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Abstract 
 
In this paper, Liouville-type theorems of nonnegative solutions for some elliptic integral systems are consid-
ered. We use a new type of moving plane method introduced by Chen-Li-Ou. Our new ingredient is the use 
of Stein-Weiss inequality instead of Maximum Principle. 
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1. Introduction 
 
In this paper we consider the nonnegative solutions of 
the systems of integral equations in 2N N   , 0  
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The integral systems are closely related to the follow-

ing systems of differential equations in N  
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In fact, every positive smooth solution of PDE (3)(or 
(4)) multiplied by a constant satisfies (1) (or (2)) respec-
tively. This equivalence between integral and PDE sys-
tems can be verified as in the proof of Theorem 1 in [1]. 
For single equations, we refer to [2]. Here, in (3) and (4), 

we have used the following definition: 

/2( ) ( )u u
      

where   is the Fourier transformation and   its in-
verse. 

The question is to determine for which values of the 
exponents pi and qi the only nonnegative solution (u, v) 
of (1) and (2) is trivial, i.e., (u; v) = (0, 0). When 2 , 

is the case of the Emden-Fowler equation 

0,0  u   uu k  in N         (5) 

When )3)(2/()2(1  NNNk , it has been pro- 

ved in [3,4] that the only solutions of (5) is u = 0. In di-
mension N = 2, a similar conclusion holds for  k0 . 
It is also well known that in the critical case, /)2(  Nk  

)2( N , problem (5) has a two-parameter family of so-

lutions given by 
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where 2
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])2([ dNNc   with d > 0 and x N . If 

p1,q1 > 1, p2,q2 ≥ 0 and   /)2(2,2min 2121  Nqqpp  

)2( N , using Pokhozhaev’s second identity, Chen and 

Lu [5] have proved that the problem (4) has no positive 
radial solutions with )()( xuxu  . Suppose that p1, p2, 

q1 and q2 satisfy 1,,1,0 2211  qp qp  and other re-

lated conditions, using the method of integral relations, 
Mitidieri [6] has proved that the problem (4) has no posi-
tive solutions of C2( N ). In the present paper, we study 
Problem (1) and Problem (2) by virtue of the moving 
plane method and obtain the following theorems of non-
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existence of positive solutions in the weaker regularity. 
Theorem 1.1: Let (u, v) be a nonnegative solution of 

Problem (1) and 
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and v are trivial. 
Theorem 1.2: Let (u, v) be a nonnegative solution of 

Problem (2) and 
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Remark 1.1: In the proof of Theorem 1.1 or Theorem 

1.2, we only treat the case 
 2121 ,,, qqpp

N
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tively. The remaining cases can be handled in the same 
way. We leave this to the interested reader. 

We shall need the following doubly weighted Hardy- 
Littlewood-Sololev inequality of Stein and Weiss (see, 
for example, [7]) 

( ) p NN q N , , ,p ,N LL
V x, y f y dy f     
     

   (7) 

where 
 

 yyxxyxV ),( , pN  /0  , 0 /N q  , 

1/1/1  pp  and qNp /11/)(/1   . 

There are some related works about this paper. For 
2 , 011  qp  and 21 p , )2/()2(2  NNq  

(but p2 and q2 are not both equal to )2/()2(  NN ), 

Figueiredo and Felmer (see [8]) proved the similar Liou-
ville-type theorems to Theorem 1.1 and Theorem 1.2 on 

nonnegative positive of C2( N ) using the moving plane 
method and Maximum Principle. Busca and Manásevich 
obtained a new result (see [9]) using the same method as 
in [8]. It allows p2 and q2 to reach regions where one of 
the two exponents is supercritical. In [10], Zhang, Wang 

and Li first introduced the Kelvin transforms and gave a 
different proof using the method of moving spheres. This 
approach was suggested in [11], while Li and Zhang had 
made significant simplifications in the proof of some 
Liouville theorems for a single equation in [12]. In this 
paper, by virtue of Hardy-Littlewood-Sololev inequality 
instead of Maximum Principle, we consider the integral 
systems (1) and (2) with N 0  and the general 

nonlinearities. Therefore, it is a generalization of Liou-
ville-type theorems in [5,6,8,9,13-15].  

Let us emphasize that considerable attention has been 
drawn to Liouville-type results and existence of positive 
solutions for general nonlinear elliptic equations and 
systems, and that numerous related works are devoted to 
some of its variants, such as more general quasilinear 
operators, and domains. We refer the interested reader to 
[16-24], and some of the references therein. 

In the following, we shall use C to denote different 
constants which depend only on N,  , iq , ip (i = 1,2) 

and the solutions u and v in varying places. 

 
2. Kelvin-Type Transform and Proof of 

Theorem 1.1 
 
To prove Theorem 1.1, we shall use the method of mov-
ing planes. We first introduce the Kelvin-type transforms 
u and v as follows, 

)()(
2

x

x
uxxu

N



 and )()(

2
x

x
vxxv

N



 

which are defined for x N  0\ . Then by elementary 

calculations, one verifies that (1) and (2) are transformed 
into the following form: 

    
    

1 21 2

1 21 2

N

N

N s sq q

N r rp p

u( x ) x y y u y y v y dy

v( x ) x y y v y y u y dy





  

  

   


   










 

(8) 

and 

1 21 2

1 21 2

/2

/2

( )

( )

s sq q

r rp p

u x u x v

v x v x u





 

 

   

  

      (9) 

with 0)()(  ii qNNs  , )()(   NNri  

)2,1(0  i  pi , and 

   

   

1 2

1 2

N

N

N s q q

N r p p

u( x ) x y y u y v y dy

v( x ) x y y v y u y dy





 

 

  


 







 (10) 



Z. C. ZHANG 
 

Copyright © 2010 SciRes.                                                                                  AM 

96 

and 

1 2

1 2

/2

/2

( )

( )

s q q

r p p

u x u v

v x v u









  

 

           (11) 

where 0))(()( 21  qqNNs   and  )( Nr  

0))(( 21  ppN  . Obviously, both )(xu  and )(xv  

have singularities at origin. Since u is locally 21  LL   

and v is locally 12  LL   (in Theorem 1.1), it is easy to 

see that )(xu  and )(xv  have no singularity at infinity, 

i.e., for any domain   that is a positive distance away 
from the origin, 
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This implies (14). Similarly, we can get (15). So 
Lemma 2.1 is proved. 

Proof of Theorem 1.1. 

Outline: Let x1 and x2 be any two points in N . We 
shall show that 

)()( 21 xuxu   and )()( 21 xvxv   

and therefore u and v must be constants. This is impossi-
ble unless u = v = 0. To obtain this, we show that u and v 
are symmetric about the midpoint (x1 + x2) / 2. Since the 
integral equations are invariant under translation, we may 
assume that the midpoint is at the origin. Let u and v  
be the Kelvin-type transformations of u and v respec-
tively. Then what left to prove is that u and v are sym-
metric about the origin. We shall carry this out in the 
following three steps. 
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By conditions (12) and (13), we can choose N suffi-
ciently large, such that for N , we have 
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Then (18) implies that 
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and therefore u
  must be measure zero, and hence 

empty. Similarly, one can show that  v
  is empty. 

Step 2. Now we have that for N , 

)()( xuxu   and )()( xvxv     x . (19) 

So the plane can start moving continuously from 
N  to the right as long as (19) holds. Suppose that 

there exists 00   such that, on  0
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but meas  0 0
( ) ( ) 0x u x u x     or meas  0

x   

0
( ) ( ) 0v x v x  . 

We shall show that the plane can move further to the 
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Step 3. If the plane stops at 00  , then )(xu  and 
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x1 = 0 . This implies that )(xu  and )(xv  have no 

singularity at the origin. But Equation (8) tells us that 
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3. Proof of Theorem 1.2 
 
In this section we establish Theorem 1.2. The proof is 
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  is also empty. 
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