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Abstract

Each Alexandroff space X has a corresponding shadow space [X] which is T0 Alexandroff space.
In this paper, we study Alexandroff spaces and their properties via their shadow spaces. The
definitions and the concepts such as Artinian, Noetherian, maximal points and minimal points,
that are defined on T0 Alexandroff space carry over to any Alexandroff space. We prove that an
Alexandroff space X is connected (compact) iff its shadow space [X] is connected (compact).
Moreover, X need not be scattered or α-scattered. We give a study of preopen, semi-open, and
α-open sets on X.

Keywords: Alexandroff spaces; generalized open sets; α−open sets; preopen sets; shadow spaces.
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1 Introduction
An Alexandroff space (briefly A−space) (or minimal neighborhood space) X is a topological space
in which the arbitrary intersection of open sets is open. These spaces were first introduced by P.
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Alexandroff in 1937 [1]. In these spaces, each element x has a minimum open neighborhood set
V (x) which is the intersection of all open sets containing x. For every To A−space (X, τ), there is
a corresponding poset (X,≤τ ), in one to one and onto way, where each one of them is completely
determined by the other. If (X,≤) is a poset, then B = {↑ x : x ∈ X} forms a base for a topology on
X denoted by τ≤ which is a T0 A−space. Moreover, if (X, τ) is an A-topological space, we define
the pre-order ≤τ , called (Alexandroff ) specialization pre-order, by: a ≤τ b if and only if a ∈ {b}. This
specialization pre-order is partial order if and only if (X, τ) is To . On the other hand, if (X, τ) is
a To A−space and if ≤τ is its specialization order, then the induced topology by the specialization
order is the original topology. Also if (X,≤) is a poset and τ(≤) its induced To A−topology, then the
specialization order ≤(τ≤)=≤. So we consider (X, τ(≤)) to be a To A−space (X, τ) together with its
specialization order ≤. We see that ∀x ∈ X, V (x) equals ↑ x; the up set of x in the corresponding
poset. A poset (X,≤) satisfies the ascending chain condition (ACC) , if for any increasing sequence
x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · in X, there exists k ∈ N such that xk = xk+1 = · · · . The dual of (ACC)
is the descending chain condition (DCC). If a poset satisfies both ACC and DCC, we say that X is
of finite chain condition (FCC). Given a poset (X,≤), the set of all maximal elements is denoted
by M(X) (or simply by M ) and the set of all minimal elements is denoted by m(X) (or simply by m).
Moreover, for each x ∈ X, we define x̂ to be the set of all maximal elements grater than or equal
to x and x̌ to be the set of all minimal elements less than or equal to x. That is, x̂ =↑ x ∩M and
x̌ =↓ x ∩m.
A To A−space whose corresponding poset satisfies the ACC is called Artinian To A−space, and
whose corresponding poset satisfies the DCC is called Noetherian To A−space [2]. If X is a
topological space and D a partition of X, then D can be topologized as follows: F ⊆ D is open
in D iff

⋃
F∈F F is open in X. The topology τD on D is called the quotient topology of X induced

by D, and the open sets U in X where U =
⋃
{F ∈ F : F ∈ τD} are called saturated. It should

be noted that not all open sets in X are saturated. Nevertheless, each saturated open set has a
corresponding open set in D. So there is a one to one correspondence between τD and the collection
of all saturated open sets in X. Given a topological space X. An equivalence relation ∼ is defined
on X as follows: x ∼ y iff x and y cannot be separated by open sets. The set of all equivalence
classes [X] forms a partition on X with quotient topology satisfies the separation axiom T0. Again,
not all open sets in X are saturated. In [3], it was proved that if the topology on X is Alexandroff,
then each open set in X is saturated with respect to the equivalence relation ∼. Hence there is a one
to one correspondence between τ on X and the quotient topology on [X]. So, the quotient topology
on [X] is called the shadow topology of τ and denoted by τs. The shadow space ([X], τs) is a T0

A−space and has a corresponding poset ([X],≤s). Some of previous studies (see [4] and [2]) used
the corresponding posets in proofs of the results on A−space that are satisfying the separation axiom
T0. This technique proves to be an easier approach, and we can’t use it if X is not T0. For this end,
and to get an extension study including the A−spaces that are not satisfying the T0 axiom, Mahdi in
[3], use for a given A−space (X, τ) a corresponding shadow space [X] and its induced poset in his
study to get some properties of X.
This paper is a continuation study of [3] and the reader should be familiar with the two papers [3] and
[2].

2 Preliminary Notes

Let (X, τ) be a topological space and A ⊆ X. Then Ac, A′, IntX(A) and ClX(A) will denote the
complement, the limit points, the interior and the closure of A respectively. For each A−space X,
we always consider its shadow space ([X], τs) with corresponding poset ([X],≤s). For two classes
[a], [b] in [X], we have [a] ≤ [b] iff b ∈ V (a) iff V (b) ⊆ V (a) iff a ∈ b. For a subset A ⊆ X, we define
[A] = {[a] : a ∈ A}. It may happen that A 6= B but [A] = [B]. If A is open in X, and if x ∈ A, then as
A saturated, [x] ⊆ A. If x ∈ X with minimal neighbourhood V (x) of x, then [V (x)] =↑ [x]. (For more
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information, you can see [3]).

Theorem 2.1. [2] Let X be an Artinian T0 A−space. Then

(1) Int(A) = ∅ iff A ∩M = ∅.
(2) Cl(A) = ∪{↓ x : x ∈M(A)} =↓M(A).

(3) A′ = ∪{(↓ x) \ {x} : x ∈M(A)} = (↓M(A))\M(A).

(4) The subset A is dense iff M ⊆ A.

(5) The subset A is nowhere dense iff M ∩A = ∅.
(6) If |M | = 1, then any subset is either dense or nowhere dense.

Theorem 2.2. [3] Let X be an A−space, A ⊆ X, and x ∈ X. Then

(1) Cl(x) = {c : V (x) ⊆ V (c)}.
(2) Cl(A) = {c : V (x) ⊆ V (c) for some x ∈ A}.

Theorem 2.3. [3] Let X be an A−space, A ⊆ X. Then A is dense iff [A] is dense.

Theorem 2.4. Let X be an A−space and A an open (closed) set. Then a ∈ A iff [a] ∈ [A].

Theorem 2.5. If X is an A−space and A ⊆ X. Then [Int(A)] ⊆ Ints([A])

Proof. Since Int(A) ⊆ A, [Int(A)] ⊆ [A], and since [Int(A)] is open in [X], [Int(A)] ⊆ Ints([A]).

The converse is not always true, as shown in the following example.

Example 2.6. Let X = {1, 2, 3, 4, 5}, τ = {X, ∅, {4, 5}}. Then, [1] = [2] = [3] = {1, 2, 3}, [4] = [5] =
{4, 5}. So [X] = {[1], [4]} and τs = {[X], ∅, {[4]}}, which is the Sierpinski topology. Let A = {1, 4}.
Then, Int(A) = ∅ and [A] = {[1], [4]} = [X]. Therefore Ints([A]) = [X] and so Ints([A]) is not a
subset of [Int(A)].

Theorem 2.7. Let X be an A−space and let A ⊆ X. Then [Cl(A)] = Cls([A]).

Proof. Let [c] ∈ [Cl(A)], then by Theorem 2.4, c ∈ Cl(A). This implies that there is x ∈ A such that
V (x) ⊆ V (c) and so [c] ≤ [x]. That is, [c] ∈↓ [x] ⊆ Cls([A]). On the other hand, if [c] ∈ Cls([A]), then
[c] ∈↓ [x] for some [x] ∈ [A]. Let a ∈ A be such that [x] = [a]. So [c] ≤ [a] for some a ∈ A. Then
a ∈ V (c), and hence [c] ∈ [Cl(A)].

You will notice that for a nonempty set X with an equivalence relation ∼ and a corresponding set of
equivalence classes [X] = {[x] : x ∈ X}, if A,B are two subsets of X, then

(1) [A ∪B] = [A] ∪ [B].

(2) [A ∩B] ⊆ [A] ∩ [B].

(3) [A]c ⊆ [Ac].

(4) A ⊆ B implies [A] ⊆ [B].

The reverse inclusions of (2) and (3) and the converse of part (4) are not true in general. To see this,
recall Example 2.6, and take A = {3, 4}, B = {3, 5}. Then [A∩B] = {{1}}, [A]∩[B] = [X], [A]c = ∅
and [Ac] = [X]. Fortunately, in an A−space the reverse inclusions of (2) and (3) are true if either
A or B is open (closed) and the converse of (4) is true if B is open(closed) as shown in the following
theorems.
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Proof. a ∈ A implies [a] ∈ [A] follows from the definition of [A]. Conversely, if [a] ∈ [A], then there is
b ∈ A such that [a] = [b]. So, [a] ⊆ A and hence a ∈ A.
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Theorem 2.8. Let X be an A−space , A and B are two subsets of X such that at least one of them
is open (closed) set in X. Then

(1) [A ∩B] = [A] ∩ [B].

(2) [A]c = [Ac]

Proof. Follows directly from Theorem 2.4.

Theorem 2.9. Let X be an A−space and let A,B be subsets of X such that B is open (closed).
Then A ⊆ B iff [A] ⊆ [B]

Proof. If x ∈ A, then [x] ∈ [A] and so [x] ∈ [B]. By Theorem 2.4, x ∈ B.

3 Artinian and Noetherian A-spaces

In this section, the definitions and the concepts that are defined on T0 A−space carry over to any
A−space. Further, we investigate these concepts between an A−space and its shadow space.

Definition 3.1. An A−space is called Artinian if for every points x1, x2, x3, · · · such that V (x1) ⊇
V (x2) ⊇ V (x3) ⊇ · · · , there is k ∈ N such that V (xk) = V (xn) ∀n ≥ k.

Definition 3.2. An A−space is called Noetherian if for every points x1, x2, · · · such that V (x1) ⊆
V (x2) ⊆ · · · there is k ∈ N such that V (xk) = V (xn) ∀n ≥ k.

Theorem 3.1. An A−space X is Artinian (Noetherian) iff [X] is Artinian (Noetherian).

Proof. Suppose that [x1] ≤ [x2] ≤ [x3] ≤ · · · . Then V (x1) ⊇ V (x2) ⊇ V (x3) ⊇ · · · . So, there
is k ∈ N such that V (xk) = V (xn) ∀n ≥ k. Thus [xk] = [xn] ∀n ≥ k. Therefore [X] is Artinian.
Conversely, let x1, x2, x3, · · · be elements in X such that V (x1) ⊇ V (x2) ⊇ V (x3) ⊇ · · · . Then [x1] ≤
[x2] ≤ [x3] ≤ · · · . So there is k ∈ N such that [xn] = [xk] ∀n ≥ k. Therefore V (xk) = V (xn) ∀n ≥ k
and X is Artinian.

Definition 3.3. Suppose that X is an A−space. An element x ∈ X is said to be maximal (resp.
minimal) if V (x) = V (z) whenever V (z) ⊆ V (x) ( resp. whenever V (z) ⊇ V (x) ). We denote the set
of maximal elements of X by M(X) (or simply by M ), and the set of minimal elements of X by m(X)
(or simply by m).

Theorem 3.2. If X is an Artinian (resp. a Noetherian) A−space, then M 6= ∅ (resp. m 6= ∅).

Proof. Suppose that x is not maximal for all x ∈ X. Pick x1 ∈ X. Then there exists x2 such that
V (x2) ⊂ V (x2) (:= V (x2) ⊆ V (x1) and V (x2) 6= V (x1)). Now x2 is not maximal, so there exists
x3 ∈ X such that V (x3) ⊂ V (x2). Continue this process to get x1, x2, x3, · · · , xn, · · · in X such that
V (x1) ⊃ V (x2) ⊃ V (x2) ⊃ · · · . Therefore X is not Artinian A−space.

Theorem 3.3. Let X be an Artinian (resp. a Noetherian) A−space, then M is open (resp. m is
closed) set in X .

Proof. Let x ∈ M and let y ∈ V (x). Then V (y) ⊆ V (x), and so, V (x) = V (y). This implies that
y ∈M . Hence V (x) ⊆M and M is open.

Corollary 3.4. If X is an Artinian (resp. a Noetherian) A−space, then x ∈ M iff [x] ∈ [M ]. (resp.
x ∈ m iff [x] ∈ [m].)
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Corollary 3.5. Let X be an Artinian A−space. Then V (x) ⊆M iff [V (x)] ⊆ [M ].

We will denote the set of maximal (resp. minimal) elements in the shadow space [X] by Ms (resp.
ms )

Theorem 3.6. If X is an Artinian (resp. a Noetherian) A−space, then [M ] = Ms (resp. [m] = ms).

Proof. Let x ∈ [M ]. Then there is a ∈ M such that x = [a]. If [a] ≤ [z] in [X], then V (z) ⊆ V (a).
So V (z) = V (a), and hence [a] = [z]. Consequently x = [a] ∈ Ms. On the other hand, let [x] ∈ Ms

and suppose that V (z) ⊆ V (x). Then [x] ≤ [z]. Since [x] ∈ Ms, [x] = [z]. So V (x) = V (z). Hence
x ∈M and so [x] ∈ [M ].

Definition 3.4. Let X be an A−space, A ⊆ X, x ∈ A. We say x is a maximal in A if x is a maximal
in the subspace A. That is, ∀a ∈ A, V (a) ∩ A ⊆ V (x) ∩ A implies V (a) ∩ A = V (x) ∩ A. We will
denote the set of maximal elements of A by M(A) and V (x) ∩ A by VA(x). It is clearly that VA(x) is
the minimal neighbourhood of x in A.

Theorem 3.7. [5] A subspace of an Artinian T0 A−space is an Artinian T0 A−space.

Remark 3.1. In general if A∩B ⊆ A∩C, then B need not be a subset of C. But if X is an A−space
and A ⊆ X such that x, y ∈ A, then we have that VA(x) ⊆ VA(y) iff V (x) = V (y). To see this, if
A ∩ V (x) ⊆ A ∩ V (y), then x ∈ V (y) and hence V (x) ⊆ V (y).

Theorem 3.8. A subspcace of an Artinian (resp. a Noetherian)A−space is Artinian (resp. Noetherian)
A−space.

Proof. Suppose that A is not Artinian. Then there is an infinite sequence of points x1, x2, · · · , xn, · · ·
in A such that VA(x1) ⊃ VA(x2) ⊃ VA(x3) ⊃ · · · . This implies that V (x1) ⊃ V (x2) ⊃ V (x3) ⊃ · · · in
X, and so X is not Artinian.

Remark 3.2. In general, a subspace of a quotient space of a topological space X need not be equal
to the quotient space of a subspace of X. But they are equal if the space X is an A−space and the
quotient space is its corresponding shadow space as shown in the following theorem.

Theorem 3.9. Let X be an A−space and A ⊆ X. Then [A] as a subspace of the shadow space [X]
is the same as the shadow space of the subspace (A, τA).

Proof. Firstly, [A] is a T0 Alexandroff space in both cases. Let ([A], τ(≤)) be the subspace of [X]
and ([A], τs(≤s)) is the shadow space of the subspace (A, τA). For a, b ∈ A, [a] ≤ [b] in ([A], τ(≤))
iff [a] ≤ [b] in [X] iff V (a) ⊇ V (b) in X iff VA(a) ⊇ VA(b) in (A, τA) iff [a] ≤s [b] in ([A], τs(≤s)).

Theorem 3.10. Let X be an Artinian A−space and A ⊆ X. Then [M(A)] = M [A].

Proof. If [x] ∈ [M(A)], then there exists y ∈ M(A) such that [x] = [y]. Let [z] ∈ [A] such that
[z] ≥ [y]. Then VA(y) ⊇ VA(z). So VA(z) = VA(y), and so [y] = [z]. Hence [x] ∈ M [A]. Convesely,
let [x] ∈ M [A] and let z ∈ A such that VA(z) ⊆ VA(x). Then [x] ≤ [z] and so [x] = [z] in [A]. Then
VA(z) = VA(x). Hence x ∈M(A) and [x] ∈ [M(A)].

Theorem 3.11. Let X be an Artinian A−space and let A ⊆ X. Then Cl(A) = Cl(M(A)).

Proof. If c ∈ Cl(A), then [c] ∈ [Cl(A)] = Cl([A]). So [c] ∈↓ M [A] and there exists [a] ∈ M [A]
such that [c] ≤ [a]. This implies that there exists b ∈ M(A) such that V (b) ⊆ V (c). Therefore
c ∈ Cl(M(A)). The converse is obvious.
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Corollary 3.12. Let X be an Artinian A−space, and let A ⊆ X. If A is open, then M(A) ⊆M .

Proof. Let y ∈ M(A), and let x ∈ X be such that V (x) ⊆ V (y). Then [y] ∈ M [A] and [y] ≤ [x].
Since [A] is open , [x] ∈ [A], and [y] = [x]. So V (x) = V (y), and hence y ∈M .

Definition 3.5. Let X be an A−space, we define x̂ = V (x) ∩M and x̌ = x ∩m.

Theorem 3.13. If X is an Artinian (resp. a Noetherian) A−space, then x̂ 6= ∅ (resp. x̌ 6= ∅) ∀x ∈ X.

Proof. Suppose that, there is x ∈ X such that V (x) ∩ M = ∅. Then V (x) ⊆ Mc and x is not
maximal. So there is x1 ∈ X such that V (x1) ⊂ V (x). Again x1 ∈ Mc, so there is x2 ∈ X such that
V (x2) ⊂ V (x1). Continue this process to get, x, x1, x2, x3, · · · such that V (x) ⊃ V (x1) ⊃ V (x2) ⊃
V (x3) ⊃ · · · . Therefore X is not Artinian .

Theorem 3.14. If X is an Artinian (resp. a Noetherian) Alexandroff space then [x̂] = [̂x] (resp.
[x̌] = ˇ[x]).

Proof. [x̂] = [V (x) ∩M ] = [V (x)] ∩ [M ] =↑ [x] ∩Ms = [̂x].

Theorem 3.15. Let X be an Artinian A−space, and let A ⊆ X. If A is open (closed) then x̂ ⊆ A
(resp. x̌ ⊆ A) for all x ∈ A.

Proof. Let x ∈ A and let y ∈ x̂. A is open implies that [A] is open in ([X], τs) and [̂x] ⊆ [A]. Then

[y] ∈ [x̂] = [̂x] ⊆ [A]. By Theorem 2.4, y ∈ A.

Corollary 3.16. Let X be an Artinian A−space and A ⊆ X. If A ∩M = ∅, then Int(A) = ∅.

Proof. If x ∈ Int(A), then by Theorem 3.15. x̂ ⊆ Int(A). Since x̂ 6= ∅, x̂ ⊆ M , we get x̂ ⊆
Int(A) ∩M . Thus A ∩M 6= ∅.

Theorem 3.17. Let X be an Artinian A−space. If M ⊆ A, then A is dense in X.

Proof. Since M ⊆ A, [M ] ⊆ [A]. So by Theorem 2.1(4), [A] is dense in [X] . Thus by Theorem 2.3,
A is dense in X .

The converse is not always true as shown in the following example.

Example 3.18. Let X = {1, 2, 3, 4, 5} and let τ = {X, ∅, {3}, {4, 5}, {3, 4, 5}}, then M = {3, 4, 5}.
Let A = {1, 2, 3, 5} then cl(A) = X. But 4 ∈M and 4 /∈ A.

Theorem 3.19. Let X be an Artinian A−space, and A ⊆ X. Then A is nowhere dense iff A∩M = ∅.

Proof. If x ∈ A ∩M , then x ∈ Cl(A) and x ∈M . Let y ∈ V (x), then V (y) = V (x). So V (y) ∩A 6= ∅
and hence y ∈ Cl(A). That is V (x) ⊆ Cl(A), and therefore x ∈ Int(Cl(A)). Conversely, if M ∩ A =
∅, then [M ∩ A] = ∅. So [M ] ∩ [A] = ∅. By Theorem 2.1 part (5), Ints(Cls([A])) = ∅. Thus
[Int(Cl(A))] ⊆ Ints([Cl(A)]) = ∅. Therefore Int(Cl(A)) = ∅.

Theorem 3.20. Let X be an A−space, and let A ⊆ X. Then A is nowhere dense iff [A] is nowhere
dense.

Proof. Let [x] ∈ Ints(Cls([A])). Then [x] ∈ Ints([Cl(A)]), and so ↑ [x] ⊆ [Cl(A)]. Equivalently [x] ∈
[V (x)] ⊆ [Cl(A)]. Hence x ∈ V (x) ⊆ Cl(A), and x ∈ Int(Cl(A)). Conversely, if Ints(Cls([A])) = ∅,
then Ints([Cl(A)]) = ∅. Hence [Int(Cl(A))] ⊆ Ints([Cl(A)]) = ∅, and Int(Cl(A)) = ∅.
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Theorem 3.21. Let X be an A−space. If V (x) = V (y) ∀x, y ∈ M , then every subset of X is either
dense or nowhere dense.

Proof. Suppose that V (x) = V (y) for all x, y ∈M . Then [x] = [y] for all x, y ∈M . Hence |[M ]| = 1.
By Theorem 2.1 part (6) every subset of [X] is either dense or nowhere dense. Let A ⊆ X. Then
[A] is either dense or nowhere dense. By Theorem 2.3 and Theorem 3.20, A is dense or nowhere
dense.

4 Connectedness, Compactness and Resolvability
Properties

Theorem 4.1. An A−space X is compact iff [X] is compact.

Proof. A quotient space of compact space is compact. Conversely, suppose that [X] is compact, and
let {uα : α ∈ ∆} be an open cover of X. Then {[uα] : α ∈ ∆} is an open cover of [X], so there is a
finite subcover of [X], {[uαi ] : 1 ≤ i ≤ n}. By Theorem 2.4, {uα i , 1 ≤ i ≤ n} is a finite subcover of
X.

Theorem 4.2. An A−space X is connected iff [X] is connected.

Proof. A quotient space of a connected space is connected. Conversely if there is nonempty disjoint
open sets A,B such that X = A ∪B. Therefore [A] ∩ [B] = ∅ and [X] = [A ∪B] = [A] ∪ [B].

Theorem 4.3. Let X be an A−space, and A ⊆ X. If x is an isolated point of A, then [x] is an isolated
point of [A].

Example 4.4. Recall Example 3.18. Let A = {1, 4, 5}, then A has no isolated points. But {[4]} is an
isolated point of [A].

Theorem 4.5. Let X be an A−space, and let A ⊆ X. Then [A]′ ⊆ [A′].

Proof. If [x] ∈ Cls([A]) and [x] is not an isolated point of [A], then [x] ∈ [Cl(A)] and [x] is not an
isolated point of [A]. So x ∈ Cl(A) and x is not isolated point of A.

Definition 4.1. A topological spaceX is scattered if no subset ofX is dense in itself and α- scattered
if it has a dense subset of isolated points.

Theorem 4.6. [2] An Artinian T0 A−space X is scattered and α- scattered.

In general an A−space need not be scattered and need not be α- scattered, as shown in the following
example.

Example 4.7. The set A in Example 4.4 is dense in itself . So X is not scattered. Moreover the only
isolated point in X is x = 3 and {3} is not dense in X. So X is also not α- scattered.

Definition 4.2. [6] A topological space X is called resolvable iff X = D ∪ Dc where both D and
Dc are dense. If X is not resolvable, it is irresolvable. X is called hereditarily irresolvable, if no non
empty subset is resolvable .

An Artinian T0 A−space is always irresolvable [2]. In fact it is hereditarily irresolvable. In the following
two theorems, we give characterizations for an Artinian A−space to be irresolvable and hereditarily
irresolvable.
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Theorem 4.8. An Artinian A−space X is irresolvable iff X contains isolated points.

Proof. Suppose that {x} is not open for all x ∈ X. Then ∀x ∈ X, |V (x)| ≥ 2. So ∀x ∈ M , pick
ax, bx from V (x) such that ax 6= bx. Set D1 = {ax : x ∈ M}, D2 = {bx : x ∈ M}. Then we have
that [D1] = [D2] = [M ] which is dense in [X]. By Theorem 2.3, both D1 and D2 are dense in X.
Moreover D1 ∩D2 = ∅, so D2 ⊆ Dc

1 and hence Dc
1 is also dence in X. Therefore X is irresolvable.

Conversely, if there exist x ∈ X such that {x} is open, then {x} is a subset of every dense subset of
X. So there is no disjoint dense subsets of X.

Theorem 4.9. An Artinian A−space X is hereditarily irresolvable iff X is T0.

Proof. If there exist x 6= y in X such that x, y can’t be separated, then V (x) = V (y). Let A = {x, y}.
Then {x}, {y} are two dense sets in A such that A = {x} ∪ {y}. Then A is resolvable. For the
converse see [2].

5 Nearly Open Sets
Definition 5.1. A subset A of a topological space (X, τ) is called

(1) a semi-open set [7] if A ⊆ Cl(Int(A)).

(2) a preopen set [8] if A ⊆ Int(Cl(A)) .

(3) an α open set [9] if A ⊆ Int(Cl(Int(A))).

The family of all semi-open (resp. preopen, α open) sets is denoted by SO(X) (resp. PO(X), τα).

Theorem 5.1. Let X be an A−space, and let A ⊆ X. If A is semi-open in X, then [A] is semi-open
in [X].

Proof. Let A ⊆ Cl(Int(A)). Then [A] ⊆ [Cl(Int(A))] = Cls([Int(A)]) ⊆ Cls(Ints([A])).

The converse is not always true, as shown in the following example.

Example 5.2. In Example 3.18, τs = {[X], ∅, {[3]}, {[4]}, {[3], [4]}}. Let A = {1, 2, 5}, then Int(A) =
∅ and so Cl(Int(A)) = ∅. But [A] = {[1], [4]} and Cls(Ints([A])) = {[1], [4]}. Thus [A] is semi-open
in [X], but A is not semi-open in X.

Theorem 5.3. Let X be an A−space, and let A ⊆ X. Then A is preopen iff [A] is preopen.

Proof. IfA ⊆ X such thatA ⊆ Int(Cl(A)), then [A] ⊆ [Int(Cl(A))] ⊆ Ints[(Cl(A))] = Ints(Cls([A])).
Conversely, let x ∈ A. So [x] ∈ [A] ⊆ Ints(Cls([A])). Consequently [x] ∈↑ [x] ⊆ Cls([A]) = [Cl(A)].
By Theorem 2.4, x ∈ V (x) ⊆ Cl(A). Thus x ∈ Int(Cl(A)).

Theorem 5.4. Let X be an A−space, and A ⊆ X. If A is α− open, then [A] is α− open.

Proof. If A is α − open, then A is both semi-open and preopen. Thus [A] is both semi-open and
preopen, and hence α− open.

The converse is not always true as shown in the following example.

Example 5.5. Recall Example 3.18 LetA = {4}. Then [A] = {[4]} = {{4, 5}}. Then Int(Cl(Int(A))) =
∅ and Ints(Cls(Ints([A]))) = {[4]}. So [A] ⊆ Ints(Cl(Ints([A]))), butA is not a subset of Int(Cl(Int(A))).

Theorem 5.6. [2] Let X be an Artinian T0 A−space, and let A ⊆ X. Then A is semi-open, iff
M(A) ⊆M .
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Theorem 5.7. Let X be an Artinian A−space, and let A ⊆ X. If A is semi-open, then M(A) ⊆M .

Proof. If A is semi-open, then [A] is semi-open. By Theorem 5.6, M [A] ⊆ [M ], so [M(A)] ⊆ [M ]. If
x ∈M(A), then [x] ∈ [M(A)] which implies that [x] ∈ [M ]. By Theorem 2.4, x ∈M .

Theorem 5.8. [2] LetX be an Artinian T0 A−space, and letA ⊆ X. IfA is preopen, thenM(A) ⊆M .

Theorem 5.9. Let X be an Artinian A−space, and let A ⊆ X. If A is preopen, then M(A) ⊆M .

Proof. If A is preopen, then [A] is preopen. So by Theorem 5.8 M [A] ⊆ [M ], and so [M(A)] ⊆ [M ].
If x ∈M(A), then [x] ∈ [M(A)]. Hence [x] ∈ [M ], and x ∈M .

The converse of Theorem 5.7 and 5.9 are not always true, as shown in the following example.

Example 5.10. In Example 3.18, if A = {1, 2, 5}, then M(A) = {5} and M = {3, 4, 5}. So M(A) ⊆
M . But A is neither semi-open nor preopen.

Theorem 5.11. [2] Let X be an Artinian T0 Alexandroff space, then

(1) PO(X) ⊆ SO(X).

(2) PO(X) = τα.

Example 5.12. In Example 3.18, let A = {4}, then A is preopen but not α−open and not semi-open.
So PO(X) is not a subclass of SO(X) and PO(X) 6= τα. So, the results in Theorem 5.11 for Artinian
T0 A−space need not be true in general for non T0 Artinian A−spaces.

6 Conclusions
Relation between A−spaces and their shadow spaces is very interesting in Alexandroff literature.
In this paper, we use this relation in introducing new definitions and concepts such as Artinian,
Noetherian, ACC, etc., defined on A−shadow spaces and carry over to any A−spaces. These
concepts on shadow spaces can be translated into corresponding posets. This process proves to
be an easier approach. In this regard, we think that this paper is useful and important in the direction
of clarification of A−spaces.
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