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Abstract 
 

In this paper, a mathematical model describing the dynamics of Chlamydia trachomatis infection 
in a human carrier is presented. The model incorporated relevant feature such as recovery 
through drug administration. The existence and uniqueness of solutions of the model were 
examined by actual solution. We conduct local and global stability analysis for the model. The 
results show that it is stable under certain conditions. The system of equations were solved 
analytically using parameter-expanding method coupled with direct integration. The results are 
presented graphically and discussed. It is discovered that the influence of burst size per infected 
cell, rate of cell infection and recovery rate due to drug administration is quite significant. 

 

Keywords: Chlamydia; Chlamydia trachomatis; sexually transmitted diseases (STDS); stability 
criteria. 

 

1 Introduction 
 
Chlamydia is an obligate intracellular bacterial pathogen that infects the genital and ocular mucosa 
of humans causing sexually transmitted disease (STD) and Trachoma. It is estimated that 70 – 
75% of endocervical infections in women caused by bacterium. Chlamydia trachomatis are 
asymptomatic and may persist for months to years [1]. 
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According to Wilson [2], the disease due to invading Chlamydia commences as chlamydial particle 
infect epithelial cells of mucosal linings. However, the immune system responds via two 
mechanisms, such as humoral immunity and cell-mediated immunity. For more details on humoral 
immunity and cell-mediated immunity, see [2]. 
 
It has been suggested that cell-mediated immunity, not humoral immunity, plays the dominant role 
in protective immunity against Chlamydia [3]. The importance of cell-mediated immunity to 
chlamydial infection has been emphasized in a number of studies [4,5]. Wilson and McElwain [6] 
modelled humoral immunity against chlamydial challenge by tracking the antibody and host cell 
receptor aggregation over chlamydial particle. In another development, Wilson et al. [7] modelled 
the inter-conversion between infectious and replicating chlamydial particles to track the number of 
particles within a host cell with time over the developmental cycle.  
 
It is a general belief that if a patient received treatment, he or she may recover and move to 
recovered class. This, we thought, may also be applicable to the infected epithelial cells of 
mucosal linings. As a result, we thought there are other factors and parameters which can be 
taken into consideration during the model development process of the disease. So, this present 
study investigates the criteria under which the rate of recovery of infected cells through drug 
administration could lead to the stability of equilibrium point.  
 

2 Model Formulation  
 
We modify the Wilson [2] model by incorporating recovery through drug administration. We let 

 C t  be the concentration of free extracellular chlamydial particles,  E t be the number of 

uninfected mucosal epithelial cells (main host cell for Chlamydia),  I t be the number of 

Chlamydia-infected epithelial cells and  R t  be the number of epithelial cells which recovered 

from Chlamydia-infection. Arising from the above, a simple mathematical description of the change 
in the interacting ‘species’ is: 
 

2C C

dC
P K C

dt
                                                                                                 (1) 

 

1E E

dE
P E K CE R

dt
    

   
                                                                           (2) 

 




 ECEKK
dt

d
12

      
                                                              (3) 

 

E

dR
I I R R

dt
                                                                                          (4) 

 
As initial condition, we choose 
 

        0 0 0 00 , 0 , 0 , 0 ,C C E E R R                                                    (5) 
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where CP   is the number of Chlamydial particles released from infected cells, 2K  is the rate at 

which Chlamydia particles are released from infected cells, C is the natural death rate of 

Chlamydial particles, EP  is the epithelial cells reproduction rate, E  is the natural death rate of 

epithelial cells, 1K  is the rate of Epithelial cell infection which may be reduced by antibodies,   is 

the waning off Immunity,    is the rate of clearance of infected cells due to cell-mediated immunity 

and   is the recovery rate due to drug administration. 
 

3 Method of Solution 
 
3.1 Existence and Uniqueness of Solution 
 

Theorem 1: Let 1,C E CP      . Then the equations (1) – (4) with initial conditions (5) has 

a unique solution for all 0t  .  
 

Proof:   Let 1,C E CP        and          t C t E t I t R t     , we obtain 

 

   0 0 0 0 0, 0E

d
P C E I R

dt


                                                       (6) 

 
Using method of integrating factor, we obtain the solution of problem (6) as  
 

    01 t tEP
t e e  


                                                                                     (7) 

 
Then, we obtain 
 

        0
tE EP P

C t e E t I t R t
 

  
       

  
                                       (8) 

 

        0
tE EP P

E t e C t I t R t
 

  
       

  
                                       (9) 

 

         0
tE EP P

I t e C t E t R t
 

  
       

  
                                     (10)  

 

        0
tE EP P

R t e C t E t I t
 

  
       

  
                                     (11) 

 
Hence, there exists a unique solution of problem (1) - (4). This completes the proof. 
 
 
 



 
 
 

Emuoyibofarhe et al.; BJMCS, 7(6): 450-465, 2015; Article no.BJMCS.2015.138 
 
 
 

453 
 
 

3.2 Stability Analysis  
 
Our system of equations (1) – (4) has a trivial steady state: 
 

0, , 0, 0E

E

P
C E I R


                                             (12) 

 
and a non-trivial steady state: 
 

 
 

 
 

 
 

1 2

1

1 2

1 2

1 2

1 2

1 2

,

C E C E

C

C

C

C E C E

C

C E C E

C

K K P P
C

K

E
K K P

K K P P
I

K K P

K K P P
R

K K P

  

  



  

 

  

 


 

 


 



 



 
  

                                                                        (13) 

 
Corresponding to clearance of infection and active disease respectively, 
 

where   2 ,EK           ,        E   
 

 

Theorem 2: If  

1 2

CE

E C

P

K K P




  there exist two equilibria.  

 

Proof: The infection-free equilibrium is given by 1 0, , 0, 0E

E

P
P



 
  
 

 

If 0, 0, 0,C I R   then 

1 2

.C

C

E
K K P




 
 
Hence the other equilibrium is  
 

 
 

 
 

 
 

 

1 2 1 2 1 2

2

1 1 2 1 2 1 2

1 2 3 4

, , ,

, , ,

C E C E C E C E C E C EC

C C C C

K K P P K K P P K K P P
P

K K K P K K P K K P

        

      

   

   
      



 

 
This completes the proof. 
 

Next, we shall conduct stability analysis of the critical points. 
 

Then, the Jacobian matrix of our system of equations (1) – (4) is 
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 

2

1 1

1 1

0 0

0
,E, I,R

0

0 0

C C

E

P K

K E K C
Df C

K E K C



 



 

 
 
   
 
 

 

                                    (14) 

 

The linearization of (14) at 1 0, , 0, 0E

E

P
P



 
  
 

 is 

 

0 0

0
0, , 0, 0

0 0

0 0

C

EE

E

q

rP
Df

r



 



 

 
 
        

 
 

                                                 (15) 

 
with eigenvalues: 
 

     
2

1 2 3,4

4
, ,

2

C C C

E

qr    
    

     
            (16) 

Where 
 

1
2 ,

E
C

E

K P
q P K r


   

 
By definition, all the parameters are non-negative, hence q  and r  are non-negative. 

 

1. If C qr   and    
2
4 0C C qr       the eigenvalues are real, unequal and 

negative. 

2. If    
2
4 0C C qr       the eigenvalues are real, equal and negative. 

3. If C qr   and    
2
4 0C C qr       the eigenvalues are complex with 

negative real part. 
 
So in either case the disease-free equilibrium (DFE) is locally asymptotically stable.  
 

Now, let us denote the endemic equilibrium (EE) points  1 2 3 4, , ,     where each component 

corresponds to an earlier specified value. 
 
We let 
 

1 2 3 4* , * , * , *C C E E I I R R          
 

 
Then 
 



 
 
 

Emuoyibofarhe et al.; BJMCS, 7(6): 450-465, 2015; Article no.BJMCS.2015.138 
 
 
 

455 
 
 

2

*
* *C C

dC
P K I C

dt
                                                                                        (17) 

 

1 2 1 1

*
* * * *E

dE
E K C K E R

dt
                                                                 (18) 

 

1 2 1 1

*
* * *

dI
K C K E I

dt
                                                                                (19) 

 

*
* *

dR
I R

dt
                                                                                                  (20) 

 
Thus 
 

* *

* *

* *

* *

C C

E E
A

I I

R R

   
   
   
   
   
   

                                                                                               (21) 

 
Where 
 

0 0

0

0

0 0

C q

r s
A

r p







 

 
 
  

 
 

   
 

and      2 1 2 1 1 1 1, , ,C Eq P K r K s K p K       

 
Thus 

 

0A I 

 
Implies 
 

 1  

And 

 

        3 2 0C C C CP s s s qr s qr p s                      

  

    (22) 

 

Theorem 3: Let 1 0K  . Then Equation (22) has three negative roots or one negative root and 

two complex roots. 
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Theorem 4: The infected (endemic) equilibrium is locally asymptotically stable if 1 0.K 
 

 
Proof of theorems 
 
The proof of the theorems 3 and 4 involved using the 
 
(i) Descartes rule of signs:  
 
The number of positive zeros of a polynomial with real coefficients is either equal to the number of 
variations in sign of the polynomial or less than this by an even number and 
 
(ii) Routh-Hurwitz criteria [8]:  
 

All zeros of 023    have negative real parts if and only if 0  . 

 
Therefore, all zeros of (22) have negative real parts if and only if 
 

      0C C C Cs s s qr s qr p s                 

 
That is 
 

       10 0.C C C Cs s s s qr p if K                 
 

 
Proof of theorem 3 
 

From  P  in (22), we obtain 

 

        3 2 0C C C CP s s s qr s qr p s                          

 

So the number of change in sign is 3, if 1 0K  . Hence by Descartes rule of signs,  P  have 

either three negative roots or one negative root and two complex roots. This completes the proof. 
 
Proof of theorem 4 
 

Since the inequality holds if 1 0K  . By theorem 3 and Routh-Hurwitz criteria, (22) has 

 
(i) Either three negative roots or  
(ii) One negative root and two complex roots whose real parts are equal and negative. 

 
So in either case the equilibrium is locally asymptotically stable. This completes the proof. 
 
Furthermore, we have the following result on the global stability of DFE. 
 

Let N stands for the total epithelial cells of mucosal linings. Then we can write R N E I   . 
 
We consider the model (1) - (3). Note that 
 

2 2C C C CC P K I C P K N C       
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We have 0 , 0E I   and E I N  . The biological domain of this system (1) – (3) is the 

standard simplex. 
 

The set   2, , : 0, 0,0 ,0 C C

C

P K N
C E I E I E I N



 
         

 
 is a positively invariant 

compact set for (1) – (3). The system is well posed. 
 
The basic reproduction number is given by 
 

1 2
0 0

C

C

P K K
R E




 
 

Theorem 5: If 0 1R   then the DFE is globally asymptotically stable on  . 

 
Proof: We define a Lyapunov function 
 

2CV P K I C 
 

 

Clearly 0V  . Consider its derivatives: 
 

2 1 2

1 2 0 1 2 0

1 2 0 0

1
1 0

C C C

C
C C

C

V P K I C P K K CE C

P K K CE E P K K CE
P K K E R

 



    

   
      

   

 

 

 

Since 0 1R  . We see that 0V   if and only if 0C   or 0 1R  . Hence the largest invariant set in 

    , , : V , 0C E I C I   is reduced to the DFE. Since we are in a compact positively invariant 

set, by the LaSalle’s Invariance Principle [9], the DFE is globally asymptotically stable in  .  
 

3.3 Solution by Parameter-expanding Method  
 
Parameter-expanding method proposed by He and was successfully applied to various 
engineering problems [10]. We apply Parameter-expanding method to equations (1) – (4), where 
details can be found in [10].  
 

For convenience, let , , ,C x E y I z R v    and suppose the solution 

       , ,x t y t z t and v t  in (1) - (4) can be expressed as 

 

       

       

       

       

2
0 1 1 1 2

2
0 1 1 1 2

2
0 1 1 1 2

2
0 1 1 1 2

. .

. .
,

. .

. .

x t x t K x t K x t h o t

y t y t K y t K y t h o t

z t z t K z t K z t h o t

v t v t K v t K v t h o t

   


    


    


      

                                                    (23) 
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where ... toh  read “higher order terms in 1K . In our analysis, we assume 1K
 is small, so we are 

interested only in the first two terms. 
 
Substituting (23) into (1) - (4), and processing, we obtain: 
 

 0
2 0 0 0 0, 0C C

dx
P K z x x x

dt
                                                             (24) 

 0
0 0 0 0, 0E E

dy
P y v y y

dt
    

         
                                              (25) 

 

  000
0 0, zzz

dt

dz
                                                        (26)  

                                                                                

  0000
0 0, vvvz

dt

dv
                                                         (27) 

 

 1
2 1 1 1, 0 0C C

dx
P K z x x

dt
                                                     (28) 

 

 1
1 0 0 1 1, 0 0E

dy
y x y v y

dt
     

  
                                              (29) 

 

 1
0 0 1 1, 0 0

dz
x y z z

dt
  

 
                                              (30) 

 

 1
1 1 1, 0 0

dv
z v v

dt
                                                        (31)  

    
Solving equations (24) – (31) by direct integration, we obtain 
 

 0 2 3
Cttx t a e a e                                                                                           (32) 

 

       0 6 4 5 01 E E E Et t t tt ty t a e a e e a e e y e                               (33) 

 

 0 0
tz t z e                                                                                                        (34) 

 

 0 0 1
t tv t a e a e                                                                                            (35) 
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The computations were done using computer symbolic algebraic package MAPLE. 
 

4 Results and Discussion 
 
Here the existence and uniqueness of solution of our system of equations (1) – (4) is proved by 
actual solutions. Also, under certain conditions, we have conducted local and global stability 
analysis of the disease-free and endemic equilibriums. The results showed that is stable. 
Analytical solutions of equations (1) - (4) are achieved via Parameter-expanding method and 
computed for the values of  
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The concentration of free extracellular chlamydial particles and number of uninfected mucosal 
epithelial cells, Chlamydia-infected epithelial cells and recovered epithelial cells are depicted 
graphically in Figs. 1 - 7. 
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From Fig. 1, we can conclude that with the increase of number of infectious chlamydial particles 

released by an infected cell ( CP ), concentration of free extracellular chlamydial particles increase.  

 

 
 
From Fig. 2, we can conclude that with the increase of number of infectious chlamydial particles 

released by an infected cell ( CP ), number of uninfected mucosal epithelial cells decrease. 

 

 



 
 
 

Emuoyibofarhe et al.; BJMCS, 7(6): 450-465, 2015; Article no.BJMCS.2015.138 
 
 
 

462 
 
 

From Fig. 3, we can conclude that with the increase of number of infectious chlamydial particles 

released by an infected cell ( CP ), number of Chlamydia-infected epithelial cells increase. 

 

 
From Fig. 4, we can conclude that with the increase of recovery rate due to drug administration                     

( ), concentration of free extracellular chlamydial particles decrease. 
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From Fig. 5, we can conclude that with the increase of recovery rate due to drug administration       

( ), number of uninfected mucosal epithelial cells increase. 
 

 
From Fig. 6, we can conclude that with the increase of recovery rate due to drug administration                     

( ), number of Chlamydia-infected epithelial cells decrease. 
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From Fig. 7, we can conclude that with the increase of recovery rate due to drug administration                   

( ), number of recovered epithelial cells increase. 
 

5 Conclusion 
 
From the studies made on this paper we conclude as under.  
 

1. Burst size per infected cell enhances the concentration of free extracellular chlamydial 
particles and reduces the number of uninfected mucosal epithelial cells.  

2. Recovery rate due to drug administration increase the number of uninfected mucosal 
epithelial cells and recovered epithelial cells and decrease the concentration of free 
extracellular chlamydial particles and number of Chlamydia-infected epithelial cells.  

3. The local stability of infected (endemic) equilibrium depends on the rate of cell infection.  
  
Thus, increased ability to clear infection will be obtained if 
 

1. There is a proper treatment of ailments 
2. Number of infectious chlamydial particles released by an infected cell is reduced. 
3. Contact between uninfected mucosal epithelial cells and free extracellular Chlamydia 

particles can be prevented. 
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