_2)$ ,  $\mathcal{R}_{2,1}=\mathcal{R}_1$  and  $\mathcal{R}_{0,2}=A_2$ ,  $\mathcal{R}_{1,2}=\frac{\mathbb{Z}_5[x]}{(f_{1,2}(x))}=GR(5,h_2)$  and  $\mathcal{R}_{1,2}=\mathcal{R}_2$ . So

$$A_j = \mathcal{R}_{0,j} \subset \mathcal{R}_{1,j} \subset \mathcal{R}_{2,j} = \mathcal{R}_j$$
, for  $j = 1, 2$ .

Again by the same argument  $\mathbb{K}_{0,1} = \mathbb{Z}_3$ ,  $\mathbb{K}_{1,1} = \frac{\mathbb{Z}_3[x]}{(\pi_1(f_{1,1}(x)))} = GF(3^2)$ ,  $\mathbb{K}_{2,1} = \mathbb{K}_1$  and  $\mathbb{K}_{0,2} = \mathbb{Z}_5$ ,  $\mathbb{K}_{1,2} = \frac{\mathbb{Z}_5[x]}{(\pi_2(f_{1,2}(x)))} = GF(5^2)$ ,  $\mathbb{K}_{2,2} = \mathbb{K}_2$ . So we get chains of fields

$$A_j = \mathbb{K}_{0,j} \subset \mathbb{K}_{1,j} \subset \mathbb{K}_{2,j} = \mathbb{K}_j, \text{ for } j = 1, 2.$$

Now  $A_i = \mathcal{R}_{i,1} \times \mathcal{R}_{i,2}$  such that  $A_0 \subseteq A_1 \subseteq A_2$ , i.e.,

and

Let  $u=\{x\}$  in  $\mathcal{R}_{i,j}$  such that  $\overline{u}=\{X\}$  in  $\mathbb{K}_{i,j}$ . Then  $\overline{u}+1$  has order 8,24,80 and 624 in  $\mathbb{K}_{1,1},\mathbb{K}_{1,2},\mathbb{K}_{2,1}$  and  $\mathbb{K}_{2,2}$ , respectively. So  $\overline{\beta}_{1,1}=\overline{\beta}_{1,2}=\overline{\beta}_{2,1}=\overline{\beta}_{2,2}=\overline{u}+1$ . But u+1 has order 24,120,80 and 624 in  $\mathcal{R}_{1,1},\mathcal{R}_{1,2},\mathcal{R}_{2,1}$  and  $\mathcal{R}_{2,2}$ , so put  $\beta_{1,1}=(u+1)^3$ ,  $\beta_{1,2}=(u+1)^{15}$ ,  $\beta_{2,1}=(u+1)^5$  and  $\beta_{2,2}=(u+1)^{39}$  and get  $\alpha_2=(\beta_{2,1},\beta_{2,2})$  which generates  $H_{\alpha_{2,1}16}$  and  $\alpha_1=(\beta_{1,1},\beta_{1,2})$  which generates  $H_{\alpha_1,8}$ . Also 2 has order 4 in  $\mathbb{K}_{0,2}$  and has order 2 in  $\mathbb{K}_{0,1}$ , so  $\overline{\beta}_{0,1}=\overline{\beta}_{0,2}=2$ . But 2 has order 4 in  $\mathcal{R}_{0,2}$  and has order 6 in  $\mathcal{R}_{0,1}$ , so  $\beta_{0,1}=2$  and  $\beta_{0,2}=24$  get  $\alpha_0=(\beta_{0,1},\beta_{0,2})$  which generates  $H_{\alpha_0,2}$ . Choose  $\alpha_i$  and  $\alpha_i^2$  to be roots of the generator polynomials  $g_i(X)$  of the BCH codes  $\mathcal{C}_i$  over the chain  $A_0\subset A_1\subset A_2$ . Then  $M_0^1(x)$ ,  $M_1^1(x)$  and  $M_2^1(x)$  has as roots all distinct element in the sets  $B_0^1=\{\alpha_0\}\subset H_{\alpha_0,2}$ ,  $B_1^1=\{\alpha_1,\alpha_1^3,\alpha_1^5,\alpha_1^7\}\subset H_{\alpha_1,8}$  and  $B_2^1=\{\alpha_2,\alpha_2^3,\alpha_2^5,\alpha_2^7,\alpha_2^9,\alpha_2^{11},\alpha_2^{13},\alpha_2^{15}\}\subset H_{\alpha_2,16}$ , respectively. So

$$M_0^1(x) = (x - \alpha_0), \ M_1^1(x) = (x - \alpha_1)(x - \alpha_1^3)(x - \alpha_1^5)(x - \alpha_1^7),$$

and

$$M_2^1(x) = (x - \alpha_2)(x - \alpha_2^3)(x - \alpha_2^5)(x - \alpha_2^7)(x - \alpha_2^9)(x - \alpha_2^{11})(x - \alpha_2^{13})(x - \alpha_2^{15})$$

Similarly,

$$M_0^2(x) = (x-1), \ M_1^2(x) = (x-\alpha_1^2)(x-\alpha_1^6),$$
  
 $M_2^3(x) = (x-\alpha_2^2)(x-\alpha_2^6)(x-\alpha_2^{10})(x-\alpha_2^{14})$ 

Thus the polynomials  $g_i(x) = lcm(M_i^1(x), M_i^2(x))$  are given by

$$g_0(x) = (x - 1)(x - \alpha_0), \ g_1(x) = (x - \alpha_1)(x - \alpha_1^2)(x - \alpha_1^3)(x - \alpha_1^5)(x - \alpha_1^6)(x - \alpha_1^7),$$

$$g_2(x) = (x - \alpha_2)(x - \alpha_2^2)(x - \alpha_2^3)(x - \alpha_2^5)(x - \alpha_2^6)(x - \alpha_2^7)(x - \alpha_2^9)(x - \alpha_2^{10})(x - \alpha_2^{11})(x - \alpha_2^{13})(x - \alpha_2^{14})(x - \alpha_2^{15})$$

which generates the cyclic BCH codes  $C_0$ ,  $C_1$  and  $C_2$  of length 2, 8 and 16 with minimum hamming distance 2, 3 and 3, respectively. Similarly, we can construct cyclic codes over  $K_i$  if we replace  $\alpha_i$  with  $\overline{\alpha}_i$ , for  $0 \le i \le 2$ .

#### 5 Conclusion

For a non negative integer t, let  $\mathcal{A}_0 \subset \mathcal{A}_1 \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_t$  be a chain of unitary commutative rings (each  $\mathcal{A}_i$  is constructed by the direct product of suitable Galois rings with multiplicative group  $\mathcal{A}_i^*$  of units) and  $\mathcal{K}_0 \subset \mathcal{K}_1 \subset \cdots \subset \mathcal{K}_{t-1} \subset \mathcal{K}_t$  be the corresponding chain of unitary commutative rings (each  $\mathcal{K}_i$  is constructed by the direct product of corresponding residue fields of given Galois rings, with multiplicative groups  $\mathcal{K}_i^*$  of units).

Despite [8], the construction of BCH codes with symbols from the commutative ring  $\mathcal{A}_i$ , the direct product of local commutative rings  $\mathcal{R}_{i,j}$ , where  $0 \leq i \leq t$  and  $0 \leq j \leq t$  having residue fields  $\mathbb{K}_{i,j}$ , where  $0 \leq i \leq t$ . For each member in the chain of direct product of Galois rings and residue fields, respectively, we obtain the sequence of BCH codes  $\mathcal{C}_0, \mathcal{C}_1, \cdots, \mathcal{C}_{t-1}, \mathcal{C}$  over the direct product of local commutative rings  $\mathcal{R}_{i,j}$  with different lengths and sequence of BCH codes  $\mathcal{C}_0', \mathcal{C}_1', \cdots, \mathcal{C}_{t-1}', \mathcal{C}'$  over the direct product of residue fields  $\mathbb{K}_{i,j}$  with proper lengths, i.e.,

In fact this technique provides a choice to select a most suitable BCH code  $C_i$  (respectively, BCH code  $C_i$ ), where  $0 \le i \le t$ , with required error correction capabilities and code rate but with compromising length.

## **Acknowledgment**

and

The authors would like to thank the anonymous reviewers for their intuitive commentary that significantly improved the worth of this work and the FAPESP by financial support 2013/04124-6.

## **Competing Interests**

The authors declare that no competing interests exist.

#### References

[1] McDonlad, BR. Finite rings with identity. Marcel Dekker, New York; 1974.

- [2] Blake, IF. Codes over certain rings. Information and Control. 1972; 20: 396-404.
- [3] Blake, IF. Codes over integer residue rings. Information and Control. 1975; 29: 295-300.
- [4] Spiegel, E. Codes over  $\mathbb{Z}_m$ . Information and Control. 1977: 35: 48-51.
- [5] Spiegel, E. Codes over  $\mathbb{Z}_m$ , revised. Information and Control. 1978; 37: 100-104.
- [6] Forney Jr., GD. On decoding BCH codes. IEEE Trans. Inform. Theory. 1965; IT-11(4): 549-557.
- [7] Shankar, P. On BCH codes over arbitrary integer rings. IEEE Trans. Inform. Theory. 1979; IT-25(4): 480-483.
- [8] Andrade, AA, Palazzo Jr., R. Construction and decoding of BCH codes over finite rings. Linear Algebra and its Applications. 1999; 286: 69-85.
- [9] Andrade, AA, Shah, T, Qamar, A. Chain of finite rings and construction of BCH Codes. Proceeding of XXX Brazilian Symposium of Telecommunications - SBrT12, 13-16 of September of 2012, Brasília - DF.

© 2014 Shah et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License <a href="http://creativecommons.org/licenses/by/3.0">http://creativecommons.org/licenses/by/3.0</a>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

www.sciencedomain.org/review-history.php?iid=366&id=5&aid=2845