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Abstract 
 

In this paper we use the fixed point technique to establish the Hyers-Ulam-Rassias stability for 
half-linear differential equations with unbounded delay. Some illustrative examples are given. 
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1 Introduction 
 
The study of stability problems for various functional equations originated from a famous talk given 
by Ulam in 1940 (see [1]). In the talk, Ulam discussed a problem concerning the stability of 
homomorphisms. A significant breakthrough came in 1941, when Hyers [2] gave a partial solution to 
Ulam's problem. In 1978, Rassias [3] provided a remarkable generalization of the Ulam-Hyers 
stability of mappings by considering variables. During the last two decades very important 
contributions to the stability problems of functional equations were given by many mathematicians 
(see [4-11]). A generalization of Ulam's problem was proposed by replacing functional equations 

with differential equations: The differential equation 
( )

( , ( ), ( ),..., ( )) 0
n

F t y t y t y t′ =  has the 

Hyers-Ulam stability if for given 0ε >  and a function y such that 
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( )
( , ( ), ( ),..., ( ))

n
F t y t y t y t ε′ ≤  

 

there exists a solution 
0

y of the differential equation such that 
0

| ( ) ( ) | ( )y t y t K ε− ≤  and  

0

lim ( ) 0.K
ε

ε
→

=   

 
Obloza seems to be the first author who has investigated the Hyers-Ulam stability of linear 
differential equations (see [12,13]). Thereafter, Alsina and Ger published their paper [14], which 

handles the Hyers-Ulam stability of the linear differential equation ( ) ( )y t y t′ = : If a differentiable 

function ( )y t is a solution of the inequality | ( ) ( ) |y t y t ε′ − ≤ for any  ( , )t a∈ ∞  , then there exists a 

constant c such that | ( ) | 3
t

y t ce ε− ≤   for all  ( , )t a∈ ∞ . Recently, the Hyers-Ulam stability 

problems of linear differential equations of first order and second order with constant coefficients 
were studied by using the method of integral factors (see [15,16]). The results given in [17,18,19] 
have been generalized by Cimpean and Popa [20] and by Popa and Rus [21,22] for the linear 
differential equations of nth order with constant coefficients. In addition to above-mentioned studies, 
several authors have studied the Hyers-Ulam stability for differential equations of first and second 
order (see [23-27]). The Hyers-Ulam stability for various differential equations has been established 
by the author (e.g. see [28,29]). Jung and Brzdek [30] proved a similar type of stability for the delay 
linear equation with constant coefficient. The basic idea of proving is based on using the known 

general solution of ( ),y y tλ τ′ = − where 0λ >  and 0τ > are real constants, where is given by 

[ / ] 1 1

1

( )

( 1)!
( ) .

t n n

n

t n

n
y t

τ
λ τ

α
+ +

=−

−
+= ∑  It should be noted that the equation (1.1) considered in this paper, is 

completely different than that investigated by Jung and Brzdek [30]. Burton [31] has used fixed point 
theory to establish Liapunov stability for functional differential equations. 
 
Here, we use the fixed point approach to establish the Hyers-Ulam-Rassias stability for the half-
linear differential equation with unbounded delay 
 

( ) ( ) ( ) ( ) ( ( ( ))).y t a t y t b t g y t r t′ = − + −                                                                (1.1) 

 
We also investigate the half-linear differential equation  
 

( ) ( ) ( ) ( ) ( ( ( ))) ( ).y t a t y t b t g y t r t h t′ = − + − +                                                      (1.2) 

 

Here, we assume that  ( ), ( )a t b t  and ( )r t  are continuous, and that 

 

   

0

( ) as ,

t

a s ds t→ ∞ → ∞∫                                                                                   (1.3)  

 

0

( )

( ) 1, 0,

t
t

s
a u du

e b s ds tα
− ∫

≤ < ≥∫                                                                        (1.4) 

 

( ) 0, ( ) as ,r t t r t t≥ − → ∞ → ∞                                                                        (1.5) 

 

Assume that there is a number 0L >  so that , ,x y L≤ implies that 
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(0) 0 and ( ) ( ) .g g x g y x y= − ≤ −                                                                 (1.6) 

 

We also suppose that ( ) : [0, )h t R∞ → with 

 

0

( )

( ) , 0.

t

s

t
a u du

e h s ds tβ
− ∫

≤ ≥∫                                                                             (1.7) 

 

Let [0, )R
+

= ∞  and { }: | , ( ) ( ) if 0, .S R R L t t t Cφ φ φ ψ φ= → ≤ = ≤ ∈  

 

2 Preliminaries 
 
Definition 2.1 We say that equation (1.2) (or (1.1) with ( ) 0h t ≡ ) has the Hyers-Ulam-Rassias 

(HUR) stability with respect to ϕ  if there exists a positive constant 0k > with the following property: 

For each 
1

( ) ( )y t C R
+

∈  , if    

 

| ( ) ( ) ( ) ( ) ( ( ( ))) ( ) | ( ),y t a t y t b t g y t r t h t tϕ′ + − − − ≤                                          (2.1) 

 

then there exists some 
0
( )y t of the equation (1.2) such that 

0
| ( ) ( ) | ( ).y t y t k tϕ− ≤  

 
Theorem 2.1 the contraction mapping principle 
  

Let ( , )S ρ  be a complete metric space and let : .P S S→  If there is a constant 1α < such that 

for each pair 
21

, Sφφ ∈ we have 
1 2 1 2

( , ) ( , )P Pρ φ φ ρ φ φα≤  then there is one and only one point  

Sφ ∈  with  .Pφ φ=   

 

3 Main Results on Hyers-Ulam-Rassias Stability 
 
Theorem 3.1 Suppose that  

1
( ) ( )y t C R

+
∈  satisfies the inequality (2.1) (with ( ) 0h t ≡ ) with small 

continuous initial function : ( , 0] Rψ −∞ → . Let ( ) : [0, ) (0, )tϕ ∞ → ∞  be a continuous function 

such that 
 

0

( )
( ) ( ), 0.

tt

s
a u du

s e ds C t tϕ ϕ
−

≤ ∀ ≥
∫

∫                                                                     (3.1) 

 
If (1.3)-(1.6) hold then the solution of (1.1) with initial continuous function is stable in the sense of 
Hyers-Ulam-Rassias. 
 

Proof. Let  : ( , 0] Rψ −∞ →  be a continuous initial function with  ( ) .tψ δ<  Define  

{ }: | , ( ) ( ) if  0, ,S R R L t t t Cφ φ φ ψ φ= → ≤ = ≤ ∈  where ⋅  is the supremum metric. 

Then  ( , )S ⋅  is a complete metric space. Now suppose that (1.3) holds. For L  and  α  we find  

0δ >  so that  ,K L Lδ α+ ≤  where 
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0

0

( )

sup{ }.

t

t

a s ds

K e
≥

−
=

∫
 

 
Use the variation of parameters formula to write (1.1) as 
 

0

0

( ) ( )

( ) (0) ( ) ( ( ( ))) .

t t
t

s
a s ds a s ds

y t e e b s g s r s dsψ φ
− ∫ − ∫

= + −∫  

 

Define  :P S S→    by  

 

( ) ( ) ( ) if  0,P t t tφ ψ= ≤  

 

and for  0t ≥  let  

 

( ) 0

0

( ) ( )

( ) (0) ( ) ( ( ( ))) .

t t
t

u
s

a s ds a u d

P t e e b s g s r s dsφ ψ φ
− ∫ − ∫

= + −∫                               (3.2) 

 

It is clear that for ,S Pφ φ∈  is continuous. Let  ( )t Sφ ∈   with Lφ ≤ , for some positive 

constant L . Letψ be a small given continuous initial function with , 0ψ δ δ≤ > . Then using 

(1.3), (1.4) in the definition of ( ) ( )P tφ , we have 

 

0

0

( )

( )

( ) ( ( ( )))

( )

t
t

s

t
t

s

a u du

a u du

P K e b s g s r s ds

K e b s Lds K L

φ δ φ

δ δ α

− ∫

− ∫

≤ + −

≤ + ≤ +

∫

∫

                                                (3.3) 

 

which implies that .P Lφ ≤ Thus (3.3) implies that ( ) ( )P tφ  is bounded. 

 

To see that P is a contraction under the supremum metric, let , .Sφ η ∈ Then   

 

( )
0

0

( )

( )

( ) ( )( ) ( ) ( ( ( ))) ( ( ( )))

( ) , with 1.

t
t

s

t
t

s

a u du

a u du

P t P t e b s g s r s g s r s ds

e b s ds

φ η φ η

φ η α φ η α

− ∫

− ∫

− ≤ − − −

≤ − ≤ − <

∫

∫

 

 

Thus, by the contraction mapping principle, P has a unique fixed point, say, 
0

y in S which solves 

(1.1) and is bounded. 
 

Next we show that the solution
0

y is stable in Hyers-Ulam-Rassias. Suppose we have the inequality 
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( ) ( ) ( ) ( ) ( ) ( ( ( ))) ( ).t y t a t y t b t g y t r t tϕ ϕ′− ≤ + − − ≤                                          (3.4) 

Multiplying the inequality (3.4) by  0
( )

,

t

a u du

e
∫

 we obtain 

 

0

0 0 0 0

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ( ( )))

( ) .
t

t t t t

ss

a s ds

a s d a s d a s ds a s ds

t e e y t a t y t e b t g y t r t e

t e

ϕ

ϕ

′− ≤ + − −

∫≤

∫ ∫ ∫ ∫
     

 
Or, equivalently, we have  
 

0 0 0

0

( ) ( ) ( )

( )

( ) ( ) ( ) ( ( ( )))

( ) .

t t t
s

t

a s d a s ds a s ds

a s ds

t e e y t b t g y t r t e

t e

ϕ

ϕ

′

− ≤ − −

≤

 
 
 

∫ ∫ ∫

∫

                          (3.5) 

Integrating (3.5) from 0 to ,t and then multiplying the obtained inequality by  0
( )

,

t

a u du

e
−∫

 we obtain  

 

0

0 0

( ) ( ) ( )
( ) (0) ( ) ( ( ( ))) ( ) .

t t tt t
u

s s
a s ds a u du a u d

y t e e b s g y s r s s e ds Cψ ϕ ϕ
− − −

− − − ≤ ≤
∫ ∫ ∫

∫ ∫  

 

Using (3.2) we infer that  .Py y Cϕ− ≤  To show that  
0

y  is stable we estimate the difference 

 

0 0 0
( ) ( ) .y t y t Py y Py Py C y yϕ α− ≤ − + − ≤ + −  

 

Thus 

0
( ) ( )

1

C
y t y t

ϕ

α
− ≤

−
 

 

which means that (2.1) (with  ( ) 0h t ≡  ) holds true for all  0t ≥  . 

 
Example 3.1 Consider the delay half-linear differential equation  
 

( ) ( ) ( ) ( ) sin( ( ( ))),y t a t y t b t y t r t′ + = −                                                                (3.6) 

 

where  
( )

3

1 1( ) , ( )
1 1

a t b t
t t

= =
+ +

 and  ( ) 0.05 .r t t=   

 
We estimate the integrals  
 

0 0

1
( ) ln(1 ) as ,

1

t t

a s ds ds t t
s

= = + → ∞ → ∞
+

∫ ∫  

 

and 
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( )

( )

( )

( ) ( )

3 3

0 0 0

2 2

0

1( ) 1
ln1

1
1 1

( )
1 1

1 1 1
1, 0.

1 41 1

t t t

t

t t

a u du du t
u

ss se b s ds e ds e ds
s s

t
ds t

t s t
α

− ∫ − ∫ +−+
+= =

+ +

= = ≤ ≤ < ≥
+ + +

∫ ∫ ∫

∫

 

 

If we set ( ) t
t eϕ = , then we have     

 

0

1

1

0

( )

( ) ( ), 1, 0.
1

t

t
tt du

u
s s

t
s

a u du

e dss e ds C t with C t
te

e
t

ϕ ϕ
− ∫

+−
== ≤ = ∀ ≥

+

∫
∫∫  

 

Now since ( ( ( ))) sin( (0.95 ))g y t r t y t− = , ( ) ( )g x g y− sin sin .x y x y= − ≤ −  The conditions 

of Theorem 3.1 are satisfied, hence the Eq. (3.6) is HUR stable for  0.t ≥   

 
We now state the following corollary. 
 

Corollary 3.1 Assume that 
1

( ) ( )y t C R
+

∈ satisfies the inequality (3.4) with small continuous initial 

function : ( , 0] Rψ −∞ → , and that 

 

0

( )
, 0.

tt

s
a u du

e ds C t
−

≤ ∀ ≥
∫

∫                                                                                   (3.7) 

 
If (1.3)-(1.6) hold then the solution of (1.1) with initial continuous function is stable in the sense of 
Hyers-Ulam. 
 
Proof. It is enough to use Theorem 3.1, with  .ϕ ε=   

 

Remark 3.1 Suppose that 
1

( ) ( )y t C R
+

∈ satisfies the inequality (2.1) (with ( ) 0, ( ) 0h t a t≡ ≡ ) with 

small continuous initial function : ( , 0] Rψ −∞ → . Let ( ) : [0, ) (0, )tϕ ∞ → ∞  be a continuous 

function such that 
 

0

( ) ( ), 0.

t

s ds C t tϕ ϕ≤ ∀ ≥∫                                                                                    (3.8) 

 
and assume that  
 

0

( ) 1, 0.

t

b s ds tα≤ < ∀ ≥∫  

 
If (1.5), (1.6) hold then the solution of (1.1) with initial continuous function is stable in the sense of 
Hyers-Ulam-Rassias. 
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Theorem 3.2 Suppose that  
1

( ) ( )y t C R
+

∈  satisfies the inequality (2.1) with small continuous 

initial function  : ( , 0] Rψ −∞ →  . Let  ( ) : [0, ) (0, )tϕ ∞ → ∞   be a continuous function such that 

 

0

( )
( ) ( ), 0.

tt

s
a u du

s e ds C t tϕ ϕ
−

≤ ∀ ≥
∫

∫                                                                    (3.9) 

 
If (1.3)-(1.7) hold then the solution of (1.2) with initial continuous function is stable in the sense of 
Hyers-Ulam-Rassias 
 

Proof. First suppose that (1.3) holds. Then we can find  0K >  so that 

 

0

0

( )
sup{ }.

s

t

t
a s d

K e
≥

−
=

∫
 

 

Let  : ( , 0] Rψ −∞ →  be a continuous initial function with  
1

( ) ,t Aψ <  and determine  
2

0A >  

with 
 

1 2 2
.KA A Aα β+ + =  

 

 Let { }2
: | , ( ) ( ) if 0, ,S R R A t t t Cφ φ φ ψ φ= → ≤ = ≤ ∈ where ⋅   is the supremum metric.  

 

Then ( , )S ⋅ is a complete metric space. 

 
Using the variation of parameters formula we write (1.2) as 
 

0

0 0

( ) ( ) ( )

( ) (0) ( ) ( ( ( ))) ( ) .

t t t
t t

s
s s

a s ds a s ds a s d

y t e e b s g s r s ds e h s dsψ φ
− ∫ − ∫ − ∫

= + − +∫ ∫  

 

Define  :P S S→    by ( ) ( ) ( ) if  0,P t t tφ ψ= ≤  

and for  0t ≥  let  

 

( ) 0

0 0

( ) ( ) ( )

( ) (0) ( ) ( ( ( ))) ( ) .

t t t
t t

s
s s

a s ds a s ds a s d

P t e e b s g s r s ds e h s dsφ ψ φ
− ∫ − ∫ − ∫

= + − +∫ ∫       (3.10) 

 

It is clear that for Sφ ∈ , Pφ  is continuous. Assume that ( )t Sφ ∈ with  
2

Aφ ≤  , and that ψ  is a 

small given continuous initial function with
1 1
, 0A Aψ ≤ > . 

 

Using (1.3), (1.4) and (1.7) in the definition of  ( ) ( )P tφ   and applying (1.6), we have 

 

1

0 0

1 2 2

( ) ( )

( ) ( )

t t
t t

s s
a u du a s ds

P A K e b s ds e h s ds

A K A A

φ φ

α β

− ∫ − ∫
≤ + +

≤ + + =

∫ ∫  
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which implies that ( ) ( )P tφ is bounded. 

 

To see that P is a contraction under the supremum metric, let , .Sφ η ∈ Then   

 

( )
0

0

( )

( )

( ) ( )( ) ( ) ( ( ( ))) ( ( ( )))

( ) , with 1.

t

s

t

s

t

t

a u du

a u du

P t P t e b s g s r s g s r s ds

e b s ds

φ η φ η

φ η α φ η α

− ∫

− ∫

− ≤ − − −

≤ − ≤ − <

∫

∫

 

 

Thus, by the contraction mapping principle, P has a unique fixed point, say,  
0

y   in  S   which 

solves (1.2) and is bounded. 
 

Next we show that the solution  y0  is HUR stable. From the inequality (2.2) we get 
 

( ) ( ) ( ) ( ) ( ) ( ( ( ))) ( ) ( )t y t a t y t b t g y t r t h t tϕ ϕ′− ≤ + − − − ≤                              (3.11) 

 

Multiplying the inequality (3.11) by  0
( )

,

t

a u du

e
∫

 we obtain 

 

0 0 0

0

( )( ) ( ) ( )
( ) ( ) ( ( ( ))) ( ) ( )

tt t tt

s
a s dsa s ds a s ds a s ds

e y t b t g y t r t e e h s ds t eϕ

′

− ∫
− − − ≤

 
 
 

∫ ∫ ∫
∫       (3.12) 

 

Integrating the inequality (3.12) from 0  to ,t  and then multiplying the obtained inequality by  

0
( )

,

t

a u du

e
−∫

 we obtain  

 

0

0 0

0

( )( ) ( )

( )

( ) (0) ( ) ( ( ( ))) ( )

( )

t
t tt t

s s

tt

s

a s dsa s ds a u du

a u du

y t e e b s g y s r s e h s ds

s e ds C

ψ

ϕ ϕ

− ∫− −

−

− − − −

≤ ≤

∫ ∫

∫

∫ ∫

∫

 

 

It follows from (2.2) that .Py y Cϕ− ≤ We estimate the difference 

 

0 0 0
( ) ( ) .y t y t Py y Py Py C y yϕ α− ≤ − + − ≤ + −  

 
Thus 
 

0
( ) ( )

1

C
y t y t

ϕ

α
− ≤

−
, 

 

which means that the inequality (2.2) holds true for all  0.t ≥  
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Example 3.2 Consider the delay half-linear differential equation  
 

( ) ( ) ( ) ( ) sin( ( ( )) ( ),y t a t y t b t y t r t h t′ + = − +                                                    (3.13) 

 

 where  
( )

3

1 1( ) , ( ) , ( ) 0.90
1 1

a t b t r t t
t t

= = =
+ +

 and  ( ) .
1

t
eh t

t

−

=
+

  

 
One can similarly, as in Example 3.1 establish the validity of conditions (1.3)-(1.6). So, to show that 
(3.13) is stable in the sense of Hyers-Ulam-Rassias, it remains to estimate the integral  
 

1( )
1

0 0

1 1
( ) , 0.

1 1 3

t t
t t s ta s ds du

u
s s

e e
e h s ds e ds t

s t

− −− ∫ − ∫
+ −

= = ≤ ∀ ≥
+ +

∫ ∫  

 
Hence the conditions of Theorem (3.2) are satisfied. 
 

Corollary 3.2 Assume that  
1

( ) ( )y t C R
+

∈  satisfies the inequality (2.1) with small continuous initial 

function  : ( , 0] Rψ −∞ →  , and that 

 

( )

0

, 0.

t
t a u duse ds C t

− ∫
≤ ∀ ≥∫                                                                                   (3.14) 

 
If (1.3)-(1.7) hold then the solution of (1.2) with initial continuous function is stable in the sense of 
Hyers-Ulam. 
 
Proof. It is enough to use Theorem 3.2, with  .ϕ ε=   

 

Remark 3.2 Suppose that  
1

( ) ( )y t C R
+

∈  satisfies the inequality (2.1) ( with ( ) 0a t ≡  ) with small 

continuous initial function : ( , 0] .Rψ −∞ →  Let  ( ) : [0, ) (0, )tϕ ∞ → ∞ be a continuous function 

such that 
 

0

( ) ( ), 0.

t

s ds C t tϕ ϕ≤ ∀ ≥∫  

 
and assume that  
 

0

( ) 1.

t

b s ds α≤ <∫  

 
If (1.5)-(1.7) hold then the solution of (1.2) with initial continuous function is stable in the sense of 
Hyers-Ulam-Rassias. 
 

4 Conclusion 
 
In this paper we have obtained integral criteria for Hyers-Ulam-Rassias stability of half-linear 
differential equations with unbounded delay. Some illustrative examples are given. 
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