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ABSTRACT 
 

In this work, we introduced new useful formulas for one-dimensional differential transform and 
applied the differential transform method to selected linear ordinary differential equations. This 
study showed that this method is powerful and efficient in finding series solutions for linear 
differential equations and capable of reducing the size of calculations comparing with other 
methods. 
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1. INTRODUCTION 
 
The idea of differential transform presented               
by G. E. Pukhov [1] in 1982 and the concept of 

differential transform proposed first by Zhou [2] in 
1986 when applied to solve linear and nonlinear 
initial value problems in electric circuit analysis.  
The (Pukhov-Zhou) differential transform method 
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presented as a new method based on Taylor 
series [3-14] and consider as a semi-analytical 
technique uses the Taylor series to construct the 
solutions of differential equations in the form of a 
power series. This method represents an 
iterative procedure for obtaining analytic series 
solutions of differential equations and useful for 
obtaining exact and approximate solutions of 
linear ordinary differential equations [4-6] and 
system of linear ordinary differential equations [8-
9]. The main aims in this work are to introduce 
new useful algorithms for one-dimensional 
differential transform and applied the differential 
transform method to selected linear ordinary 
differential equations. 
 
2. THE ONE-DIMENSIONAL DIFFEREN-

TIAL TRANSFORM 
  
In this section, we introduce the concept of one-
dimensional differential transform and review 
some basic fundamental theorems [4-13]. To do 

that, we assume that ( )f x  be a ( )C I∞  

function in an open interval of R , and 0x  be any 

point of I .  Then the Taylor series of ( )f x  

about 0x  can be represented by 
 

( ) ( )( )

0
0

0

( )
!

k

k

k
x x

f x
f x x x

k

∞

=
=

 
= −∑  

 
          

(2.1) 

 
Note that, throughout this work, we assume that 

( )f x  is an analytic function at every point of I . 
 

Definition: Let ( )f x  be an analytic function 

about 0x , then the thk  order differential 

transform  of ( )f x  is defined as 
 

( ){ } ( )
0

( )
:

!T

x x

kf x
D f x

k
=

 
=  
 

.                (2.2) 

 

In definition (2.1), ( ){ }TD f x  represents the 

one-dimensional differential transform of ( )f x

about 0x and it usually denoted by ( )F k and 

throughout our work, we will take 0 0x = , which 

reduces the definition (2.1) to 
 

( ){ } ( )( ) 0
( ) :

!

k

T

f
D f x F k

k
= = .             (2.3) 

 
Note that, the inverse differential transform of 

( )F k denoted by { }1 ( )TD F k− is defined as 

 

{ } ( )1

0
( ) : ( ) k

T

k

D F k f x F k x−
∞

=
= = ∑

       

(2.4) 

 

For example { } / !kx
TD e kα α=

, { } ( ) ( )cos / ! cos /2k
TD x k kα πα=

, 
respectively, where,α is a constant. 
 
Theorem (1): Let ( )f x and ( )g x be analytic 

functions, with differential transforms ( )F k and

( )G k respectively, then 
 

( ) ( ){ } ( ){ } ( ){ } ,T T TD f x g x D f x D g xα β α β+ = +
(2.5) 

 

{ } { } { }1 1 1( ) ( ) ( ) ( ) ,T T TD F k G k D F k D G kα β α β− − −+ = +
(2.6) 

 

where α  and β  are constants. The proof of the 
linearity property follows immediately from the 
definitions (1) and (2). 
 

Theorem (2): Let ( )f x be an analytic function, 

with { }( ) ( )TD f x F k= , then 
 

( ) ( )!
( )

!

n

T n

d f x k n
D F k n

dx k

+  = + 
           

(2.7) 

 
In fact, 
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=
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0

0( )!
! ( )!

k n

k
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k
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=
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( )( ) 0( )! ( )!
( )

! ( )! !

k nfk n k n
F k n

k k n k

++ += = +
+

.  (2.8) 
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Theorem (3): Let ( )F k be the differential 

transform of ( ) mf x x= , then ( ) kmF k δ= , 

where, kmδ is the Kronecker delta. The proof of 

this theorem follows immediately from identity

0

m k
km

k

x xδ
∞

=

≡∑ . 

 

Theorem (4): Let ( )f x and ( )g x be analytic 
functions and 
 

0

( ) ( )
x

f x g t d t=∫ ,                                       (2.9) 

 
then the differential transform of the function

( )f x is given by 
 

( ){ } ( 1)
T

G k
D f x

k

−= ,                       (2.10) 

 
where ( )G k  is the differential transform of ( )f x .  

Because ( ) ( )f x g x′ = ,  we get from (2.8) 

( ) ( ) ( )( ) ( 1) ( 1)0 0 0( 1)!
( 1)

! ! ( 1)! ( 1)!

k k kg f fk
k

k k k k

+ ++= = +
+ +

. 

 
This can be written in the form 
 

( ) ( )( ) ( 1)0 01

! ( 1)!

k kf g

k k k

−

=
−

, 

 
which his yields the formula (2.10). 
 

Theorem (5): Let 
1 ( )f x and 2 ( )f x be analytic 

functions, with
1 2( ) ( ) ( )f x f x f x= ⋅ , then 

 

( ){ } ( ) ( )1 2
0

T

k

n
f x F n F k nD

=
= −∑ ,              (2.11) 

 
where 

1 ( )F k and
2 ( )F k are the differential 

transforms of the functions
1( )f x  and 

2 ( )f x
respectively.  To prove (2.11), we first write 
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f f x x
n k n n k n

−−∞

= =
= ∑ ∑

− −
 

 
Next, applying the differential transform on both sides of the above equation yields the formula (2.11). 
 
3. NEW FORMULAS  
 
In this section, we introduce new basic formulas for the one-dimensional differential transform.  
 

Theorem (6): Let ( )f x , be an analytic function, with { }( ) ( )TD f x F k= , then 

 

{ } ( )( )

0

( )!
( )

( )!

k
m n

T im
i

k n i
D x f x F k n i

k i
δ

=

+ −= + −
−∑                                                             (3.1) 

 

To prove the formula (3.1), we make use of (8) and { }m
T kmD x δ= .  This enables us to write 

 

( ) { }1
m

T kmF k D x δ= =  { }( )
2

( )!
( ) ( ) ( )

!
n

T

k n
F k D f x F k n

k

+= = + .                                      (3.2) 
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Then, the formula (2.11) leads to 
 

{ } ( ) ( )( )
1 2

0
( )m n

T

k

i
D x f x F i F k i

=
= −∑

           
(3.3) 

 
Finally, if we substitute (3.2) into (3.3), we can 
establish the formula (3.1). Note that, for 0m = , 
the formula (3.1) reduces to the formula (2.7). 
 
Corollary (1): Let ( )f x , be an analytic function, 

with { }( ) ( )TD f x F k= , then 

 

{ } ( )
1

( )

0

( ) ( )
n

n n
T

i

D x f x k i F k
−

=

= −∏ .       (3.4) 

 

Note that, making use of (3.1) and the identity  
 

( 1)!
!

( 1)( )( 1)( 2)....( 1)

k n
k

k n k n k n k n k

− +=
− + − − − − − −

, 

(3.5) 
 

we can easily establish the formula (3.4). 
 
Corollary (2):  Let ( )f x be an analytic function, 

with { }( ) ( )TD f x F k= , then 

 

( ){ } ( )
( ) ( )( )

0

!

! !

i
x n

T

k

i

k n i
D e f x F k n i

i k i
α α

=

+ −
= + −

−∑
 (3.6) 

To prove (3.6), we make use of (2.2) and (2.7) to write 

 

( ) { }1 !

k

t
TF k D e

k
α α= = , ( ) { }( )

2

( )!
( ) ( )

!
n

T

k n
F k D f x F k n

k

+= = + .   (3.7) 

 
Then, the formula (2.11) leads to 
 

{ } ( ) ( )( )
1 2

0 0

( )!
( )

! ( )!

i
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T

k k

i i

k n i
D e f F i F k i F k n i
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= =

+ −= − = + −∑ ∑
−

   (3.8) 

 

Theorem (7): Let ( )f x be an analytic function, with { }( ) ( )TD f x F k= , then 

 

( ) ( )( ) ( 1)( )!
( )

!
n

T

k k n
D xf x F k n

k

+ + ′ = + 
 

     (3.9) 

 

We can establish the proof of the formula (3.8) by using (2.4), (6) and (2.11) as following 
 

( ) { } { }( ) ( 1) ( )( ) ( ) ( )n n n
T T TD xf x D xf x D f x+ ′ = + 
 

( ) ( )( )! ( )!

( 1)! !

k n k n
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+ += + + +
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( ) ( )( )! 1 ( 1)( )!
1

( 1)! !

k n k k n
F k n F k n

k k k

+ + + = + + = + −  
. 

 
Note that, for 1n =  the formula (3.9), reduce to the formula 
 

( ){ } 2( ) ( 1) ( 1)TD xf x k F k′′ = + +    (3.10) 
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Theorem (8): Let ( )f x be an analytic function with { }( ) ( )TD f x F k= , then 

 

( ) ( )( ) ( 1)( 1)!
( ) 1

( 1)!
m n

T

k k n m
D x f x F k n m

k m

+ + − + ′ = + − +  − + 
   (3.11) 

 

We can establish the proof of the formula (3.11) by using (2.5) and (3.1) as  
 

( ) { } { }( ) ( 1) 1 ( )( ) ( ) ( )m n m n m n
T T TD x f x D x f x mD x f x+ − ′ = + 
 

 

 

 

( 1 )! ( 1)!
( 1 ) ( 1)

( )! ( 1)!

k n m k n m
F k n m m F k n m

k m k m

+ + − + − += + + − + + − +
− − +

 

 

Now by setting 1h m= − , we can write 

 

( )( ) ( )! ( )!
( ) ( ) ( 1) ( )

( 1)! ( )!
m n

T

k n h k n h
D x f x F k n h h F k n h

k h k h

+ − + − ′ = + − + + + −  − − −   
 

( )! ( 1) ( )!
( ) ( )

( 1)! ( ) ( 1)!

k n h h k n h
F k n h F k n h

k h k h k h

+ − + + −= + − + + −
− − − − −  

 

( 1) ( )!
1 ( )

( ) ( 1)!

h k n h
F k n h

k h k h

 + + −= + + − − − − 
 

 

( 1) ( )!
( )

( ) ( 1)!

k k n h
F k n h

k h k h

 + + −= + − − − − 

( 1)( )!
( )

( )!

k k n h
F k n h

k h

+ + −= + −
−

. 

 
This yields the formula (3.12). 
 
4. NUMERICAL EXAMPLES 
 
In this section, we apply the differential transform 
method to selected linear differential equations 
and compare our results with the results obtained 
by the Taylor series method. 
 

Example (1) 
 

Consider the initial value problem 
 

2 2 0y xy ny′′ ′− + = ,                                 (4.1) 
 

0(0)y c= , 1(0)y c′ = ,                            (4.2) 
 

The differential equation (4.1) is known as 
Hermite equation, where n  is usually a                  
non-negative integer. To solve the initial               
value problem (4.1-2), we apply the             
differential transform to both sides of (4.1).  This 
gives 
 

{ } { } { }2 2 0T T TD y D xy nD y′′ ′− + = .          (4.3) 

 
Next, making use of the formulas (2.7) and (3.1) 
enables us to find  
 

( 1)( 2) ( 2) 2 ( ) 2 ( ) 0k k Y k kY k nY k+ + + − + = . 
(4.4) 
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This leads to the iteration formula 
 

0(0)Y c= , 1(1)Y c= , 
2( )

( 2) ( )
( 1)( 2)

k n
Y k Y k

k k

−+ =
+ +

, 0,1, 2k = K              (4.5) 

 

Now, the iteration formula (4.5) gives 
 

0

2
(2)

2!

n
Y c

−= , 1

2( 1)
(3)

3!

n
Y c

− −= , 
2

0

2 ( 2)
(4)

4!

n n
Y c

−= ,                                            

 

2

1

2 ( 1)( 3)
(5)

5!

n n
Y c

− −= ,     
3

0

2 ( 2)( 4)
(6)

6!

n n n
Y c

− − −= .                                            (4.6) 

 

Therefore, this leads to the series solution 
 

2 3
2 4 6

0

2 2 ( 2) 2 ( 2)( 4)
( ) 1 ...

2! 4! 6!

n n n n n n
y x c x x x

 − − −= − + − + 
 

2
3 5

1

2( 1) 2 ( 1)( 3)
...

3! 5!

n n n
c x x x
 − − −− + + 
 

.    (4.7) 

 

This is the Hermite polynomial given in ref. [15].  
 

Example (2) 
 

Consider the initial value problem 
 

2
2

2
(1 ) 2 ( 1) 0

d y dy
x x n n y

dx dx
− − + + = ,                                                                                     (4.8) 

 

0(0)y c= , 1(0)y c′ = ,                                                                                                    (4.9) 
 

The self-adjoint equation (4.8) is known as the Legendre equation, where, 0c  and 1c  are constant and 

n  is an integer.  To solve the initial value problem (4.8-9), we apply the differential transform to both 
sides of (4.8).  This gives 
 

{ } { } { }2( ) ( 1) 0T T TD y D x y D n n y′′ ′ ′− + + = .                                                                          (4.10) 

 

Next, making use of the formulas (2.7) and (3.11) enables us to find  
 

( 1)( 2) ( 2) ( 1) ( ) ( 1) ( ) 0k k Y k k k Y k n n Y k+ + + − + + + = ,   (4.11) 
 

This leads to the iteration formula 
 

0(0)Y c= , 1(1)Y c=         
 

[ ]1
( 2) ( 1) ( 1) ( )

( 1)( 2)
Y k k k n n Y k

k k
+ = + − +

+ +
, 0,1, 2k = K                                 (4.12) 

 

Now, the iteration formula (4.12) gives 
 

0

( 1)
(2)

2!

n n
Y c

+= − , 1

( 1)( 2)
(3)

3!

n n
Y c

− += − , 0

( 2) ( 1)( 3)
(4)

4!

n n n n
Y c

− + += , 

 

1

( 3)( 1)( 2)( 4)
(5)

5!

n n n n
Y c

− − + += ,  0

( 4)( 2) ( 1)( 3)( 5)
(6)

6!

n n n n n n
Y c

− − + + += − ,  

 

1

( 5)( 3)( 1)( 2)( 4)( 6)
(7)

7!

n n n n n n
Y c

− − − + + += − ,….                                                  (4.13) 
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Therefore, this leads to the series solution 
 

2 4 6
0

( 1) ( 2) ( 1)( 3) ( 4)( 2) ( 1)( 3)( 5)
( ) 1

2! 4! 6!

n n n n n n n n n n n n
y t c x x x

+ − + + − − + + + = − + − + +  
K

 

3 5
1

( 1)( 2) ( 3)( 1)( 2)( 4)

3! 5!

n n n n n n
c x x x

− + − − + + − + −
 

 

7( 5)( 3)( 1)( 2)( 4)( 6)

7!

n n n n n n
x

− − − + + + + 
KK    (4.14) 

 

This result is identical to the result obtained by the Taylor series procedure applied in ref. [16]. 
 
Example (3) 
 
Consider the initial value problem 
 

2 0y xy′ − =  ,                                                                                                                    (4.15) 
 

0(0)y c= .                                                                                                                             (4.16) 
 
To solve the initial value problem (4.15-16), we make use of the formulas (7), (11) and (13). This gives 
 

1
0

( 1) ( 1) 2 ( ) 0
k

i
i

k Y k Y k iδ
=

+ + − − =∑ .                                                                                 (4.17) 

 
Now, we can write the iteration formula 
 

0(0)Y c= ,    ( )1
0

2
( 1)

1

k

i
i

Y k Y k i
k

δ
=

+ −
+

= ∑ ,         0,1, 2,...k =       (4.18) 

 

The iteration formula (4.18) for 0,1, 2,...k =  gives 
 

0(0)Y c= ,            (1) 0Y = ,             0(2)Y c= ,            (3) 0Y = , 
 

0(4)
2!

c
Y = ,           (5) 0Y = ,            0(6) ,

3!

c
Y = K . 

 

Therefore, the close form solution can be easily in the form written as 
 

2 4 6 8 2
0 0

0 0

1 1 1 1
( ) [ ] 1 ......

2! 3! 4! !
k k

k k

y x Y k x c x x x x c x
k

∞ ∞

= =

 = = + + + + = 
 

∑ ∑ . 

 
This represents the Taylor series expansion of 

the exact solution 
2

0( ) xy x c e= . 
 

5. CONCLUSION 
 
In this work, we introduced the concept of 
differential transform and studied some of their 
properties. As a contribution, we introduced and 
proved new formulas for the one-dimensional 

differential transform and applied the differential 
transform method to selected linear ordinary 
differential equations. This study showed that the 
differential transform method is powerful and 
efficient techniques in finding analytical solutions 
for linear differential equations. It also showed 
that this technique is capable of reducing the size 
of calculations comparing with the Taylor series 
method. 
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