Hyers-Ulam-Rassias Stability by Fixed Point Technique for Half-linear Differential Equations with Unbounded Delay

Maher Nazmi Qarawani ${ }^{\text {* }}$
${ }^{1}$ Department of Mathematics, Alquds Open University, Salfit, Palestine.

Article Information

DOI: 10.9734/BJMCS/2015/16112
Editor(s):
(1) Sheng Zhang, Department of Mathematics, Bohai University, Jinzhou, China.

Reviewers:
(1) Anonymous, Nigeria.
(2) Anonymous, China.
(3) Anonymous, India.
(4) Anonymous, South Korea.

Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=937\&id=6\&aid=8302

Original Research Article

Received: 08 January 2015
Accepted: 06 February 2015
Published: 28 February 2015

Abstract

In this paper we use the fixed point technique to establish the Hyers-Ulam-Rassias stability for half-linear differential equations with unbounded delay. Some illustrative examples are given.

Keywords: Hyers-Ulam-Rassias stability; fixed point; half-linear differential equation.
2010 Mathematics subject classification: 47H10, 39B82, 34A40, 26 D 10.

1 Introduction

The study of stability problems for various functional equations originated from a famous talk given by Ulam in 1940 (see [1]). In the talk, Ulam discussed a problem concerning the stability of homomorphisms. A significant breakthrough came in 1941, when Hyers [2] gave a partial solution to Ulam's problem. In 1978, Rassias [3] provided a remarkable generalization of the Ulam-Hyers stability of mappings by considering variables. During the last two decades very important contributions to the stability problems of functional equations were given by many mathematicians (see [4-11]). A generalization of Ulam's problem was proposed by replacing functional equations with differential equations: The differential equation $F\left(t, y(t), y^{\prime}(t), \ldots, y^{(n)}(t)\right)=0$ has the Hyers-Ulam stability if for given $\varepsilon>0$ and a function y such that

[^0]$$
\left|F\left(t, \quad y(t), \quad y^{\prime}(t), \ldots, \quad y^{(n)}(t)\right)\right| \leq \varepsilon
$$
there exists a solution y_{0} of the differential equation such that $\left|y(t)-y_{0}(t)\right| \leq K(\varepsilon)$ and $\lim _{\varepsilon \rightarrow 0} K(\varepsilon)=0$.

Obloza seems to be the first author who has investigated the Hyers-Ulam stability of linear differential equations (see [12,13]). Thereafter, Alsina and Ger published their paper [14], which handles the Hyers-Ulam stability of the linear differential equation $y^{\prime}(t)=y(t)$: If a differentiable function $y(t)$ is a solution of the inequality $\left|y^{\prime}(t)-y(t)\right| \leq \varepsilon$ for any $t \in(a, \infty)$, then there exists a constant c such that $\left|y(t)-c e^{t}\right| \leq 3 \varepsilon$ for all $t \in(a, \infty)$. Recently, the Hyers-Ulam stability problems of linear differential equations of first order and second order with constant coefficients were studied by using the method of integral factors (see [15,16]). The results given in $[17,18,19]$ have been generalized by Cimpean and Popa [20] and by Popa and Rus [21,22] for the linear differential equations of nth order with constant coefficients. In addition to above-mentioned studies, several authors have studied the Hyers-Ulam stability for differential equations of first and second order (see [23-27]). The Hyers-Ulam stability for various differential equations has been established by the author (e.g. see [28,29]). Jung and Brzdek [30] proved a similar type of stability for the delay linear equation with constant coefficient. The basic idea of proving is based on using the known general solution of $y^{\prime}=\lambda y(t-\tau)$, where $\lambda>0$ and $\tau>0$ are real constants, where is given by $y(t)=\alpha \sum_{n=-1}^{[t / \tau]} \frac{\lambda^{n+1}(t-n \tau)^{n+1}}{(n+1)!}$. It should be noted that the equation (1.1) considered in this paper, is completely different than that investigated by Jung and Brzdek [30]. Burton [31] has used fixed point theory to establish Liapunov stability for functional differential equations.

Here, we use the fixed point approach to establish the Hyers-Ulam-Rassias stability for the halflinear differential equation with unbounded delay

$$
\begin{equation*}
y^{\prime}(t)=-a(t) y(t)+b(t) g(y(t-r(t))) . \tag{1.1}
\end{equation*}
$$

We also investigate the half-linear differential equation

$$
\begin{equation*}
y^{\prime}(t)=-a(t) y(t)+b(t) g(y(t-r(t)))+h(t) . \tag{1.2}
\end{equation*}
$$

Here, we assume that $a(t), b(t)$ and $r(t)$ are continuous, and that

$$
\begin{align*}
& \int_{0}^{t}|a(s)| d s \rightarrow \infty \text { as } t \rightarrow \infty, \tag{1.3}\\
& \int_{0}^{t} e^{-\int_{s}^{t} a(u) d u}|b(s)| d s \leq \alpha<1, \quad t \geq 0, \tag{1.4}\\
& r(t) \geq 0, \quad t-r(t) \rightarrow \infty \text { as } t \rightarrow \infty, \tag{1.5}
\end{align*}
$$

Assume that there is a number $L>0$ so that $|x|,|y| \leq L$, implies that

$$
\begin{equation*}
g(0)=0 \text { and }|g(x)-g(y)| \leq|x-y| . \tag{1.6}
\end{equation*}
$$

We also suppose that $h(t):[0, \infty) \rightarrow R$ with

$$
\begin{equation*}
\int_{0}^{t} e^{-\int_{s}^{t} a(u) d u}|h(s)| d s \leq \beta, \quad t \geq 0 \tag{1.7}
\end{equation*}
$$

Let $R^{+}=[0, \infty)$ and $S=\{\phi: R \rightarrow R \mid\|\phi\| \leq L, \phi(t)=\psi(t)$ if $t \leq 0, \phi \in C\}$.

2 Preliminaries

Definition 2.1 We say that equation (1.2) (or (1.1) with $h(t) \equiv 0$) has the Hyers-Ulam-Rassias (HUR) stability with respect to φ if there exists a positive constant $k>0$ with the following property:

For each $y(t) \in C^{1}\left(R^{+}\right)$, if

$$
\begin{equation*}
\left|y^{\prime}(t)+a(t) y(t)-b(t) g(y(t-r(t)))-h(t)\right| \leq \varphi(t), \tag{2.1}
\end{equation*}
$$

then there exists some $y_{0}(t)$ of the equation (1.2) such that $\left|y(t)-y_{0}(t)\right| \leq k \varphi(t)$.
Theorem 2.1 the contraction mapping principle
Let (S, ρ) be a complete metric space and let $P: S \rightarrow S$. If there is a constant $\alpha<1$ such that for each pair $\phi_{1}, \phi_{2} \in S$ we have $\rho\left(P \phi_{1}, P \phi_{2}\right) \leq \alpha \rho\left(\phi_{1}, \phi_{2}\right)$ then there is one and only one point $\phi \in S$ with $P \phi=\phi$.

3 Main Results on Hyers-Ulam-Rassias Stability

Theorem 3.1 Suppose that $y(t) \in C^{1}\left(R^{+}\right)$satisfies the inequality (2.1) (with $\left.h(t) \equiv 0\right)$ with small continuous initial function $\psi:(-\infty, 0] \rightarrow R$. Let $\varphi(t):[0, \infty) \rightarrow(0, \infty)$ be a continuous function such that

$$
\begin{equation*}
\int_{0}^{t} \varphi(s) e^{-\int_{s}^{t} a(u) d u} d s \leq C \varphi(t), \quad \forall t \geq 0 \tag{3.1}
\end{equation*}
$$

If (1.3)-(1.6) hold then the solution of (1.1) with initial continuous function is stable in the sense of Hyers-Ulam-Rassias.

Proof. Let $\psi:(-\infty, 0] \rightarrow R$ be a continuous initial function with $\|\psi(t)\|<\delta$. Define $S=\{\phi: R \rightarrow R \mid\|\phi\| \leq L, \phi(t)=\psi(t)$ if $t \leq 0, \phi \in C\}$, where $\|\cdot\|$ is the supremum metric. Then $(S,\|\cdot\|)$ is a complete metric space. Now suppose that (1.3) holds. For L and α we find $\delta>0$ so that $\delta K+\alpha L \leq L$, where

$$
K=\sup _{t \geq 0}\left\{e^{-\int_{0}^{t} a(s) d s}\right\} .
$$

Use the variation of parameters formula to write (1.1) as

$$
y(t)=\psi(0) e^{-\int_{0}^{t} a(s) d s}+\int_{0}^{t} e^{-\int_{s}^{t} a(s) d s} b(s) g(\phi(s-r(s))) d s
$$

Define $P: S \rightarrow S$ by

$$
(P \phi)(t)=\psi(t) \text { if } t \leq 0
$$

and for $t \geq 0$ let

$$
\begin{equation*}
(P \phi)(t)=\psi(0) e^{-\int_{0}^{t} a(s) d s}+\int_{0}^{t} e^{-\int_{s}^{t} a(u) d u} b(s) g(\phi(s-r(s))) d s \tag{3.2}
\end{equation*}
$$

It is clear that for $\phi \in S, P \phi$ is continuous. Let $\phi(t) \in S$ with $\|\phi\| \leq L$, for some positive constant L. Let ψ be a small given continuous initial function with $\|\psi\| \leq \delta, \delta>0$. Then using (1.3), (1.4) in the definition of $(P \phi)(t)$, we have

$$
\begin{align*}
\|P \phi\| & \leq \delta K+\int_{0}^{t} e^{-\int_{s}^{t} a(u) d u}|b(s)||g(\phi(s-r(s)))| d s \\
& \leq \delta K+\int_{0}^{t} e^{-\int_{s}^{t} a(u) d u}|b(s)| L d s \leq \delta K+\alpha L \tag{3.3}
\end{align*}
$$

which implies that $\|P \phi\| \leq L$. Thus (3.3) implies that $(P \phi)(t)$ is bounded.
To see that P is a contraction under the supremum metric, let $\phi, \eta \in S$. Then

$$
\begin{aligned}
\|(P \phi)(t)-(P \eta)(t)\| & \leq \int_{0}^{t} e^{-\int_{s}^{t} a(u) d u}|b(s) \| g(\phi(s-r(s)))-g(\eta(s-r(s)))| d s \\
& \leq \int_{0}^{t} e^{-\int s a(u) d u} \mid b(s)\|\phi-\eta\| d s \leq \alpha\|\phi-\eta\|, \quad \text { with } \alpha<1
\end{aligned}
$$

Thus, by the contraction mapping principle, P has a unique fixed point, say, y_{0} in S which solves (1.1) and is bounded.

Next we show that the solution y_{0} is stable in Hyers-Ulam-Rassias. Suppose we have the inequality

$$
\begin{equation*}
-\varphi(t) \leq y^{\prime}(t)+a(t) y(t)-b(t) g(y(t-r(t))) \leq \varphi(t) . \tag{3.4}
\end{equation*}
$$

Multiplying the inequality (3.4) by $e^{\int_{0}^{\prime}(u) d u}$, we obtain

$$
\begin{aligned}
-\varphi(t) e^{\int_{0}^{t} a(s) d s} & \leq e^{\int_{0}^{t} a(s) d s} y^{\prime}(t)+a(t) y(t) e^{\int_{0}^{t} a(s) d s}-b(t) g(y(t-r(t))) e^{\int_{0}^{t} a(s) d s} \\
& \leq \varphi(t) e^{\int_{0}^{t} a(s) d s}
\end{aligned}
$$

Or, equivalently, we have

$$
\begin{align*}
-\varphi(t) e^{\int_{0}^{t} a(s) d s} & \leq\left(e^{\int_{0}^{t} a(s) d s} y(t)\right)^{\prime}-b(t) g(y(t-r(t))) e^{\int_{0}^{t} a(s) d s} \tag{3.5}\\
& \leq \varphi(t) e^{\int_{0}^{t} a(s) d s}
\end{align*}
$$

Integrating (3.5) from 0 to t, and then multiplying the obtained inequality by $e^{-\int_{0}^{t} a(u) d u}$, we obtain

$$
\left|y(t)-\psi(0) e^{-\int_{0}^{t} a(s) d s}-\int_{0}^{t} e^{-\int_{s}^{t} a(u) d u} b(s) g(y(s-r(s)))\right| \leq \int_{0}^{t} \varphi(s) e^{-\int_{s}^{t} a(u) d u} d s \leq C \varphi .
$$

Using (3.2) we infer that $\|P y-y\| \leq C \varphi$. To show that y_{0} is stable we estimate the difference

$$
\left\|y(t)-y_{0}(t)\right\| \leq\|P y-y\|+\left\|P y-P y_{0}\right\| \leq C \varphi+\alpha\left\|y-y_{0}\right\| .
$$

Thus

$$
\left\|y(t)-y_{0}(t)\right\| \leq \frac{C \varphi}{1-\alpha}
$$

which means that (2.1) (with $h(t) \equiv 0)$ holds true for all $t \geq 0$.
Example 3.1 Consider the delay half-linear differential equation

$$
\begin{equation*}
y^{\prime}(t)+a(t) y(t)=b(t) \sin (y(t-r(t))) \tag{3.6}
\end{equation*}
$$

where $a(t)=\frac{1}{1+t}, \quad b(t)=\frac{1}{(1+t)^{3}}$ and $r(t)=0.05 t$.
We estimate the integrals

$$
\int_{0}^{t}|a(s)| d s=\int_{0}^{t} \frac{1}{1+s} d s=\ln (1+t) \rightarrow \infty \quad \text { as } t \rightarrow \infty
$$

and

$$
\begin{array}{rl}
\int_{0}^{t} e^{-\int s(u) d u} \\
s^{t} & b(s) \mid d s
\end{array}=\int_{0}^{t} e^{-\frac{1}{s} \frac{1}{s+u} d u} \frac{1}{(1+s)^{3}} d s=\int_{0}^{t} e^{-\ln \left(\frac{1+t)}{1+s}\right)} \frac{1}{(1+s)^{3}} d s .
$$

If we set $\varphi(t)=e^{t}$, then we have

$$
\int_{0}^{t} \varphi(s) e^{-\int_{s}^{t} a(u) d u} d s=\int_{0}^{t} e^{s} e^{-\frac{-}{s} \frac{1}{1+u} d u} d s=\frac{t e^{t}}{1+t} \leq C \varphi(t) \text {, with } C=1, \quad \forall t \geq 0 \text {. }
$$

Now since $g(y(t-r(t)))=\sin (y(0.95 t)),|g(x)-g(y)|=|\sin x-\sin y| \leq|x-y|$. The conditions of Theorem 3.1 are satisfied, hence the Eq. (3.6) is HUR stable for $t \geq 0$.

We now state the following corollary.
Corollary 3.1 Assume that $y(t) \in C^{1}\left(R^{+}\right)$satisfies the inequality (3.4) with small continuous initial function $\psi:(-\infty, 0] \rightarrow R$, and that

$$
\begin{equation*}
\int_{0}^{t} e^{-\int_{s}^{t} a(u) d u} d s \leq C, \quad \forall t \geq 0 \tag{3.7}
\end{equation*}
$$

If (1.3)-(1.6) hold then the solution of (1.1) with initial continuous function is stable in the sense of Hyers-Ulam.

Proof. It is enough to use Theorem 3.1, with $\varphi=\varepsilon$.
Remark 3.1 Suppose that $y(t) \in C^{1}\left(R^{+}\right)$satisfies the inequality (2.1) (with $\left.h(t) \equiv 0, a(t) \equiv 0\right)$ with small continuous initial function $\psi:(-\infty, 0] \rightarrow R$. Let $\varphi(t):[0, \infty) \rightarrow(0, \infty)$ be a continuous function such that

$$
\begin{equation*}
\int_{0}^{t} \varphi(s) d s \leq C \varphi(t), \quad \forall t \geq 0 \tag{3.8}
\end{equation*}
$$

and assume that

$$
\int_{0}^{t}|b(s)| d s \leq \alpha<1, \forall t \geq 0
$$

If (1.5), (1.6) hold then the solution of (1.1) with initial continuous function is stable in the sense of Hyers-Ulam-Rassias.

Theorem 3.2 Suppose that $y(t) \in C^{1}\left(R^{+}\right)$satisfies the inequality (2.1) with small continuous initial function $\psi:(-\infty, 0] \rightarrow R$. Let $\varphi(t):[0, \infty) \rightarrow(0, \infty)$ be a continuous function such that

$$
\begin{equation*}
\int_{0}^{t} \varphi(s) e^{-\int_{s}^{t} a(u) d u} d s \leq C \varphi(t), \quad \forall t \geq 0 . \tag{3.9}
\end{equation*}
$$

If (1.3)-(1.7) hold then the solution of (1.2) with initial continuous function is stable in the sense of Hyers-Ulam-Rassias

Proof. First suppose that (1.3) holds. Then we can find $K>0$ so that

$$
K=\sup _{t \geq 0}\left\{e^{-\int_{0}^{t} a(s) d s}\right\}
$$

Let $\psi:(-\infty, 0] \rightarrow R$ be a continuous initial function with $\|\psi(t)\|<A_{1}$, and determine $A_{2}>0$ with

$$
K A_{1}+\alpha A_{2}+\beta=A_{2} .
$$

Let $S=\left\{\phi: R \rightarrow R \mid\|\phi\| \leq A_{2}, \phi(t)=\psi(t)\right.$ if $\left.t \leq 0, \phi \in C\right\}$, where $\|\cdot\|$ is the supremum metric.
Then $(S,\| \|)$ is a complete metric space.
Using the variation of parameters formula we write (1.2) as

$$
y(t)=\psi(0) e^{-\frac{1}{0} a(s) d s}+\int_{0}^{t} e^{-\int_{s}^{t} a(s) d s} b(s) g(\phi(s-r(s))) d s+\int_{0}^{t} e^{-\int_{s}^{t} a(s) d s} h(s) d s .
$$

Define $P: S \rightarrow S$ by $(P \phi)(t)=\psi(t)$ if $t \leq 0$, and for $t \geq 0$ let

$$
\begin{equation*}
(P \phi)(t)=\psi(0) e^{-\int_{0}^{t} a(s) d s}+\int_{0}^{t} e^{-\int_{s}^{t} a(s) d s} b(s) g(\phi(s-r(s))) d s+\int_{0}^{t} e^{-\int_{s}^{t} \int(s) d s} h(s) d s . \tag{3.10}
\end{equation*}
$$

It is clear that for $\phi \in S, P \phi$ is continuous. Assume that $\phi(t) \in S$ with $\|\phi\| \leq A_{2}$, and that ψ is a small given continuous initial function with $\|\psi\| \leq A_{1}, A_{1}>0$.

Using (1.3), (1.4) and (1.7) in the definition of $(P \phi)(t)$ and applying (1.6), we have

$$
\begin{aligned}
\|P \phi\| & \leq A_{1} K+\int_{0}^{t} e^{-\int \frac{f}{s} a(u) d u}|b(s)|\|\phi\| d s+\int_{0}^{t} e^{-\frac{1}{s} a(s) d s}|h(s)| d s \\
& \leq A_{1} K+\alpha A_{2}+\beta=A_{2}
\end{aligned}
$$

which implies that $(P \phi)(t)$ is bounded.
To see that P is a contraction under the supremum metric, let $\phi, \eta \in S$. Then

$$
\begin{aligned}
\|(P \phi)(t)-(P \eta)(t)\| & \leq \int_{0}^{t} e^{-\int f a(u) d u}|b(s) \| g(\phi(s-r(s)))-g(\eta(s-r(s)))| d s \\
& \leq \int_{0}^{t} e^{-f \int a(u) d u} \mid b(s)\|\phi-\eta\| d s \leq \alpha\|\phi-\eta\|, \quad \text { with } \alpha<1 .
\end{aligned}
$$

Thus, by the contraction mapping principle, P has a unique fixed point, say, y_{0} in S which solves (1.2) and is bounded.

Next we show that the solution y_{0} is HUR stable. From the inequality (2.2) we get

$$
\begin{equation*}
-\varphi(t) \leq y^{\prime}(t)+a(t) y(t)-b(t) g(y(t-r(t)))-h(t) \leq \varphi(t) \tag{3.11}
\end{equation*}
$$

Multiplying the inequality (3.11) by $e^{\int_{0}^{\prime} a(u) d u}$, we obtain

$$
\begin{equation*}
\left|\left(e^{\int_{0}^{t} a(s) d s} y(t)\right)^{\prime}-b(t) g(y(t-r(t))) e^{\int_{0}^{t} a(s) d s}-\int_{0}^{t} e^{-\int_{s}^{t} a(s) d s} h(s) d s\right| \leq \varphi(t) e^{\int_{0}^{t} a(s) d s} \tag{3.12}
\end{equation*}
$$

Integrating the inequality (3.12) from 0 to t, and then multiplying the obtained inequality by $e^{-\int_{0}^{t}(u) d u}$, we obtain

$$
\begin{aligned}
& \left|y(t)-\psi(0) e^{-\int_{0}^{t} a(s) d s}-\int_{0}^{t} e^{-\int_{s}^{t} a(u) d u} b(s) g(y(s-r(s)))-\int_{0}^{t} e^{-\int_{s}^{t} a(s) d s} h(s) d s\right| \\
& \leq \int_{0}^{t} \varphi(s) e^{-\int_{s}^{t} a(u) d u} d s \leq C \varphi
\end{aligned}
$$

It follows from (2.2) that $\|P y-y\| \leq C \varphi$. We estimate the difference

$$
\left\|y(t)-y_{0}(t)\right\| \leq\|P y-y\|+\left\|P y-P y_{0}\right\| \leq C \varphi+\alpha\left\|y-y_{0}\right\| .
$$

Thus

$$
\left\|y(t)-y_{0}(t)\right\| \leq \frac{C \varphi}{1-\alpha},
$$

which means that the inequality (2.2) holds true for all $t \geq 0$.

Example 3.2 Consider the delay half-linear differential equation

$$
\begin{equation*}
y^{\prime}(t)+a(t) y(t)=b(t) \sin (y(t-r(t))+h(t), \tag{3.13}
\end{equation*}
$$

where $a(t)=\frac{1}{1+t}, b(t)=\frac{1}{(1+t)^{3}}, r(t)=0.90 t$ and $h(t)=\frac{e^{-t}}{1+t}$.
One can similarly, as in Example 3.1 establish the validity of conditions (1.3)-(1.6). So, to show that (3.13) is stable in the sense of Hyers-Ulam-Rassias, it remains to estimate the integral

$$
\int_{0}^{t} e^{-\frac{1}{s} a(s) d s}|h(s)| d s=\int_{0}^{t} e^{-\frac{1}{s} \frac{1}{s} d u} \frac{e^{-s}}{1+s} d s=\frac{1-e^{-t}}{1+t} \leq \frac{1}{3}, \quad \forall t \geq 0 .
$$

Hence the conditions of Theorem (3.2) are satisfied.
Corollary 3.2 Assume that $y(t) \in C^{1}\left(R^{+}\right)$satisfies the inequality (2.1) with small continuous initial function $\psi:(-\infty, 0] \rightarrow R$, and that

$$
\begin{equation*}
\int_{0}^{t} e^{-\int_{s}^{f}(\alpha) d u} d s \leq C, \quad \forall t \geq 0 \tag{3.14}
\end{equation*}
$$

If (1.3)-(1.7) hold then the solution of (1.2) with initial continuous function is stable in the sense of Hyers-Ulam.

Proof. It is enough to use Theorem 3.2, with $\varphi=\varepsilon$.
Remark 3.2 Suppose that $y(t) \in C^{1}\left(R^{+}\right)$satisfies the inequality (2.1) (with $\left.a(t) \equiv 0\right)$ with small continuous initial function $\psi:(-\infty, 0] \rightarrow R$. Let $\varphi(t):[0, \infty) \rightarrow(0, \infty)$ be a continuous function such that

$$
\int_{0}^{t} \varphi(s) d s \leq C \varphi(t), \quad \forall t \geq 0 .
$$

and assume that

$$
\int_{0}^{t}|b(s)| d s \leq \alpha<1 .
$$

If (1.5)-(1.7) hold then the solution of (1.2) with initial continuous function is stable in the sense of Hyers-Ulam-Rassias.

4 Conclusion

In this paper we have obtained integral criteria for Hyers-Ulam-Rassias stability of half-linear differential equations with unbounded delay. Some illustrative examples are given.

Acknowledgments

The author thanks the anonymous referees and the editors for their valuable comments and suggestions on the improvement of this paper.

Competing Interests

Author has declared that no competing interests exist.

References

[1] Ulam SM. Problems in modern mathematics. John Wiley \& Sons, New York, USA, Science edition; 1964.
[2] Hyers DH. On the stability of the linear functional equation. Proceedings of the National Academy of Sciences of the United States of America. 1941;27:222-224.
[3] Rassias TM. On the stability of the linear mapping in banach spaces. Proceedings of the American Mathematical Society. 1978;72(2):297-300.
[4] Miura T, Takahasi SE, Choda H. On the hyers-ulam stability of real continuous function valued differentiable map. Tokyo Journal of Mathematics. 2001;24:467-476.
[5] Jung SM. On the Hyers-Ulam-Rassias stability of approximately additive mappings. Journal of Mathematics Analysis and Application. 1996;204:221-226.
[6] Park CG. On the stability of the linear mapping in banach modules. Journal of Mathematics Analysis and Application. 2002;275:711-720.
[7] Gavruta P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. Journal of Mathematical Analysis and Applications. 1994;184(3):431-436.
[8] Jun KW, Lee YH. A generalization of the Hyers-Ulam-Rassias stability of the Pexiderized quadratic equations. Journal of Mathematical Analysis and Applications. 2004;297(1):70-86.
[9] Jung SM. Hyers-Ulam-Rassias stability of functional equations in mathematical analysis. Hadronic Press, Palm Harbor, Fla, USA; 2001.
[10] Park C. Homomorphisms between Poisson JC*-algebras. Bulletin of the Brazilian Mathematical Society. 2005;36(1):79-97.
[11] Park CC, Cho YS, Han M. Functional inequalities associated with Jordan-von Neumanntype additive functional equations. Journal of Inequalities and Applications. 2007;13. Article ID 41820.
[12] Obloza M. Hyers stability of the linear differential equation. Rocznik Nauk.-Dydakt. Prace Mat. 1993;13:259-270.
[13] Obloza M. Connections between Hyers and Lyapunov stability of the ordinary differential equations. Rocznik Nauk.-Dydakt. Prace Mat. 1997;14:141-146.
[14] Alsina C, Ger R. On some inequalities and stability results related to the exponential function. Journal of Inequalities and Application. 1998;2:373-380.
[15] Wang G, Zhou M, Sun L. Hyers-Ulam stability of linear differential equations of first order. Applied Mathematics Letters. 2008;21:1024-1028.
[16] Li Y, Shen Y. Hyers-Ulam stability of nonhomogeneous linear differential equations of second order. International Journal of Mathematics and Mathematical Sciences. 2009;7. Article ID 576852.
[17] Jung SM. Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients. Journal of Mathematical Analysis and Applications. 2006;320(2):59561.
[18] Rus I. Remarks on Ulam stability of the operatorial equations. Fixed Point Theory. 2009;10(2):305-320.
[19] Rus I. Ulam stability of ordinary differential equations. Studia Universitatis Babes-Bolyai: Mathematica. 2009;5(4):125-133.
[20] Cimpean D, Popa D. On the stability of the linear differential equation of higher order with constant coefficients. Applied Mathematics and Computation. 2010;217(8):11-16.
[21] Popa D, Rus I. On the Hyers-Ulam stability of the linear differential equation. Journal of Mathematical Analysis and Applications. 2011;381(2):530-537.
[22] Popa D, Rus I. Hyers-Ulam stability of the linear differential operator with nonconstant coefficients. Applied Mathematics and Computation. 2012;219(4):1562-1568.
[23] Takahasi E, Miura T, Miyajima S. On the Hyers-Ulam stability of the Banach space-valued differential equation $y^{\prime}=y$. Bulletin of the Korean Mathematical Society. 2002;39(2):309315.
[24] Jung SM. Hyers-Ulam stability of linear differential equations of first order. Journal of Mathematics Analysis and Application. 2005;311(1):139-146.
[25] Miura T, Miyajima S, Takahasi SE. A characterization of Hyers-Ulam stability of first order linear differential operators. Journal of Mathematics Analysis and Application. 2003;286:136146.
[26] Li Y. Hyers-Ulam stability of linear differential equations. Thai Journal of Mathematics. 2010;8(2):215-219.
[27] Gavruta P, Jung S, Li Y. Hyers-Ulam stability for second-order linear differential equations with boundary conditions. EJDE. 2011;80:1-7. Available: http://ejde.math.txstate.edu/Volumes/2011/80/gavruta.pdf
[28] Qarawani MN. Hyers-Ulam stability of linear and nonlinear differential equations of second order. International Journal of Applied Mathematics. 2012;1(4):422-432.
[29] Qarawani MN. On Hyers-Ulam stability for nonlinear differential equations of nth order. International Journal of Analysis and Applications. 2013;2(1):71-78.
[30] Jung S, Brzdek J. Hyers-Ulam stability of the delay equation $y^{\prime}=\lambda y(t-\tau)$. abstract and applied analysis. 2010;10. Article ID 372176,
Available: http://dx.doi.org/10.1155/2010/372176
[31] Burton TA. Stability by fixed point theory for functional differential equations. Dover Publications, Inc., Mineola, NY, USA; 2006.
© 2015 Qarawani; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
www.sciencedomain.org/review-history.php?iid=937\&id=6\&aid=8302

[^0]: *Corresponding author: mkerawani@qou.edu;

