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Abstract
A right A-module M is a ∗s-module provided that M is self-small and any exact sequence

0 −→ N −→ L −→ Q −→ 0,

with L,Q ∈ Stat(M ) remains exact after applying the functor HomA(M,−) if and only if N ∈
Stat(M ). A right A-module M is called a ∗n-module if it is self-small, (n + 1)-quasi-projective
and n-Pres(M) = (n + 1)-Pres(M). In this work we generalize the concepts of ∗s-module and
∗n-modules to the concepts of ∗s-tuple and ∗n-tuple of Contravariant Functors between abelian
categories.
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1 Introduction

In [1], Wei introduced the concept of ∗s-modules. A right A-module M is a ∗s-module provided that
M is self-small and any exact sequence

0 −→ N −→ L −→ Q −→ 0,

with L,Q ∈ Stat(M ) remains exact after applying the functor HomA(M,−) if and only if N ∈ Stat(M ),
where Stat(M ) is the category of all M -static modules.

Following Wei et al, in [2], we call a right A-module M a ∗n-module if it is self-small, (n + 1)-
quasi-projective and n-Pres(M) = (n + 1)-Pres(M). Note that a right A-module M is called n-
quasi-projective if for any exact sequence

0 −→ N −→M (I) −→ L −→ 0,

where L ∈ (n− 1)-Pres(M), the sequence,

0 −→ HM (X) −→ HM (M (I)) −→ HM (Y ) −→ 0,

is exact, where HM = HomA(M,−).
In this work we generalizes the notion of ∗s-module and ∗n-module to ∗s-tuple and ∗n-tuple,

respectively by generalizing the work in [1] and [2]. We use the same technique of proofs of that
papers.

There are many generalizations, in the direction of abstract categories, of many aspects of such
theories . Here we give few examples. In [3] Castaño Iglesias et al. consider the equivalences
induced by any adjoint pair of covariant functors between complete and cocomplete abelian categories,
generalizing the situation of equivalence that induced by the adjoint pair of functors M ⊗D − and
HomA(M,−) between the categories of M -static A-modules and M -costatic D-modules, for any
left A-module M with endomorphism ring D. ∗-objects, tilting objects, quasi-progenerators and
progenerators are such a generalizations by Colpi in [4]. In [5] Happel, Reiten and Smalø have
studied aspects of tilting theory for locally finite abelian categories over a commutative artinian ring.
On the other hand, In [6] Castaño-Iglesias generalizes the notion of costar module to Grothendieck
categories. Pop in [7] generalizes the notion of finitistic n-self-cotilting module to finitistic n-F -
cotilting object in abelian categories and he describes a family of dualities between some special
abelian categories. Breaz and Pop in [8] generalize a duality exhibited in [9, Theorem 2.8] to
abelian categories. In [10], the author generalizes the notion of r-costar module to r-costar pair
of contravariant functors between abelian categories, by generalizing the work in [11]. In [12] the
author generalize the work in [13] by generalizing the notion of Co-∗n-modules to a Co-∗n-tuple of
contravariant functors between abelian categories.

2 Preliminaries
Let F : C−→D be an additive covariant functor which has a left adjoint functor G : D−→C, where
C and D are two abelian categories. Then there are two natural transformations δ : GF−→1C and
ρ : 1D−→FG. Moreover the following identities are satisfied for each X ∈ C and Y ∈ D.

F (δX ) ◦ ρF (X) = 1F (X) and G(ρ
Y
) ◦ δG(Y ) = 1G(Y ).

Note that F is left exact and G is right exact, since they are adjoint on the left. The pair (F,G) is
called an equivalence if there are functorial isomorphisms GF ' 1C and FG ' 1D. An object X of
C (respectively Y of D) is called F -static (respectively, F -costatic) in case δX (respectively, ρY ) is
an isomorphism. By Stat(F ) we will denote the full subcategory of all F -static objects. As well by
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Costat(F ) we will denote the full subcategory of all G-costatic objects. It is clear that the functors F
and G induce an equivalence between the categories Stat(F ) and Costat(F ).

Let U be an object in C. For an object X in an abelian category C, we say that X is U -generated
if there is an exact sequence

U (I) −→ X −→ 0,

where I is an index set. If there is an exact sequence

U (I2) −→ U (I1) −→ X −→ 0,

where each Ii is an index set, then X is said to be U -presented. We say that X is n-U -presented if
there is an exact sequence

U (In−1) −→ U (In−2) −→ ... −→ U (I1) −→ U (I0) −→ X −→ 0,

where each Ii is an index set and n is a positive integer. We denote by Gen(U), P res(U) and n-
Pres(U) the classes of all U -generated, U -presented and n-U -presented objects respectively. It is
clear that (n+ 1)-Pres(U) ⊆ n-Pres(U), for every positive integer n.

An object U in C is called F -small if for any set I, there is a canonical isomorphism F (U (I)) ∼=
F (U)(I). The object U is called n-F -quasi-projective if for any exact sequence

0 −→ X −→ U (I) −→ Y −→ 0,

where Y ∈ (n− 1)-Pres(U), the sequence,

0 −→ F (X) −→ F (U (I)) −→ F (Y ) −→ 0,

is exact.
Let V ∈ D be a projective object in D and let U = G(V ). If U is F -static, the tuple (F,G, V, U) is

called a ∗n-tuple, where n is a positive integer, if:
(i) U is F -small,
(ii) (n+ 1)-F -quasi-projective,
(iii) n-Pres(U) = (n+ 1)-Pres(U).

Let V ∈ D be a projective object in D and let U = G(V ). If U is F -static, we say that the tuple
(F,G, V, U) is a ∗s-tuple provided that U is F -small and any exact sequence

0 −→ X −→ Y −→ Z −→ 0,

with Y,Z ∈ Stat(F ) remains exact after applying the functor F if and only if Q ∈ Stat(F ).
From now on we suppose that D has enough projectives i.e. for every object X ∈ D there

is a projective object P ∈ D and an epimorphism P−→X−→0. It is clear that we can construct a
projective resolution for any object X. Suppose we have a projective resolution of X

P : ...−→P2−→P1−→P0−→X−→0.

This gives rise to the sequence

0−→G(X)−→G(P0)−→G(P1)−→G(P2)−→...,
and the cochain complex G(P ), which we can compute its cohomology at the n-th spot (the kernel
of the map from G(Pn) modulo the image of the map to G(Pn)) and denote it by Hn (G(P )). We
define RnG(X) = Hn (G(P )) as the n-th right derived functor of G. For the functor G we define
⊥T i>nG = {X ∈ D : RiG(X) = 0 for every i > n}.

We will denote by proj(D) the full subcategory of all projective objects in D.

Lemma 2.1. [3, Lemma 1.4]Let F : C −→ D and G : D −→ C be a pair of covariant functors and
U ∈ C. If U (I) if F -static for every set I then δX is an epimorphism for every X ∈ Gen(U).
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Lemma 2.2. Let F : C −→ D and G : D −→ C be a pair of covariant functors. Let V be a projective
generator in D and let U = G(V ). For any Y ∈ D, if RiG(Y ) = 0 for 1 ≤ i ≤ n, then G(Y ) ∈ (n+ 2)-
Pres(U).

Now we will prove something dual to [6, Lemma 2.2].

Lemma 2.3. Let F : C −→ D and G : D −→ C be a pair of covariant functors. Let X be an object in
C and V be an F -costatic generator of D. Let U = G(V ) in C. For every X ∈ Gen(U), there exists

an epimorphism U (I) f−→ X −→ 0, such that F (f) is an epimorphism.

Proof. Since F (X) is generated by V in D, there is an epimorphism V (I) h−→ F (X) −→ 0. Applying
the functor G to this epimorphism we get the epimorphism

G(V (I)) = U (I) G(h)−→ GF (X) −→ 0.

The composition f = δX ◦G(h) provides the requested epimorphism, since δX is an epimorphism by
Lemma 2.1. Now we have the following commutative square

V (I) h−→ F (X)
↓ρ

V (I)
↗F (f) F (δX ) ↑↓ρF (X)

FG(V (I)) −→ FGF (X) −→ 0

.

Since F (δX) ◦ ρF (X) = 1F (X), then F (f) ◦ ρ
V (I) = h. Since ρ

V (I) is an epimorphism, F (f) is an
epimorphism.

3 ∗s-tuple of Covariant Functors
In this section we suppose that we have F : C−→D as an additive covariant functor which has a left
adjoint functor G : D−→C, where C and D are two abelian categories. As well we suppose that V is
an F -costatic projective generator in D and U = G(V ).

Proposition 3.1. Suppose that the functor F respects the exactness of any sequence in the form

0 −→ Y −→ U (I) −→ X −→ 0.

Suppose that U is F -small. For any X ∈ Stat(F ), there is an infinite exact sequence

... −→ U (In) −→ ... −→ U (I1) −→ X −→ 0

which remains exact after applying the functor F.

Proof. Let X ∈ Stat(F ). Then F (X) ∈ Costat(F ), so by assumption there is an exact sequence

V (I) −→ F (X) −→ 0.

Applying the functor G we have an exact sequence

0 −→ Y −→ U (I) −→ X −→ 0,

for some Y ∈ C. Since (F,G,U, V ) is a ∗s-tuple, the last sequence is exact after applying the functor
F, that is we have an exact sequence

0 −→ F (Y ) −→ F (U (I)) −→ F (X) −→ 0.
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Applying the functor G again we get the following commutative diagram with exact rows

0 −→ GF (Y ) −→ GF (U (I)) −→ GF (X)
↓δX ↓δ

U(I)
↓δY

0 −→ Y −→ U (I) −→ X −→ 0

.

Since X,U (I) ∈ Stat(F ), Y ∈ Stat(F ), by snake lemma. By repeating the process to Y , and so on,
we finally obtain the desired exact sequence.

From now on in this section we will assume that the functor F respects the exactness of the
sequences of the form

0 −→ Y −→ U (I) −→ X −→ 0.

Proposition 3.2. Let (F,G,U, V ) be a ∗s-tuple, then Costat(F ) ⊆⊥ T i>1
G .

Proof. Let X ∈ Costat(F ), then G(X) ∈ Stat(F ) and hence by Proposition 3.1, there is an infinite
exact sequence

... −→ U (In) −→ ... −→ U (I1) −→ G(X) −→ 0 (3.1)

which remains exact after applying the functor F. So we have an exact sequence

... −→ F (U (In)) −→ ... −→ F (U (I1)) −→ FG(X) −→ 0

Again the last sequence remains exact after applying the functorG, since we get a sequence isomorphic
to sequence (3.1), becauseG(X), U (Ii), for each i, are F -static. We obtain that Costat(F )⊆⊥ T i>1

G by
dimension shifting.

Proposition 3.3. If Costat(F ) ⊆⊥ T i>1
G and ⊥T i>0

G = 0 and U is F -small, then (F,G,U, V ) is a
∗s-tuple.

Proof. Let
0 −→ X −→ Y

g−→ Z −→ 0 (3.2)

be an exact sequence with Y,Z ∈ Stat(F ). Assume that we have the exact sequence

0 −→ F (X) −→ F (Y ) −→ F (Z) −→ 0,

after applying the functor F. Applying the functor G, we get an exact sequence

L1G(F (Z)) = 0 −→ GF (X) −→ GF (Y ) −→ GF (Z) −→ 0,

since F (Z) ∈ Costat(F )⊆⊥ T i>1
G . Hence we have the following commutative diagram:

0 −→ GF (X) −→ GF (Y ) −→ GF (Z) −→ 0
↓δ

X
↓δY ↓δ

Z

0 −→ X −→ Y −→ Z −→ 0

Since Y,Z ∈ Stat(F ), δY and δZ are isomorphisms. Now it is clear that δX is an isomorphism which
means that X ∈ Stat(F ). Conversely, suppose that X ∈ Stat(F ). Applying the functor F to the
sequence (3.2), we get an exact sequence

0 −→ F (X) −→ F (Y ) −→ Q −→ 0, (3.3)

where Q = Im(F (g)). Hence we can get the exact sequence

0 −→ Q
i−→ F (Z) −→W −→ 0, (3.4)
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for some W ∈ D, and i is the inclusion map . Applying the functor G to the sequence (3.3), we have
the following commutative diagram with exact rows

0 −→ L1G(Q) −→ GF (X) −→ GF (Y ) −→ G(Q) −→ 0
↓δ

X
↓δ

Y
↓α

0 −→ X −→ Y −→ Z −→ 0
(3.5)

where α = δZ ◦G(i). Note that δX and δY are isomorphisms, since X,Y ∈ Stat(F ). lt is clear from the
diagram that L1G(Q) = 0 . Now LiG(Q) = 0 for all i > 2, by dimension shifting, since F (X), F (Y ) ∈
Costat(F )⊆⊥ T i>1

G . Hence Q ∈⊥ T i>1
G . Now applying the functor G to sequence (3.4), we get the

long exact sequence

0 −→ L1G(W ) −→ G(Q)
G(i)−→ GF (Z) −→ G(W ) −→ 0, (3.6)

since Q ∈⊥ T i>1
G and F (Z) ∈ Costat(F )⊆⊥ T i>1

G . Hence by dimension shifting W ∈⊥ T i>2
G . Note that

α = δZ ◦ G(i) in diagram (3.5) is an isomorphism, since δX and δY are isomorphisms. Hence G(i)
is an isomorphism, since δZ is an isomorphism, so from sequence (3.6), R1G(W ) = 0 = G(W ). We
conclude that W ∈⊥ T i>0

G . Since ⊥T i>0
G = 0 by assumptions, W = 0 and hence from sequence (3.4)

Q ∼= F (Z) canonically. Therefore the functor F preserves the exactness of the exact sequence

0 −→ X −→ Y −→ Z −→ 0

in Stat(F ). We conclude that the pair (F,G,U, V ) is a ∗s-tuple.

Suppose we have the following exact sequence in D

0 −→ X −→ P2 −→ P1 −→ Y −→ 0,

where P2, P1 are projective objects in D and Y ∈⊥ T i>1
G . Applying the functor G we get the following

exact sequence

L1G(Y ) = 0 −→ G(X) −→ G(P2) −→ G(P1) −→ G(Y ) −→ 0.

Applying the functor F we get the following commutative diagram with exact rows

0 −→ X −→ P2 −→ P1

↓ρ
X

↓ρ
P2

↓ρ
P1

0 −→ FG(X) −→ FG(P2) −→ FG(P1)

.

If proj(D) ⊆ Costat(F ), then it is clear that X ∈ Costat(F ).

Proposition 3.4. Let (F,G,U, V ) be a ∗s-tuple and suppose that proj(D) ⊆ Costa(F ). Then ⊥T i>0
G =

0.

Proof. For any Y ∈⊥ T i>0
G , we can build the following exact sequence in D

0 −→ X −→ P2 −→ P1 −→ Y −→ 0,

where P2, P1 are projective objects and X an object in D. By the argument before the proposition it
is clear that X ∈ Costa(F ) and hence G(X) ∈ Stat(F ). Applying the functor G we get the following
exact sequence

L1G(Y ) = 0 −→ G(X) −→ G(P2) −→ G(P1) −→ 0.

Since (F,G,U, V ) is a ∗s-tuple, applying the functor F we get the following commutative diagram with
exact rows

0 −→ X −→ P2 −→ P1 −→ Y
↓ρ

X
↓ρ

P2
↓ρ

P1

0 −→ FG(X) −→ FG(P2) −→ FG(P1) −→ 0

.

Thus it is clear that Y ∼= 0.
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Now we are able to give the following characterization of ∗s-tuple.

Theorem 3.1. Let proj(D) ⊆ Costat(F ). Then (F,G,U, V ) is a ∗s-tuple if and only if Costat(F ) ⊆⊥
T i>1
G and ⊥T i>0

G = 0.

Proof. By Propositions 3.2, 3.3 and 3.4.

Corollary 3.2. If proj(D) ⊆Costat(G), then the following are equivalent.
(1) (F,G,U, V ) is a ∗s-tuple.
(2) For any exact sequence

0 −→ X −→ U (I) −→ Y −→ 0,

with Y ∈Stat(F ), then X ∈Stat(F ) if and only if the exact sequence remains exact after applying the
functor F.

Proof. (1) =⇒ (2) follows from the definition of ∗s-tuple.
(2) =⇒ (1) the proof goes the same as the proofs of Propositions 3.1, 3.2, 3.4 and Theorem 3.1.

4 ∗n-tuple of Covariant Functors
In this section we suppose that we have F : C−→D as an additive covariant functor which has a left
adjoint functor G : D−→C, where C and D are two abelian categories. As well we suppose that V is
an F -costatic projective generator in D and U = G(V ).

Proposition 4.1. Suppose that (F,G, V, U) is a ∗n-tuple. Then for any X ∈ n-Pres(U), δx is an
isomorphism and LiG(F (X)) = 0, for every i ≥ 1.

Proof. Let X ∈ n-Pres(U). It follows that X ∈ (n+ 1)-Pres(U), by assumptions. Hence there is an
exact sequence

0 −→ Y −→ U (I) −→ X −→ 0,

where Y ∈ n-Pres(U). Since (F,G, V, U) is a ∗n-tuple we have the exact sequence

0 −→ F (Y ) −→ F (U (I)) −→ F (X) −→ 0,

after applying the functor F. Applying the functor G to the last sequence we get an exact sequence

L1G(F (X) −→ GF (Y ) −→ GF (U (I)) −→ GF (X) −→ 0,

and the following commutative diagram

0 −→ L1G(F (X)) −→ GF (Y ) −→ GF (U (I)) −→ GF (X) −→ 0
↓ ↓δY ↓δ

U(I)
↓δ

X

0 −→ Y −→ U (I) −→ X −→ 0

By Lemma 2.1, δY is a epimorphism. By Snake Lemma, it follows that δX is an isomorphism
since δU(I) is an isomorphism. Then δY is also an isomorphism by a similar argument. Hence,
L1G(F (X)) = 0, by commutativity of the left square. Since Y ∈ n-Pres(U), L1G(F (Y ) = 0. Then
we can get the assertion inductively.

Theorem 4.1. The following conditions are equivalent
(1) (F,G, V, U) is a ∗n-tuple,
(2) i) U is F -small
(ii) For any exact sequence 0 −→ Y −→ U (I) −→ X −→ 0, where X ∈ n-Pres(U) and I a set, it
remains exact after applying the functor F if and only if Y ∈ n-Pres(U).
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Proof. (1) ⇒ (2) Suppose that we have an exact sequence 0 −→ Y −→ U (I) −→ X −→ 0, where
X ∈ n-Pres(U) and I a set. Assume that Y ∈ n-Pres(U). Since (F,G, V, U) is a ∗n-tuple, we get
the exact sequence

0 −→ F (Y ) −→ F (U (I)) −→ F (X) −→ 0.

Conversely, assume that the sequence

0 −→ F (Y ) −→ F (U (I)) −→ F (X) −→ 0

is exact. Applying the functor G we get the following long exact sequence

.... −→ L1G(F (Y )) −→ L1G(F (U (I))) −→ L1G(F (X)) −→ GF (Y ) −→
GF (U (I)) −→ GF (X) −→ 0

(4.1)

By Proposition 4.1, δX is an isomorphism and LiG(F (X)) = 0 for any i ≥ 1. Thus, we have the
following commutative diagram:

0 −→ GF (Y ) −→ GF (U (I)) −→ GF (X) −→ 0
↓δ

Y
↓δ

U(I)
↓δ

X

0 −→ Y −→ U (I) −→ X −→ 0

It is clear, by Snake Lemma, that δY is an isomorphism. From the exactness of sequence (4.1) we
conclude that LiG(F (Y )) ∼= LiG(F (U (I))) = 0 for any i ≥ 1, so by Lemma 2.2, Y ∼= GF (Y ) ∈ n-
Pres(U). For any X ∈ n-Pres(U), X ∈ (n + 1)-Pres(U), by definition. So we have an exact
sequence 0 −→ Y −→ U (I) −→ X −→ 0, with Y ∈ n-Pres(U).
(2)⇒ (1) It is enough to prove n-Pres(U) = (n + 1)-Pres(U). If X ∈ n-Pres(U) , then F (X) is V -
generated over D, thus by Lemma 2.3, there exists an exact sequence 0 −→ Y −→ U (I) −→ X −→
0, which remains exact after applying the functor F. Then Y ∈ n-Pres(U) , hence X ∈ (n + 1)-
Pres(U).

Proposition 4.2. Let (F,G, V, U) be a ∗n-tuple. Then G is an exact functor in F (n-Pres(U)).
Moreover F (n-Pres(U)) =⊥ T i>1

G .

Proof. By Proposition 4.1 we have F (n-Pres(U)) ⊆⊥ T i>1
G and G is an exact functor in F (n-

Pres(U)).Conversely, for anyX ∈⊥ T i>1
G , by Lemma 2.2,G(X) ∈ n-Pres(U). Since V is a generator

in D, there is an exact sequence 0 −→ Y −→ V (I) −→ X −→ 0, where I is a set. If we apply the
functor G we get the long exact sequence

... −→ L1G(Y ) −→ L1G(V (I)) −→ L1(X) −→ G(Y ) −→
G(V (I)) −→ G(X) −→ 0

By assumption LiG((X)) = 0 for any i ≥ 1. Since LiG((V (I))) = 0, for any i ≥ 1, LiG((Y )) = 0 for
any i ≥ 1, by the exactness. Thus Y ∈⊥ T i>1

G and hence by Lemma 2.2, G(Y ) ∈ n-Pres(U). Since
(F,G, V, U) is a ∗n-tuple, applying the functor F to the following sequence

0 −→ G(Y ) −→ G(V (I)) −→ G(X) −→ 0

we get the following commutative diagram with exact rows

0 −→ Y −→ V (I) −→ X −→ 0
↓ρ

Y
↓ρ

V (I)
↓ρ

X

0 −→ FG(Y ) −→ FG(V (I)) −→ FG(X) −→ 0

Hence by Snake Lemma, ρX is an epimorphism, since ρ
V (I) is an isomorphism. Similarly ρY is also

an epimorphism. Thus, ρX is an isomorphism and therefore X ∼= FG(X) ∈ F (n-Pres(U)). So
F (n-Pres(U)) =⊥ T i>1

G .
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Proposition 4.3. Let (F,G, V, U) be a ∗n-tuple. Then F preserves any exact sequence in n-Pres(U).

Proof. Let 0 −→ X −→ Y
g−→ Z −→ 0 be an exact sequence in n-Pres(U). Applying the functor F

we get the following long exact sequence

0 −→ F (X) −→ F (Y )
F (g)−→ F (Z)

α−→ R1F ((X)) −→ ....

Thus we can get the following two exact sequences

0 −→W −→ F (Z) −→ Q −→ 0,

0 −→ F (X) −→ F (Y ) −→W −→ 0,

where Q = Imα and W = ImF (G). Applying the functor G to the last sequence we get the following
commutative diagram with exact rows:

L1G(W ) −→ GF (X) −→ GF (Y ) −→ G(W ) −→ 0
↓ ↓δX ↓δY ↓
0 −→ X −→ Y −→ Z −→ 0

.

It is clear by Proposition 4.1 that δX and δY are isomorphisms and LiG(F (X)) = 0 = LiG(F (Y )),
for any i ≥ 1. By Snake Lemma, Z ∼= G(W ) and by the exactness LiG(W ) = 0 for any i ≥ 1. Hence
by Proposition 4.2, W = F (D) for some D ∈ n-Pres(U). Therefore

W = F (D) ∼= F (GF (D)) = FG(F (D)) = FG(W ) ∼= F (Z).

Hence Q = 0.

Theorem 4.2. The following conditions are equivalent:
(1) (F,G, V, U) is a ∗n-tuple.
(2) (i) U is F -small;
(ii) For any exact sequence 0 −→ X −→ Y −→ Z −→ 0 whit Y,Z ∈ n-Pres(U), we have X ∈ n-
Pres(U) if and only if 0 −→ F (X) −→ F (Y ) −→ F (Z) −→ 0 is exact.

Proof. (1)⇒(2) The necessity follows from Proposition 4.3 and the sufficiency from a similar proof to
that of (1)⇒(2) in Theorem 4.1.
(2)⇒(1) It follows from (2)⇒(1) in Theorem 4.1.

Proposition 4.4. Let (F,G, V, U) be a ∗n-tuple. Then n-Pres(U) is closed under extensions if and
only if n-Pres(U) ⊆⊥ T 1

F = {X ∈ C : R1F (X) = 0}.

Proof. Suppose that n-Pres(U) is closed under extensions. For any X ∈ n-Pres(U) one can
construct an exact sequence using the canonical maps to get an extension 0 −→ X −→ Y −→
U −→ 0 of X by U. We have Y ∈ n-Pres(U), by assumption. By Proposition 4.3, F preserves any
exact sequence in n-Pres(U), so applying F to the last exact sequence we get the exact sequence

0 −→ F (X) −→ F (Y ) −→ F (U) −→ 0,

thus by the exactness, R1F (X) = 0, so X ∈⊥ T 1
F and hence n-Pres(U) ⊆⊥ T 1

F . Conversely. For any
extension 0 −→ X −→ Y −→ Z −→ 0, of X by Z, where X,Z ∈ n-Pres(U), the induced sequence

0 −→ F (X) −→ F (Y ) −→ F (Z) −→ 0,

is exact by assumption. According to Proposition 4.1, both δX and δZ are isomorphisms and F (X), F (Z) ∈⊥
T i≥1
G . Then it is clear that δY is an isomorphism and F (Y ) ∈⊥ T i≥1

G . Hence by Lemma 2.2, we have
Y ∼= GF (Y ) ∈ n-Pres(U).
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Theorem 4.3. The following conditions are equivalent:
(1) (F,G, V, U) is a ∗n-tuple.
(2) There is an equivalence.

G :⊥ T i≥1
G � n-Pres(U) : F

Proof. (1)⇒(2) By Propositions 4.1 and Propositions 4.2.
(2)⇒(1) Since V (I) ∈⊥ T i≥1

G , we get F (U (I)) ∼= F (G(V )(I)) ∼= FG(V (I)) ∼= V (I) ∼= F (U)(I). So
U is F -small. For any X ∈ n-Pres(U), by assumption G(F (X)) ∼= X and F (X) ∈⊥ T i≥1

G , thus
G(F (X)) ∼= X ∈ (n+ 1)-Pres(U), by Lemma 2.2. So n-Pres(U) = (n+ 1)-Pres(U). Now let

0 −→ X −→ U (I) −→ Y −→ 0

be an exact sequence, with X ∈ n-Pres(U) and I a set. We can get the following exact sequence

0 −→ F (X) −→ F (U (I)) −→ F (Y ) −→ Q −→ 0,

where Q = Imα, where α : F (Y ) −→ R1F (X). By using argument similar to that in Proposition 4.3,
we conclude that Q = 0, which means that we have an exact sequence 0 −→ F (X) −→ F (U (I)) −→
F (Y ) −→ 0. Thus (F,G, V, U) is a ∗n-tuple.

Proposition 4.5. Let U be a F -small . Assume that n-Pres(U) =⊥ T i≥1
F . Then (F,G, V, U) is a

∗n-tuple.

Proof. Let
0 −→ X −→ U (I) −→ Y −→ 0,

be an exact sequence with Y ∈ n-Pres(U) and I a set. We can get the following long exact sequence

0 −→ F (X) −→ F (U (I)) −→ F (Y ) −→ R1F (X) −→
R1F (U (I)) −→ R1F (Y ) −→ ....

Note that Y,U (I) ∈ n-Pres(U) =⊥ T i≥1
F , so by exactness, RiF (X) = 0, for every i ≥ 2. Now

R1F (X) = 0 if and only ifX ∈ ⊥T i≥1
F = n-Pres(U). So by Theorem 4.1 we get the desired result.

5 Conclusion
In this work we generalize the concepts of ∗s-module and ∗n-modules to the concepts of ∗s-tuple and
∗n-tuple of Contravariant Functors between abelian categories.
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