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Abstract 
Numerical models of crop response to irrigation and weather forecasts with internet access should be fully 
utilized in modern irrigation management. In this respect, we developed a new numerical scheme to optimize 
irrigation depth that maximizes net income. Net income was calculated as a function of cumulative transpiration 
over irrigation interval which depends on irrigation depth. To evaluate this scheme, we carried out a field 
experiment for groundnut (Arachis hypogaea L.) grown in a sandy field of the Arid Land Research Center, 
Tottori University, Japan. Two treatments were established to compare the net income of the proposed scheme 
with that of an automated irrigation system. Results showed that although the proposed scheme gave a larger 
amount of seasonal irrigation water 28%, it achieved 2.18 times of net income owing to 51% higher yield 
compared to results of the automated irrigation system. This suggests that the proposed scheme would be more 
economical tool than automated irrigation systems to optimize irrigation depths.  
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1. Introduction 
Irrigation is a vital factor for agriculture in both arid and semi-arid regions. Even in the humid and sub-humid 
regions, it is essential for rain-fed crops during drought periods when rainfall fails to provide sufficient moisture 
for stabilized crop production (Debaeke & Aboudrare, 2004). Approximately, 70% of global water resources are 
used for irrigation (WWAP, 2012). By 2050, the global population is forecasted to reach 9 billion (United 
Nations, 2007); therefore, the world needs to produce at least 50% more food (World Bank 2016). This gives the 
irrigation a great challenge in the coming decades to satisfy world’s requirements from food, particularly in 
countries with limited water resources.  

To manage irrigation more efficiently, both frequency and amount of watering must be determined carefully. 
With adopting computer and electronic technologies in agriculture, farmers may schedule irrigation water more 
efficiently. Mbabazi et al. (2017) used an average of the previous 5-day crop evapotranspiration to develop an 
irrigation scheduling for Avocado using technology of mobile irrigation applications. Yet irrigation scheduling is 
more efficient if methodologies of soil water sensors are used (Irrigation Association, 2011). Consequently, 
automated irrigation systems with sensors are widely used to meet crop water needs more precisely (Cancela et 
al., 2015; Osroosh et al., 2015). Liang et al. (2016) used data of soil water tension from wireless soil moisture 
sensors and the van Genuchten model (van Genuchten, 1980) to schedule irrigation water. Stirzaker et al. (2017) 
used electronic detectors for wetting front of infiltrated irrigation water through the soil profile to close a 
solenoid valve at a certain value to manage irrigation water. Those technologies, however, require high initial 
investment; therefore, the foundation of cheap technologies will encourage farmers to save irrigation water. For 
example, numerical simulation of water flow and crop growth can be utilized as a substitute for sensing drought 
stress. 

Linking weather forecasts with irrigation scheduling may improve irrigation water management since 
availability of quantitative weather forecasts of acceptable accuracy with internet access. Lorite et al. (2015) 
used free accessible online weather forecasts to determine irrigation scheduling based on daily and weekly 
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reference evapotranspiration. Delgoda et al. (2016) used weather forecasts and AquaCrop model (Steduto, Hsiao, 
Raes, & Fereres, 2009) to validate their framework that based on model predictive control to minimize both root 
zone soil moisture deficit and irrigation depth under water scarcity conditions. Combination of a multi-objective 
function and weather forecasts were used to give users a choice of optimal yield-irrigation combinations (Linker 
& Sylaios, 2016). This optimization was based on the end of seasonal yield and irrigation. Wang and Cai (2009) 
used a genetic algorithm (GA) to schedule irrigation water assuming perfect weather forecasts for either 
non-overlapping two weeks or the entire growing season.  

Irrigation scheduling is generally targeted to improve water use efficiency; however, it is worth to consider net 
income as well. Concerning the economic benefits in relation to irrigation water, Yang et al. (2017) developed a 
flexible irrigation scheduling decision support system using fuzzy programming and interval optimization 
approaches. They used four multiple objective functions with different purposes (1) to maximize the gross 
economic profit; (2) to maximize the net economic profit; (3) to maximize the economic benefits per unit 
acreage of cultivated land; and (4) to maximize the economic benefits per unit cubic meter of irrigation water 
supply. Note that those functions were based on uncertain data of crop evapotranspiration; that would be a major 
constraint of that model. Moreover, Wang and Cai (2009) developed an optimization framework combined the 
SWAP model (Van Dam et al., 1997) and the GA to search for both irrigation dates and depths that maximize 
profits. They calculated net income for the entire season based on seasonal yield and seasonal fixed irrigation 
cost.  

Water scarcity threatens the future of world food; therefore, governments typically set a price on water to 
motivate farmers to save irrigation water. Bozorg-Haddad et al. (2016) estimated farmer’s response to the price 
of agricultural water. No effect on water use was found under low prices compared to non-priced water.  
Fujimaki et al. (2015) developed an optimization scheme to determine irrigation depths that maximize net 
income at fixed irrigation interval. That scheme was incorporated into a two-dimensional model of water, solute, 
and heat movement in soils (WASH_2D). To test that method, they carried out two preliminary field experiments 
in two different locations, soils and crops. The first experiment was carried out at the Institute des Régions 
Arides (IRA), Medenine, Tunisia, during 2011-2012. The measured crop was barley (Hordeum vulgar L. cv. 
Ardhaui) grown in loamy sand soil. The second experiment was carried out at the Arid Land Research Center, 
Tottori University, Japan, in 2013; the measured crop was sweet corn (Zea mays, cv. Amaenbou86) grown in 
sandy soil. Results of those experiments, however, are not satisfied to validate that scheme; it still needs more 
field experiments under different combinations of climate, soil, and crop to give users more confidence in its 
effectiveness. The objective of this paper, therefore, was to evaluate the optimization scheme to determine 
irrigation depth that maximizes net income using a major crop, groundnut. The specific goal was to replace 
capital-intensive automated irrigation methods with a low-cost scheme based on freely available weather data 
and numerical simulation. 

2. Materials and Methods 

2.1 The Process Model 

A two-dimensional physically based model, WASH_2D was used. It can simulate water, solute, and heat 
movement in soils with the finite difference method. It includes a module for simulating root water uptake and 
crop growth. This software is freely distributed with source code under a general public license from the website 
of the Arid Land Research Center, Tottori University (http://www.alrc.tottori-u.ac.jp/fujimaki/download/ 
WASH_2D). A detailed description of the model was informed by Fujimaki et al. (2015). 

2.2 Numerical Scheme 

2.2.1 Maximization of Net Income 

Net income, In ($ ha-1) was calculated at each irrigation interval in proportion to the increment in dry matter 
attained during the irrigation interval (Fujimaki et al., 2015):  

In = Pcετiki – PwW – Cot                                  (1) 

where, Pc is the producer’s price of crop ($ kg-1 DM), ε is transpiration productivity of the crop ((produced dry 
matter (kg ha-1) divided by cumulative transpiration (kg ha-1)), τi is cumulative transpiration during the interval 
(kg ha-1), ki is the income correction factor, Pw is the price of water ($ kg-1), W is the irrigation depth (1 cm = 
100 000 kg ha-1), and Cot is other costs ($ ha-1). 

In Equation (1), the income correction factor was considered to avoid possible underestimation for the 
contribution of initial transpiration to the entire quantum of growth; because transpiration in the initial growth 
stage is smaller than that in later stages. Estimation of ki was suggested in Fujimaki et al. (2015).  
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The transpiration rate, ୰ܶ (cm s-1), was calculated by integrating the water uptake rate, S, over the root zone: 

Tr = Lx
-1 ׬ ׬ Sdxdz

Lz

0

Lx

0
                                   (2) 

where, Lx and Lz are width and depth of root zone. A macroscopic root water uptake model (Feddes & Raats, 
2004) was used to predict the water uptake rate, S (cm s-1):  

S =	Tpαwβ                                       (3) 

where, Tp, αw and β are potential transpiration (cm s-1), reduction coefficient of root water uptake and 
normalized root density distribution, respectively. The Tp was calculated by multiplying reference 
evapotranspiration by basal crop coefficient, Kc, as follows:  

Tp	=	EpKc                                       (4) 

where, Ep is reference evapotranspiration (cm s-1), calculated by the Penman-Monteith equation (Allen, Pereira, 
Raes, & Smith, 1998). Since the crop coefficient is largely affected by growth stage, it was expressed as a 
function of transpiration as follows: 

Kc	=	akcൣ1	–	expሺbkcτሻ൧	+	ckc                               (5) 

where, akc, bkc and ckc are fitting parameters. Estimated value of those parameters depends on each growth 
stage of the plant. Fujimaki et al. (2015) suggested their values by measuring cumulative transpiration rate via a 
weighing lysimeter.  

The reduction of the water uptake rate, α is a function of drought and osmotic stresses; WASH_2D model uses 
so-called additive function as follows: 

α	=	 1

1	+	൬ ψ
ψ50

	+	 ψo
ψo50

൰p                                     (6) 

where, ψ and ψo are the matric and osmotic heads, respectively, and ψ50, ψo50, and p are fitting parameters (van 
Genuchten, 1987). 

In this paper, the equation that describes the normalized root activity, β, is modified as follows: 

β = 0.75ሺbrt + 1ሻdrt
൫-brt-1൯൫drt – z + zr0൯brt

grt൫1 – x2grt
൫-2൯൯                      (7) 

where, brt is a fitting parameter; drt and grt are the depth and width of the root zone (cm), respectively; x is the 
horizontal distance; z is the soil depth; and zr0 is the depth below which roots exist (cm). In general, the roots of 
cultivated plants start from about 2.5 cm below the soil surface, therefore, we have added as a new parameter to 
make the model more realistic. The drt was also expressed as a function of transpiration as follows: 

drt	=	adrtൣ1	–	expሺbdrtτሻ൧	+	cdrt                                (8) 

where, adrt, bdrt and cdrt are fitting parameters. By expressing both Kc and drt as functions of cumulative 
transpiration as independent variables instead of days after sowing, WASH_2D may express plant growth more 
dynamically responding to drought or salinity stresses.  

2.2.2 Optimization of Irrigation Depth 

To minimize repetition of numerical prediction in non-linear optimization, we used the following scheme 
proposed by Fujimaki et al. (2015).  

First, it is assumed that cumulative transpiration rate at each irrigation interval may be empirically described as: 

τi	=	∫Trdt	=	aτൣ1	–	expሺbτWሻ൧	+	τ0                              (9) 

where, aτ and bτ are fitting parameters and τ0 is τ at W = 0. Note that even when W = 0, the plant can still 
uptake remained available water from the soil. 

Second, maximum In is achieved when the derivative of Equation (1) for W becomes zero: 
dIn

dW
	=	-PcεkiaτbτexpሺbτWሻ	–	Pw	=	0                             (10) 

W =	- 1

bτ
ln ቀ Pw

Pcεkiaτbτ
ቁ                                   (11) 

The values of aτ  and bτ  must be known; therefore, two additional points of transpiration at maximum 
(Wmax,	τmax) and intermediate (Wmid,	τmid) irrigation depths should be assessed:  

τmax	=	aτൣ1	–	expሺbτWmaxሻ൧	+	τ0                              (12) 

τmid	=	aτൣ1	–	expሺbτWmidሻ൧	+	τ0                              (13) 
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probably emphasizes that the proposed scheme is a useful tool to determine irrigation depths, enhance net 
income and save the initial investments required to construct an automated irrigation system. 
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