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Abstract

Kepler planets around a given star have similar sizes to each other and regular orbital spacing, like “peas in a pod.”
Several studies have tested whether detection bias could produce this apparent pattern by resampling planet radii at
random and applying a sensitivity function analogous to that of the Kepler spacecraft. However, Zhu argues that
this pattern is not astrophysical but an artifact of Keplerʼs discovery efficiency at the detection threshold. To
support this claim, their new analysis samples the transit signal-to-noise ratio (S/N) to derive a synthetic
population of bootstrapped planet radii. Here, we examine the procedure of sampling transit S/N and demonstrate
it is not applicable. Sampling transit S/N does not set up random, independent planet radii, and so it is unsuitable
for corroborating (or falsifying) detection bias as the origin of apparent patterns in planet radius. By sampling the
planet radii directly and using a simple model for Kepler’s sensitivity, we rule out detection bias as the source of
the peas-in-a-pod pattern with >10σ confidence.

Unified Astronomy Thesaurus concepts: Exoplanets (498); Exoplanet systems (484); Exoplanet astronomy (486);
Exoplanet formation (492); Exoplanet detection methods (489); Planetary system formation (1257); Planet
formation (1241)

1. Introduction

The NASA Kepler Mission detected hundreds of small
planets within 1 au in multi-planet systems (Borucki et al.
2011; Lissauer et al. 2011; Rowe et al. 2014). The patterns in
these multi-planet system architectures, or lack thereof, provide
key information about the assembly and subsequent evolution
of small planets close to their stars.

In Kepler’s multi-planet systems, the size of a transiting planet
is correlated with the size of its detected transiting neighbors, as
first reported in Lissauer et al. (2011). The improved accuracy in
909 planetary parameters and 355 stellar parameters obtained
through the California Kepler Survey (Petigura et al. 2017;
Johnson et al. 2017, hereafter CKS) enabled a more detailed
examination of this pattern (Weiss et al. 2018, hereafter W18).
Millholland et al. (2017)3 performed a complementary analysis
in systems for which transit timing variations have been
detected and found that, in those systems, both the planet radius
and mass are correlated with the radius and mass of the nearest
neighboring planet. Although self-similarity of planet sizes is
common, W18 found that in 63% of adjacent pairs, the outer
planet is larger than the inner planet. This result is consistent
with earlier work: Ciardi et al. (2013) found that in 68% of
pairs (either adjacent or non-adjacent) with at least one planet
larger than 3 ÅR , the outer planet is larger than the inner planet.
Conversely, there is no preferred ordering of planet sizes in
pairs where both planets are smaller than 2 ÅR . Note that size
similarity and larger outer planets can be present in the same
system, and even in the same pair of planets.

In Kepler’s multi-planet systems, the orbital spacing between
transiting planets is regular (W18), but with no preference for
mean motion resonances (Fabrycky et al. 2014). Also, the
smallest planets tend to have the closest orbital spacings,
although the combination of dynamical stability and detection
biases are not sufficient to explain the spacings of the detected

planets (W18). Our shorthand way of describing these patterns—
the self-similar planet sizes, the self-similar period ratios of
planets, and the relationship between planet size and spacing—in
combination is that the Kepler multi-planet systems resemble
“peas in a pod.” Figure 1 shows the high-multiplicity systems,
where the pattern is apparent in many of the systems.
If this peas-in-a-pod pattern is based on the underlying

distribution of planet sizes, then the pattern is a clear signature
of the physical processes that govern the assembly of planetary
systems. However, a significant concern is whether the correlation
between a planet’s size and the sizes of its neighbors could result
from detection bias. In W18, we examined the role of detection
bias by conducting a series of null-hypothesis tests via bootstrap
resampling. We found that detection bias could not explain the
observed patterns and concluded that the patterns are indeed
astrophysical. In addition, full forward-modeling studies, which
simultaneously model many attributes of the proposed underlying
planetary systems’ architectures, have found that models in which
planets have similar sizes to their neighbors and regular orbital
spacing better reproduce the Kepler data than models in which the
planet sizes or spacing are random (Mulders et al. 2018; He et al.
2019; Sandford et al. 2019). However, a recent manuscript by Zhu
(2020, hereafter Z20) arrives at the conclusion that detection bias
is the main (or perhaps only) source of the apparently correlated
planet sizes and spacings.
Here, we examine the method of Z20 and test its applicability

to the peas-in-a-pod pattern. In Section 2 we present examples of
peas-in-a-pod systems that cannot be explained by detection
bias. In Section 3 we examine the Z20 null-hypothesis testing
method. We find that one of the necessary assumptions for
the Z20 analysis to work, the ability to sample random planet
radii, was not met, and that their analysis is therefore incorrect.
In Section 4, we demonstrate how the Z20 method for selecting
the orbital period ratios is prone to bias. In Section 5 we consider
the peas-in-a-pod pattern from the framework of transit signal-
to-noise ratios (S/Ns) instead of planet radii. In our continued
examination of the data, we find evidence supporting that the
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patterns in the Kepler planetary systems are astrophysical in
origin and not the result of detection bias. We conclude in
Section 6.

2. Peas Examples: High-multiplicity Systems of Small
Planets

For any detected planet, a larger planet in its place would
have produced a deeper transit and also would have been

detectable. Thus, detection bias cannot explain the systems
with multiple small, similarly sized planets. Consider K03158
(Kepler-444, Dupuy et al. 2016) as an example (Figure 1). All
five transiting planets are roughly Mars-sized. An Earth-sized
planet could have been detected if any of the Mars-sized
planets were in fact Earth-sized. In the CKS sample, there are
10 systems with four or more transiting planets that are all
smaller than 1.8 ÅR : K03158, K02169, K02029, K01151,
K04032, K00623, K00719, K02722, K00671, and K01306
(Figure 1). In these 10 systems, the correlation of a planet’s size
with the size of its neighbor cannot be explained by detection
bias. Furthermore, in many high-multiplicity systems, the
planet orbits are sufficiently compact that a point-mass would
not be stable between the planets (Fang & Margot 2013).

3. Null Hypothesis Testing

Even stronger support for an astrophysical origin of the peas-in-
a-pod patterns can be established by falsifying a null hypothesis
related to each pattern. In regard to the correlation between
neighboring planet sizes (Figure 2, top-left panel), W18 posed the
following null hypothesis: the size of a planet is random and
independent of the size of its neighbor. We tested whether the null
hypothesis, convolved with Kepler’s detection bias, could explain
the correlation in the observed planet radii.
Z20 has called the results of W18 into question and proposed

an alternative form of hypothesis testing. In Section 3.1, we
review the logic of the W18 null hypothesis testing method.
We then examine the modifications proposed in Z20 in
Section 3.2.

3.1. Resampling Planet Radii

To test our null hypothesis, we constructed synthetic
planetary systems using a bootstrap resampling method. Our
synthetic systems were identical to the observed systems,
except that we drew the planet sizes at random, with
replacement. The action of drawing the planetary radius at
random with replacement immediately produces an instance of
the null hypothesis: the radius of each planet is random, with
no dependence on the size of its neighbors.
However, as Z20 noted, we do not know the underlying

distribution of planet radii, which leads to the question: from
which distribution of planet radii should we randomly draw? In
principle, we are free to propose any planet radius distribution,
so long as it correctly replicates the null hypothesis statement
(the radii of adjacent planets are not correlated) before we
apply detection biases. In W18, we tried drawing planet sizes
from two different distributions: the observed distribution of
planet radii, and a log-normal distribution of planet radii (a
function weighted toward many more small planets than large
planets).
After populating each synthetic planetary system with new,

randomly drawn planet sizes that were independent of the sizes
of their neighbors, we applied Kepler’s detection bias to our
synthetic systems. We calculated the S/N based on the
following equations:

= R R P

T
S N

3.5 yr

CDPP 6hr
1

p
2

6hr 0

( )
( )/

/ /

/

where P is the planet orbital period, R is the stellar radius,
CDPP6hr is the combined differential photometric precision, a
measure of the photometric variability on a timescale of six

Figure 1. Systems from the California Kepler Survey with four or more
transiting planets. Each row corresponds to a planetary system, with the star
KOI number at the left, and planets represented with their measured semimajor
axis (x-axis) and physical radius (point size). The color corresponds to
equilibrium temperature. The systems are ranked by stellar mass, for which the
errors were typically 5%. In many systems, the planets are similar in size to
their neighbors and have regular orbital spacing. Reproduced from W18.
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hours (Christiansen et al. 2012), and T0 is the transit duration,
which depends on the stellar density ρå and is given by

r r= -
T P13hr 1yr . 20

1 3 1 3( ) ( ) ( )

This set of equations ignores several effects that contribute to the
S/N at the level of ∼10%, including the impact parameter of the
planet, the orbital eccentricity of the planet, the fact that some stars
were not observed for exactly 3.5 yr, and slight differences
between the multiple event statistic (MES; the criterion used for
detection by the Kepler team) and S/N, but these other effects are
extraordinarily difficult to disentangle. Because 70% of the CKS
multis have S/N>20, which is significantly above the detection
threshold for most orbital periods in our sample (Christiansen
et al. 2016),4 inaccuracies of our computed S/N of order 10% are
unimportant within the scope of this analysis.

In W18, we discarded synthetic planets that were too small
to detect (S/N < 10), thus conservatively mimicking the Kepler
detection bias.5 Synthetic planets that were small, at long

periods, or orbiting stars that were noisy and/or large were
likely to be missed.
However, as Z20 noted, our method in W18 had some non-

ideal attributes. (1) Drawing from the observed distribution of
planet sizes rarely populated stars with planets smaller than
1 ÅR , and (2) discarding planets can result in a reduction of the
number of detected synthetic planets of ∼20%. Therefore, here,
we make two minor changes to our primary analysis in W18:

1. We draw planet radii from a log-normal distribution
m sÎÅ R Rln ,p

2( ) ( ) with μ=0 and σ=1.
2. So long as a planet is too small to be detected, we draw a

planet size again at random from our distribution,
repeating until the drawn planet radius produces
S/N�10.6

As stated above, hypothesis testing is valid for any proposed
radius distribution, so long as the null hypothesis condition is
met, justifying our switch to the log-normal planet radius
distribution. Also, it is reasonable to keep drawing planets until
we draw one of sufficient size to be detected because this

Figure 2. Drawing S/N at random produces correlated planet radii in two samples in which the underlying planet radii are correlated. Top-left panel: the observed
sizes of planets and their adjacent neighbors in the CKS multis sample. Top-middle panel: resampling the CKS multis sample by drawing planet radius at random and
also applying Kepler’s detection biases does not reproduce the observed correlation. Top-right panel: drawing transit S/N at random results in planet radii that are
correlated. Bottom-left panel: the radii of adjacent planets in mock systems in which, by construction, the radius of each planet is identical to its neighbors. Bottom-
middle panel: resampling the radii of the planets by drawing Rp at random and applying Kepler’s detection biases does not produce correlated planet sizes. Bottom-
right panel: resampling the radii of the planets by drawing the transit S/N at random and converting it to Rp produces correlated planet sizes. This test demonstrates
that the presence of a correlation when resampling the transit S/Ns cannot be used as evidence that the underlying planet radii are not correlated.

4 For MES�10 and P<40 days, Kepler’s detection efficiency was 80%.
5 Kepler actually used MES�7.1 as its threshold, but it likely missed a large
number of transiting planets with 7.1�MES < 10, especially in multi-planet
systems (Zink & Hansen 2019).

6 For those who prefer that the undetected planets are discounted rather than
redrawn, this strategy was adopted in W18, and the results did not differ
significantly from what we present here.
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procedure reproduces our selection criteria7: the CKS multis
are systems that were selected for having multiple detected
planets, and ensuring that the same planet multiplicities are
generated in every trial replicates this selection bias.

We repeated our resampling algorithm 1000 times for each
planetary system. None of the trials reproduced a correlation
between planet sizes with a similar Pearson-R value or
significance to what we observed in the distribution of detected
transiting planet radii. One example of a resampling trial is
shown in Figure 2 (top-middle panel). Aggregated over 1000
trials, the Pearson-R values from sampling our null hypothesis
were R=0.023±0.044, whereas the correlation in the
observed data was R=0.62. Therefore, with >10σ con-
fidence, we rule out Kepler detection bias as the source of the
correlated planet radii.

3.2. Resampling Transit S/N

Z20 have performed a new kind of test that they interpret as
showing that the properties of a given planet are “independent of
the properties of their siblings.” The test in Z20 is based on
drawing a transit S/N at random and then converting to planet
radius. Their reasoning for drawing transit S/N instead of planet
radius is that (1) the S/N distribution is “more fundamental,”8 and
(2) this procedure is a “shortcut” for resampling the planet radii
without the step of testing whether the newly drawn planet
radius would be detected.

Their procedure is as follows: for each planet, a transit S/N
is drawn at random from the observed distribution of S/Ns.
The planet orbital period and stellar properties are unchanged.
The randomly drawn (new) S/N is used in the computation of a
new radius for the planet based on Equations (1) and (2).
Rearranging for Rp, we have

= -
R R P TCDPP S N 3.5yr 6hr 3p 6hr

1 2 1 2 1 4
0

1 4( ) ( ) ( ) ( ) ( )/ / // / / /

The new planet radius can be computed with the above
equation. However, with some algebraic substitutions, this
equation can be rewritten in a much simpler form:

=R R S N S N 4p,new p,obs new obs( ) ( ) ( )/ / /

where the subscript “obs” indicates the observed value, and the
subscript “new” indicates the resampled (synthetic) value (Z20,
footnote 7).

The planet radii produced by drawing the transit S/N at
random are strongly correlated, unlike the planet radii produced
by drawing Rp at random (Figure 2, top-right panel).

Why do the two methods for drawing new planet radii produce
different results? Of their method, Z20 assert, “correlated S/N
values do not necessarily [produce] correlated [planet] sizes
[around the same star].” However, within the CKS data set,
drawing random S/N values and applying them to a single star
does indeed produce correlated planet radii.

To better understand the difference between the W18
and Z20 resampling methods, we construct a mock universe
in which all of the planet radii are identical to their neighbors
(Figure 2, bottom-left panel). Drawing the planet radius at
random (as in W18) produces systems in which the planet
radius is uncorrelated with the size of its neighbor (bottom-

middle panel). However, drawing the S/N at random (as
in Z20) produces synthetic systems in which neighboring
planet radii are still correlated (bottom-right panel). The
correlation produced by resampling S/N occurs even when
there is an underlying planet size correlation. Therefore,
performing the Z20 test and seeing a correlation in the sizes
of adjacent planet radii is insufficient to rule out the hypothesis
that the underlying planet radii are correlated.
What produces the correlated planet radii when the transit S/N

is drawn at random? Equation (4) reveals that Rp,new is
proportional to Rp,obs, meaning that the newly computed planet
radius is correlated with the observed planet radius. We show this
in Figure 3. When we draw a new S/N at random and convert it
to a planet radius via Equation (3), the new planet radius is
correlated with the old planet radius, as we would expect from
Equation (4). Thus, if the observed (and underlying) planet radii
are correlated, then this correlation will be partially preserved. The
multiplication by S N S Nnew obs( ) ( )/ / / will introduce some
random variation, but not enough to erase the information about
the underlying planet size correlation, because the dynamic range
in S N S Nnew obs( ) ( )/ / / is comparable to the the dynamic range
of Rp,obs. This is why in the right panels of Figure 2, the planet
radii that are computed by drawing S/N at random are correlated,
but with a lower Pearson-R value than the original planet radii (left
panels).
In summary, we can explain the correlated planet radii

produced in the bootstrap resampling method of Z20 as coming
from a failed assumption. Z20 assume that drawing S/N at
random should also produce random planet radii. However, this is
not the case; each synthetic planet radius produced by the Z20

Figure 3. Drawing S/N at random produces non-random, non-independent
planet radii. The x-axis is the observed radius of each planet Robs, and y-axis is
the new (resampled) planet radius Rnew computed by drawing S/N at random
and converting to Rp via Equation (3). There is a strong correlation (Pearson-
R=0.42) between Rnew and Robs, which it is replacing. Therefore, the
synthetic planetary systems constructed by drawing S/N at random have a
strong resemblance to the underlying planetary system architecture. The non-
randomness of the planet radii accounts for the eventual correlation between
the sizes of adjacent planets in the Z20 resampled systems (Figure 2, right
panels).

7 Xie et al. (2016) used this technique to fully populate synthetic multi-planet
systems.
8 We disagree with this assertion but consider how to treat S/N as the
parameter of interest in Section 5.
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method is strongly correlated with the observed planet radius, and
so the Z20 resampled planet radii are not random. When the
underlying planet radii are correlated, the Z20 resampled planet
radii are also correlated. This aspect of the Z20 method makes it
unsuitable for testing the null hypothesis: their algorithm is not
able to distinguish whether the underlying planet radii are
correlated or whether detection bias produces the observed
correlation.

Even if the Z20 hypothesis testing method were not flawed,
note that it does not reproduce the strength of the correlation in
the data. In Figure 2, drawing S/N at random produces
neighboring planet radii that are correlated with Pearson-
R=0.45, even though the observed population of neighboring
planet radii were more strongly correlated (Pearson-R=0.62).

4. On Period Ratio Sampling

In W18, we found that the orbital spacing between pairs
of planets in the same Kepler system is regular. More
specifically, the period ratio between one pair of adjacent
planets, j, and the next pair of adjacent planets, +j 1 is
correlated for systems that have at least two pairs of planets
with < 4. Z20 noted that we did not justify our choice of

< 4 in W18, and they chose an alternative cut.
In the context of the limitations of Kepler’s sensitivity, it is

possible to detect triples of planets so long as the product of
their period ratios is less than some constant (Z20 chose 25;

<+ 25j j 1 ). The problem with the Z20 cut is that it selects
triples where the period ratio of one pair of planets is dependent
on the period ratio of the other pair of planets, and this
dependency creates bias. Consider a hypothetical three-planet
system with an innermost planet at P=2 days, the second
planet at P=40 days (making the first period ratio = 20j ),
and the third planet at P=50 days (making the second period
ratio =+ 1.25j 1 ). The product of the period ratios is 25,
making this system just within the Z20 threshold. However, if
we change the orbital period of the third planet to be P=60
days, the product exceeds the threshold and so this triple would
not be counted. This is problematic because the value we drew
for j dictated that the value for +j 1 had to be within a certain
range (<1.25). In other words +j 1 is not independent of j.

In general, a mathematical dependence between two variables
can induce a correlation. To test the correlation induced by a
dependence between +j 1 and j, we compare the CKS period
ratio distribution to a distribution of randomly drawn period ratios.
To produce our random set of period ratios, we draw pairs of
points (x, y) from a uniform distribution on ((0, 4), (0, 4)), where
= x log j2 , = +y log j2 1, and x and y are drawn independently

(Figure 4, left panel, black points). We demonstrate with a
Pearson-R test that there is no underlying correlation between x and
y when drawn this way. However, if we down-select our draws of
(x,y) to only include pairs that meet x+y<4 (the product of the
period ratios is <16), mimicking a detection bias, we introduce a
significant negative Pearson-R correlation: R=−0.50, p<10−5

(middle panel). The Pearson-R correlation of the observed period
ratios satisfying this cut (shown by blue points) is R=0.15,
p<10−5; this is not a strong correlation, but it is significantly
different from the strong anti-correlation we would expect if the
period ratios were indeed random. This evidence strongly disfavors
the Z20 conclusion that the period ratios of the planets are random.
If we further down-select our data to x, y<2 ( < 4 and

<+ 4j 1 ), thereby excluding the regions where x and y were
dependent, we indeed see a strong Pearson-R correlation in
the CKS data, and no correlation in the randomly drawn x and y
values (Figure 4, right panel). In compact planetary systems,
the period ratios are indeed regular. The regularity (or lack
thereof) for larger period ratios has yet to be tested.

5. Discussion

We have shown that the method of drawing S/N and
converting to planet radius, as done in Z20, does not sample
planet radii at random. This makes the method unsuitable for
testing any null hypothesis in which it is necessary to produce
random, independent planet radii. Like W18, Millholland et al.
(2017) and Ciardi et al. (2013) demonstrated patterns in planet
radii by falsifying hypotheses in which the planet radii are
random. The Z20 method is therefore unsuitable for testing the
null hypotheses in those papers as well.
Z20 claims that the transit S/N is a better parameter to

examine than the planet radius. Even if the transit S/N were
chosen as the parameter of interest, the questions about peas in
a pod would need to be reframed around this parameter. We

Figure 4. Comparison of Pearson-R correlations of the observed CKS period ratios (blue) and draws from a random uniform distribution (gray), after applying various
cuts. Left panel: the gray points are drawn randomly from < <0 log 42( ) . There is no correlation between the randomly drawn points. Middle panel: same as the
left, but after applying rejection sampling + <+ log log 4j j2 2 1( ) ( ) (i.e., the product of the period ratios is <16). The rejection sampling induces a strong negative
correlation (Pearson-R=−0.5, p<10−5) in the randomly drawn period ratios (gray). Note that the CKS distribution (blue, R=0.15, p=0.04) is inconsistent with
a random distribution of period ratios. Right panel: the need to keep log j2( ) and +log j2 1( ) independent motivates our choice of < 4j and <+ 4j 1 . Within this
regime, there is a strong correlation between the period ratios of adjacent planets.
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would ask whether adjacent transiting planets have correlated
transit S/Ns (they do, with Pearson-R=0.37, p<10−5), and
whether a bootstrap resampling algorithm in which we draw the
S/Ns of the transiting planets at random could reproduce
the observed, correlated transit S/Ns (it cannot; in 1000 trials,
the mean and standard deviation of the Pearson-R value was
0.0± 0.044, meaning that the correlation between adjacent
transiting planets’ S/Ns is significant with 8σ confidence).

6. Conclusion

We have demonstrated that the statistical tests performed
by Z20 were not suitable to test the role of detection bias in the
peas-in-a-pod pattern. We summarize the main flaws below. (1)
When the underlying planet radii are correlated, drawing S/N
at random and converting to a planet radius results in non-
random planet radii, and so this method is not suitable for null
hypothesis testing. (2) The CKS distribution of period ratios is
inconsistent with random period ratios, and the period ratios of
adjacent planets are indeed correlated when the period ratio is
less than 4. Because of these methodological flaws, the
conclusions of Z20 regarding the peas in a pod pattern, or
other patterns in which it is necessary to sample planet radii at
random, are not applicable.

Furthermore, the analysis of Z20 overlooked evidence in
favor of an astrophysical interpretation of the peas-in-a-pod
pattern. Namely, there are many systems in which multiple
similarly sized small planets were detected, yet large planets
were not detected.
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