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In modern power systems, analyzing the behaviors of the end users can help to

improve the system’s security, stability, and economy. Load classification

provides an efficient way to implement awareness of the user’s behaviors.

However, due to the development of data collection, transmission, and storage

technologies, the volumes of the load data keep increasing. Meanwhile, the

structure and knowledge hidden in the data become ever more complicated.

Therefore, the parallelized ensemble learning method has been widely

employed in recent load classification research. Although the positive

performance of ensemble learning has been proven, two critical issues

remain: class imbalance and base classifier redundancy. These issues raise

challenges of improving the classification accuracy and saving computational

resources. Therefore, to solve the issues, this article presents an improved

selective ensemble learning approach to enable load classification considering

base classifier redundancy and class imbalance. First, a Gaussian SMOTE based

on density clustering (GSDC) is introduced to handle the class imbalance, which

aims to achieve higher classification accuracy. Second, the classifier pruning

strategy and the optimization strategy of the ensemble learning are further

introduced to handle the base classifier redundancy. The experimental results

indicate that when combined with the popular classifiers, the presented

approach shows effectiveness for serving the load classification tasks.
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1 Introduction

Along with the evolution of the power system, brand new

techniques and features have been introduced (e.g., renewable

energies, energy storage, and various user demands), which all

impact the operations of the system. These points significantly

increase the difficulties of the resource dispatch of the power

system and this may lead to security, stability, and economy

issues. It has been proven that on the user side, guiding the load

of the users according to their power consumption behaviors to

participate in power system dispatch could be an effective way of

relieving these difficulties (Muthirayan et al., 2000; Aderibole

et al., 2019; Wei et al., 2022). Therefore, to accurately and

efficiently identify the user’s behaviors based on the load

dataset has become a significant challenge (Zhu et al., 2020;

Zhu et al., 2021). A number of researchers have suggested that

load classification shows enormous potential to implement the

user behavior awareness task (Zhang et al., 2015; Zhu et al., 2020;

Liu et al., 2021).

Tambunan et al. (2020) present an improved k-means

clustering algorithm, which is able to classify the load dataset

based on the concept of clustering. Although their algorithm

improves the stability of the traditional k-means, flaws still

exist (e.g., the difficulty of determining the number of the

initial centroids). Zhou and Yang (2012) present a self-

adaptive fuzzy c-means algorithm to implement the load

clustering and the authors claim that local optimal issue

could be partially solved. Shi et al. (2019) present a deep

learning and multi-dimensional fuzzy c-means clustering

based load classification approach. Their experimental

results show that this approach can provide satisfactory

performances of dimension reduction, feature extraction,

algorithm stability, algorithm efficiency, and so on. Zhang

et al. (2020) present a Gaussian mixture model and multi-

dimensional scaling analysis that is based on the load

classification approach. The authors also report that the

computational efficiency can be improved, while the

computational cost can be reduced. However, although

these studies contribute to our understanding of load

classification, their methodologies are mainly based on

distance-based clustering algorithms that lack of the ability

of revealing the correlated features in the high-dimensional

load data. Additionally, the presented algorithms have a serial

algorithm architecture, which has limited capacity for serving

the current large-volume load data in terms of efficiency.

Therefore, to further improve the classification accuracy

and processing efficiency of large-volume load data,

supervised machine learning algorithms and the distributed

computing technologies are widely employed in load

classification research (Liu et al., 2019; Li et al., 2020; Tang

et al., 2020; Wang et al., 2021). Among the supervised learning

algorithms, artificial neural networks show remarkable

performance and almost dominate the recent classification

studies. Liu et al. (2019) employ the back propagation neural

network as an underlying algorithm to achieve better load

classification accuracy. To highlight the time series

characteristics of the load data, the long short-term

memory neural network is adopted to implement the

classification in these studies (Li et al., 2020; Tang et al.,

2020; Wang et al., 2021). Zhang et al. (2022) employ bi-

directional temporal convolutional network and data

augmentation to achieve high-accurate load classification.

These authors supply great load classification in terms of

accuracy. However, the authors still report that low

efficiency issue occurs when the algorithms are dealing with

the large-volume load data due to the algorithm overhead. As

a result, Liu et al. (2016), Liu et al. (2017), and Liu et al. (2020)

finally introduce the distributed computing to improve the

efficiency of the large-scale load data classification. The

authors report that because of the difficulties in the

algorithm decoupling, the ensemble learning technology is

a necessary tool to implement algorithm parallelization. This

idea has also been proven by a number of researches (Liu et al.,

2019; Li et al., 2020; Liu et al., 2016; Liu et al., 2017; Liu et al.,

2020). Ensemble learning is able to create a number of parallel

base classifiers, which facilitates the parallelization of the

classification algorithm. However, among the base

classifiers, the redundancy issue is inevitable (Liu et al.,

2021; Wang et al., 2022). This point further causes the base

classifier homogenization issue, which deteriorates the

performance of ensemble learning and the final

classification in terms of computational resource

consumption and accuracy.

Class imbalance is another critical issue that impacts

supervised classification algorithms. Due to imbalanced

class distribution, the majority class may overwhelm the

minority class and this causes imbalanced insufficient

training. Therefore, the final classification accuracy may be

severely affected. However, because of various user power

consumption behaviors, the class imbalance issue naturally

exists in the load data (Liu et al., 2019; Zhang et al., 2022).

Consequently, a number of researchers have presented

solutions, among which oversampling is considered to be

the most effective. Liu et al. (2019) adopt the SMOTE

algorithm to balance the classes of the load data, and

effectively synthesized samples belonging to the minority

class. Li et al. (2020) improve the traditional SMOTE and

presents the Borderline-SMOTE algorithm, and successfully

highlighted the borderline of the classes. Liu et al. (2020)

present an improved BS algorithm considering the ratio of the

sample synthesis, which also shows effectiveness of balancing

the class distribution. However, it should be noted that the

basic concept of these studies is based on stochastic

oversampling. Their most crucial drawback is that

stochastic sampling may not accurately simulate the real

sample distribution of the original load data. As a result,
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the side effect (for example) of the class overlapping may

seriously impact the generalization of the classifier, which may

finally deteriorate the classification accuracy.

Motivated by the previous studies, this article initially

presents a GSDC approach to solve the class imbalance issue.

GSDC first constructs a directly density-reachable graph using

density clustering. The algorithm then uses the shortest

weighted graph path between the sample and the cluster

centroid to form the sampling path to synthesize the

minority samples. Then, the oversampling with the

Gaussian stochastic perturbation is employed to enhance

the diversities of the synthesized samples. This article will

then present a fuzzy increment of diversity (FID) based

clustering pruning strategy (CPS) to solve the base classifier

redundancy issue. In this strategy, the FID eigenvector of each

base classifier is firsts constructed. The FID characteristic

matrix of all the base classifiers is then constructed. The

affinity propagation clustering algorithm is then applied on

the matrix to achieve the clusters and the corresponding

centroids of the base classifiers. Based on two presented

indices, the pruning strategy is implemented on the

clusters. This finally leads us to achieve an optimal number

of the base classifiers. To further maintain the diversity and

accuracy of the redundancy eliminated base classifiers, a

surrogate empirical risk with regular term-based

optimization selection integration (OSI) composed of the

surrogate empirical risk function, Huber function, and

K-fold cross validation method is presented. Ultimately,

combined with the popular classifiers, the performance of

the presented class balancing algorithm and the improved

selective ensemble learning algorithm are evaluated and

validated.

The rest of this article is organized as follows. Section 2

presents the class balancing algorithm. Section 3 presents the

improved selective ensemble learning algorithm. Section 4 shows

the experimental results and discussions. Finally, Section 5

concludes this study.

2 Class balancing using GSDC

The class imbalance issue naturally exists in the load

dataset, which increases the difficulties of minority class

identification in the classifier. Although the stochastic

oversampling algorithms can handle this issue to some

extent, the flaws, for example, of the class overlapping and

inaccurate sample distribution may deteriorate the

performance of the classifier. Therefore, this article presents

the GSDC algorithm to solve the flaws and improve the

performance of the traditional SMOTE algorithm. It should

be noted that there is currently no numerical definition of the

concept minority class. Therefore, according to Liu et al.

(2019), a threshold of 20% is employed to identify if a

class is a minority class. If the number of the samples in

a class is less than 20% of those in a class with the

largest number of samples, then class is identified as a

minority class.

2.1 Basic definitions in GSDC

1) ρ-neighborhood: Let Z denote a cluster; xi denote a sample in

Z; xj denote another sample in Z; and ρ denote the

neighborhood radius of xi. Therefore, ρ-neighborhood

Nρ(xi) can be defined by Eq. 1:

Nρ(xi) � xj

∣∣∣∣�����xi, xj

�����2 ≤ ρ, xj ∈ Z}{ (1)

2) Core: For a given sample xi, if there are at least a number of κ

samples locating in its ρ -neighborhood, then xi is regarded as

a core.

3) Directly density-reachable: For two given samples xi and xj, if

xi is a core and xj satisfies xj ∈ Nρ(xi), then xj is regarded as

directly density-reachable to xi.

4) Directly density-reachable graph: Let V denote the set of all

the directly density-reachable samples in Z and E denote the

set of edges, in each of which is a weighted graph path

between a directly density-reachable sample and its core.

The Euclidean distance between samples is employed as

the weight. Therefore, G(Z, ρ, κ) � (V, E) is the direct

density-reachable graph for the cluster Z with parameters

ρ and κ.

2.2 Detailed steps of GSDC

Step 1, identify the minority sample and class. A given load

dataset D is composed of samples belonged to a number of M

classes {Dm|m � 1,/,M}. If the number of samples in a class

Dm is smaller than 20% of the number of samples in the class

which contains the largest number of samples, then Dm is

regarded as the minority class. The samples in Dm are

regarded as the minority samples.

Step 2, clustering of the minority samples. Let Dm denote a

minority set and C denote the number of clusters in Dm. The

DBSCAN clustering algorithm (Ester et al., 1996) is applied on

Dm. Therefore, a number of clusters {Dm,c|c � 1,/, C} can be

achieved. In addition, the centroids {xcenter
c |c � 1,/, C} of the

clusters can be achieved.

Step 3, direct density-reachable graph construction based

on clusters. Based on the clustering results in Step 2, the

directly density-reachable graph G(Dm,c, ρ, κ) can be

achieved according to Section 2.1. In this article,

the values of ρ and κ are 10 and 3, respectively,

according to the experiments based on the enumeration

method.
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Step 4, determine the number of synthesized samples for each

Dm,c. Compute the proportion of the sample distribution for

each cluster. Then, according to the proportion, the

synthesized samples can be generated.

Step 5, search of the sampling path. In each sample synthetic

operation, a real sample xr is randomly selected from Dm,c.

The Dijkstra algorithm (Xu et al., 2007) is then employed to

search the shortest weighted graph path Jr↔center �
xr ↔ xr

1/xr
α ↔ xr

β/xcenter
c between xr and the centroid

xcenter
c in G(Dm,c, ρ, κ). xr

1, xr
α, and xr

β represent the

samples that the path passes through. ↔ represents

directly density-reachable. As a result, Jr↔center can be

regarded as the sampling path.

Step 6, sample synthetic. A directly density-reachable edge

xr
α ↔ xr

β is randomly selected from Jr↔center as the sampling

interval. In the sampling interval, an interpolation distance ℘
that is subject to the uniform distribution is employed, as

shown in Eq. 2:

℘ ~ U(0, dr
α,β), dr

α,β �
�����xr

α − xr
β

�����2 (2)

Then, randomly generate the interpolation coordinates ϑ shown

in Eq. 3:

ϑ � (xr
β − xr

α) · ℘ (3)

Afterward, to improve the diversities of the synthesized samples,

a random disturbance vector o is added to ϑ. o subjects to the

normal distribution, as shown in Eq. 4:

o ~ N(0, dr
α,β · σ) (4)

where σ represents the relative standard deviation. Finally, one

synthetic sample can be generated, which is presented by Eq. 5:

xsynthetic � xr
α + ϑ + o (5)

Keep synthesizing the samples until the number of the samples in

the minority class reaches to 20% of those in a class with the

largest number of samples, the algorithm terminates.

The entire process of GSDC in enabling class balance of the

load dataset is shown in Figure 1.

3 Improved selective ensemble
learning

The essential method of the ensemble learning is based on

one concept that a series of weak classifiers (base classifiers) are

able to compose one strong classifier. The performance of the

ensemble learning is depending on the diversity and the decision

accuracy of the base classifier (Kuncheva and Whitaker, 2003;

Yang et al., 2014). The diversity refers to the trend that the

classifiers generate diverse misclassification of the samples, while

the decision accuracy refers to the correct classification of the

samples. It is obvious that along with the increasing scale of the

base classifiers, the homogenization of the classifiers is inevitable.

This point significantly deteriorates the diversity of the classifiers

and finally causes the base classifier redundancy issue.

Therefore, to balance the diversity and accuracy of the

classifiers, this article presents a fuzzy increment of diversity

(FID) based clustering pruning strategy (CPS) and a surrogate

empirical risk with regular term-based optimization selection

FIGURE 1
The entire process of GSDC in enabling class balance of the load dataset.
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integration (OSI) to implement the improved selective ensemble

learning which finally serves the load classification and the

identification of the load behaviors.

3.1 Clustering pruning strategy

The presented fuzzy increment of diversity (FID) based

clustering pruning strategy (CPS) first constructs the FID

eigenvectors and the FID characteristic matrix for the base

classifiers. The affinity propagation (AP) clustering algorithm

is then applied on the matrix (Gan and Ng, 2014). According

to the Euclidean distance-based and cosine distance-based

measurement indices, the optimal centroids of the base

classifiers can be achieved from the clustered clusters.

This finally leads to the pruning of the redundancy base

classifiers.

3.1.1 Eigenvector of FID
Q-statistics are employed to construct the FID eigenvector

(Kuncheva and Whitaker, 2003). Q-statistics are able to measure

the decision diversity between two base classifiers. The Q-statistic

Qm
u,v of the base classifiers u and v for classifying the mth class of

the load data can be represented by Eq. 6:

Qm
u,v �

au,vdu,v − bu,vcu,v
au,vdu,v + bu,vcu,v

(6)

where au,v, bu,v, cu,v, and du,v are subject to the joint distribution

shown in Table 1.

In Table 1, hu(xk) and hv(xk) represent the classification

results for the training sample xk using the base classifiers u and

v, respectively; yk represents the class label of the training sample

xk; au,v and du,v represent the probabilities of <correct, correct>
and <incorrect, incorrect> of classifying the training dataset

using the base classifiers u and v respectively; and bu,v and cu,v
represent the probabilities of <correct, incorrect> and <incorrect,
correct> of classifying the training dataset using the base

classifiers u and v, respectively. Therefore, according to Eqs. 5

and 6, the sum of pair-wise diversity index of a number of L base

classifiers can be represented by Eq. 7:

φm � ∑L

u�1∑L

v�u+1Q
m
u,v (7)

To delineate the impact of an individual base classifier on the sum

of pair-wise diversity among all the base classifiers, the FID of the

base classifier u in the mth class of the training dataset is defined

using Eq.8:

Iu,m � φm(Ωu⊄Ω) − φm(Ωu⊂Ω ) (8)

where Ωu⊄Ω and Ωu⊂Ω represent the sets of all the base classifiers

including and excluding the base classifier u. Therefore, the FID

characteristic matrix for the base classifiers can be represented by

Eq. 9:

Ξ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1,1 . . . I1,m / I1,M

..

.
1 ..

.
1 ..

.

Iu,1 / Iu,m / Iu,M

..

.
1 ..

.
1 ..

.

IL,1 / IL,m / IL,M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

3.1.2 Optimal number of centroids for base
classifiers

The Euclidean distance and the cosine distance are

frequently employed to measure the similarity between two

data sequences. Based on the FID eigenvectors of all the base

classifiers, the AP clustering algorithm is applied on the rows

of Ξ to generate a number of clusters. In each cluster, the mean

Euclidean distance and the mean cosine distance between the

centroid and certain FID eigenvector are then computed. This

article presents the Euclidean redundancy index (IERI) and the
cosine redundancy index (ICRI) to facilitate the identification

of the optimal centroid number. Two indices are represented

by Eqs 10 and 11:

IERI � 2∑LAP
u�1∑LAP

v�u+1
���Ξu, − Ξv,‖2

LAP(LAP − 1) (10)

ICRI � 2∑LAP
u�1∑LAP

v�u+1Ξu, · Ξv,

LAP(LAP − 1)���Ξu,‖2 ·
���Ξv,‖2 (11)

where LAP represents the number of the centroids of the base

classifiers. The larger IERI or the smaller ICRI represents the

greater diversity of the base classifiers in the cluster, and thus

the redundancy of the base classifiers is regarded as lower. In

the clustering processes, the optimal centroid number (the

optimal number of the base classifier) can be achieved when

the maximum and the minimum values of the indices are

reached.

3.1.3 Steps of the presented CPS
Step 1: generate the base classifiers. In the load dataset D, based

on the samples and their corresponding labels, a number

of L base classifiers can be generated using sampling and

training. Any existing sampling algorithms and the

supervised machine learning algorithms can be

adopted to implement this step.

Step 2: Based on the generated base classifiers and the load

dataset D, the Q-statistics of all the base classifier pairs

are computed according to Eq. 6. Therefore, the FID

TABLE 1 Joint distribution for the two base classifiers.

hv (xk) = yk hv (xk)≠yk

hu (xk) = yk au,v bu,v

hu (xk)≠yk cu,v du,v
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eigenvectors of all the base classifiers can be achieved

according to Eqs. 7 and 8. Finally, the characteristic

matrix Ξ can be formed using Eq. 9.

Step 3: Cluster the base classifiers. The AP clustering

algorithm is applied once on the row vectors of the

characteristic matrix Ξ. The number of the centroids

can be achieved.

Step 4: Cluster pruning of the base classifiers. Keep executing

Step 3 and compute IERI and ICRI using Eqs 10 and 11,

until the inflection points of the two indices appear.

Therefore, the optimal number of centroids can be

achieved. The base classifiers corresponding to the

centroids are selected as the final classifiers. The base

classifiers corresponding to the other points of the

clusters are eliminated as redundancy.

3.2 Surrogate empirical risk with regular
term-based optimization selection
integration

To improve the generalization of the presented improved

selective ensemble learning, this article further presents the OSI

strategy. This strategy introduces the concept of ensemble

margin to construct the minimum surrogate empirical risk

with a regular term function to optimize the weights assigned

to the base classifier in ensemble leaning.

3.2.1 Maximum ensemble margin strategy
considering model complexity

Ensemble margin (Yang et al., 2014) is adopted to

measure the correct classification tendency of the samples.

Let Dverify � {(xn, yn)|n � 1,/, N} denote the verifying

samples with labels; N denote the number of the samples

inDverify; (xn, yn) denote the nth sample and its corresponding

label; ΩCPS denote the set of the pruned base classifiers;

and H(X) � {hu(xn)|xn ⊂ Dverify; u ⊂ ΩCPS} denote

the classification results of using the base classifiers in ΩCPS

to classify the Dverify. Therefore, the ensemble

margin }(xn, yn) of ΩCPS to sample xn can be represented

by Eq. 12:

γ(xn, yn) � yn · ς(xn) � yn ∑LAP

u�1 υuhu(xn)(∑LAP

u�1 υu

� 1, 0≤ υu < 1) (12)

where υu denotes the weight of base classifier u in the ensemble

learning and ς(xn) denotes the classification result using the base

classifiers-based ensemble learning. If the classification result is

correct, then ynς(xn) � 1, and otherwise ynς(xn) � −1. Based on
the ensemble margin, the empirical risk function can be

represented by Eq. 13:

ℓloss(H(X)) � ∑N

n�1(1 −∑LAP

u�1 υuynhu(xn))
� ∑N

n�1(1 − γ(xn, yn)) (13)

The presented OSI is able to improve the generalization of the

classification model using the loss function. Furthermore, to

control the complexity of the ensemble learning and

reduce the overfitting caused by the optimization, this

article also presents Eq. 14 considering the regular term in

the weights of the base classifiers, which is an optimization

problem:

min
υ

‖v‖22 + μℓloss(H(X))
s.t. ∑LAP

u�1 υu � 1(υu ≥ 0) (14)

where υ � (υ1/υu/υLAP); regular term υ22 controls the

complexity of the ensemble learning model; and μ> 0 is the

equivalence factor.

3.2.2 Huber function based surrogate empirical
risk function

The loss function ℓloss(H(X)) in Eq. 14 is nonconvex and

discontinuous, which results in difficulties of optimization.

However, surrogate empirical risk function has been reported

as a proper way of solving this issue. In this article, the

truncated Huber function (Borah and Gupta, 2020) shown

in Eq. 15 is employed as the surrogate empirical risk

function. A factor ε is also adopted to tune the sensitivity

of the surrogate empirical risk function to the outliers

and noises. In the following experiments, the value of ε is

set to 0.6.

fHuber[w] �
⎧⎪⎨⎪⎩

ε · w − ε2/2
w2/2
0

,
0<w≤ 1 − ε
1 − ε<w≤ 1
w> 1

(15)

Finally, based on Eqs. 15 and 14 can be reformed into Eq. 16,

which is ultimately employed to optimize the participating

weights of the base classifiers:

TABLE 2 Detailed information of the synthetic binary, EGSSD, and
ELDD datasets.

Dataset No. of classes No. of samples Dimension

Synthetic binary 2 500 2

EGSSD 2 10,000 13

ELDD Implicit 370 140,256
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min
υ

‖v‖22 + μ∑N

n�1fHuber[1 − γ(xn, yn)]
s.t. ∑LAP

u�1 υu � 1(υu ≥ 0)
(16)

3.2.3 K-fold cross validation method-based base
classifier selection

K-fold cross validation method is adopted to achieve a

number of K verifying datasets Dverify from the original

labeled training dataset. Repeat the presented OSI strategy in

each Dverify to finally generate a number of K-time optimized

weights for ΩCPS, which is shown by Eq. 17:

Λ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

υ1,1 / υ1,u / υ1,LAP
..
.

1 ..
.

1 ..
.

υs,1 / υs,u / υs,LAP
..
.

1 ..
.

1 ..
.

υΚ,1 / υΚ,u / υK,LAP

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(17)

where υs,u denotes the optimized weight of the uth base

classifier in the sth time OSI execution. Let

[υ1,u,/, υs,u,/, υK,u] denote a number of K-time optimized

weights of the base classifier u in ΩCPS. Calculate the

proportion of the times in which the weight is greater than

0 according to Eq. 18:

Ru � ∑K
s�1max(0, sign(υs,u))

K
(18)

where the value of the function sign(·) is 1 when υs,u is greater

than 0, otherwise the value of the function sign(·) is −1. When

Ru ≥ 0.5, the corresponding base classifier is retained and will

participate in the final majority voting-based ensemble learning

for load classification.

3.3 Steps of the presented improved
selective ensemble learning approach in
enabling load classification

Step 1: A dataset D consisting of the labeled samples is initially

divided into a number of M sub-classes according to the

labels {Dm|m � 1,/,M}. In each sub-class, the samples

are randomly divided into the training dataset Dtrain,m

and the testing dataset Dtest,m with the ratio 4:6. In

Dtrain,m, the minority classes are processed by GSDC to

balance the data distribution. Finally, merge all of the

sub-training datasets and the testing datasets to achieve

Db
train and Dtest.

Step 2: In Db
train, bootstrap sampling is carried out to generate a

number of L sub-datasets. The samples in the sub-

datasets and their labels are input into a number of L

initiated classifiers. The Adam algorithm is further

employed to optimize the loss function for each

classifier. The early stop strategy is adopted to

determine the number of the iterations of the classifier

learning. Finally, a number of L trained base classifiers

can be achieved, and the set of the base classifierΩ can be

formed.

Step 3: Each base classifier in Ω classifies Db
train, therefore the

classification result Htrain(X) �
{hu(xk)|xk ⊂ Db

train; u ⊂ Ω} can be achieved. Based on

Htrain(X), the FID characteristic matrix Ξ can be

constructed according to Eqs. 6–9.

Step 4: The presented CPS is then applied on Ξ. The AP

clustering algorithm clusters the FID eigenvectors in Ξ

of all the base classifiers. According to Eqs. 10 and 11, the

optimal number of the centroids LAP can be achieved

based on the pruning of CPS. The corresponding retained

base classifiers form a set ΩCPS.

Step 5: In the presented OSI phase, K-fold cross validation

method is adopted. Db
train is randomly divided into a

number of K equal parts according to the proportion of

the classes, each part is represented by

{Dverify,s ⊆ Db
train|s � 1,/, K}.

Step 6: Each base classifier in ΩCPS classifies Dverify,s. The

classification result is represented by

Htest(X) � {hu(xk)|xk ⊂ Dverify,s; u ⊂ ΩCPS}. According

to Eqs. 12–16, the weights of the base classifiers in

ΩCPS can then be computed.

Step 7: Repeat Step 6 for K times. According to Eq. 17, the

K-time weights Λ of the base classifier can then be

achieved.

Step 8: For each base classifier inΩCPS (e.g., the base classifier u),

according to Eq. 18 compute Ru. If the value of Ru is

greater than 0.5, then the corresponding base classifier u

is retained and will participate the final majority voting-

based ensemble learning for classifying Dtest.

4 Experimental results

4.1 The datasets employed to evaluate the
presented approach

This article mainly employs three load datasets including the

synthetic binary dataset, Electrical Grid Stability Simulated

Dataset (EGSSD) (Arzamasov, 2018), and Electricity Load

Diagrams 20112014 Dataset (ELDD) (Trindade, 2015). The

samples in the synthetic binary dataset are labeled. The

samples in EGSSD are also already labeled (system stability

and system instability). In contrast, the samples in ELDD are

not labeled. Therefore, the labels of the samples in ELDD can be

achieved using the approach presented by Liu et al. (2019). The

details of three datasets are listed in Table 2.

The sampling interval for each sample in ELDD is 15 min.

Therefore, in 1 day there are 96 sampling points in total.

According to the sample dimension 140,256, each sample
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contains the load information for 1,461 days. In terms of

analyzing the load data for 1 day, each sample in ELDD is

converted into the daily load. As a result, the finally converted

ELDD dataset contains 370 × (140256/96) � 370 × 1461 �
540570 samples, each of which has 96 dimensions.

4.2 Indices employed to evaluate the
classification performance

Besides the accuracy Acc, which represents the overall

classification accuracy of the samples is employed to evaluate

the performance of the binary classification, the recall Pre and

the precisions including Ppr, Gmeans, and Fvalue are also

employed (López et al., 2013). Pre represents the proportion

of the correctly classified minority samples. Ppr represents the

real proportion of the minority samples in the samples that are

classified as the minority samples. Gmeans represents the

geometric mean of the proportion of the correctly classified

samples in all majority classes and the proportion of the

correctly classified samples in all minority classes. Gmeans

presents the tendency of the classifiers of classifying different

classes. If the value of Gmeans is close to the value of Acc, then the

performance of the presented class balancing approach can be

regarded as better. Fvalue represents the harmonic mean of Pre
and Ppr. A greater value of Fvalue indicates that the

improvements of classifying the minority classes generate

less impact on classifying the majority classes.

Although the confusion matrix is frequently employed in

multi-class classification evaluations, it is difficult to

quantitatively assess the performance of the classification

model. Therefore, based on the confusion matrix, this article

presents the index named as the class confusion equilibrium

entropy. The equations composing the index are presented as

follows. First, the confusion matrix of binary classification

Mconfusion can be denoted by Eq. 19:

Mconfusion � [NTP NFP

NFN NTN
] (19)

where NTP and NTN represent the number of samples correctly

classified as positive and negative classes, respectively; and NFP

and NFN represent the number of samples misclassified as

positive class and the number of samples misclassified as

negative class, respectively. In multi-class classification, the

confusion matrix can be regarded as a combination of

multiple binary confusion matrices. In the confusion matrix,

the target class is treated as the positive class and the other classes

are treated as the negative classes. We then define the harmonic

average accuracy of the binary classification when themth class is

classified as the positive class using Eq. 20:

Γm � 2NTPNTN

NTP(NTN +NFP) +NTN(NTP +NFN) (20)

Γm is able to measure the class confuse level of the binary

classification scenario. A smaller value of Γmindicates a more

severe confusion level. Based on Eq. 20, the class confusion

equilibrium entropy is presented by Eq. 21:

Sb � −∑M

m�1
Γm∑M
m�1Γm

ln
Γm∑M
m�1Γm

(21)

A greater value of Sb represents more equilibrium of the class

confusion for the classifier, which also indicates the better class

balancing performance of the presented GSDC algorithm.

4.3 Evaluation of GSDC

To evaluate the performance of the presented GSDC

algorithm, this section employs the synthetic binary dataset,

EGSSD dataset, and ELDD dataset. As aforementioned, the

EGSSD dataset contains two classes and the ELDD dataset

contains multiple classes.

FIGURE 2
The classification (A) without processing by GSDC and (B) with processing by GSDC.
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4.3.1 Experiments using the synthetic binary
dataset

The classification experiment is carried out using the

synthetic binary dataset. The ratio of the minority class (in

blue) and the majority class (in red) is 1:10. Support vector

machine (SVM) is employed as the classifier.

Figure 2B shows that, based on the class balance using the

presented GSDC algorithm, the sample distribution can be

positively enhanced. The samples of the minority class can be

significantly highlighted. Compared to the classification result

without being processed by GSDC, as shown in Figure 2A, the

hyperplane of SVM in Figure 2B is improved. Additionally, the

minority samples in the area overlapping with the majority

samples are not obviously affected by GSDC. Therefore, the

presented class balancing strategy only has a limited influence on

the classification of the majority samples, which demonstrates

that GSDC can effectively synthesize the minority samples

according to the sample distribution characteristic.

4.3.2 Experiments using the EGSSD dataset
First, the testing dataset is generated. In total, 2000 samples

are randomly selected form the transient stability class and the

transient instability class to form the testing dataset. Second, the

training dataset is generated. A number of 4,000 transient

stability samples and a number of 400 transient instability

samples are also randomly selected to form the training

dataset. The back propagation neural network (BPNN)

classifier is employed in this section. In addition, the

conventional SMOTE and BS class balancing algorithms are

also implemented in terms of comparison. The classification

results are listed in Table 3.

According to the results shown in Table 3, if the

classification is carried out without class balancing, then

due to the insufficient training of the minority class, the

TABLE 3 Classification results based on the EGSSD dataset with
different class balancing algorithms.

Algorithm Pre Ppr Fvalue Gmeans Acc

Without balancing 0.6114 0.9862 0.7548 0.7778 0.8020

SMOTE 0.8431 0.9695 0.9019 0.9050 0.9084

BS 0.8826 0.9538 0.9168 0.9186 0.9197

GSDC 0.9015 0.9829 0.9404 0.9418 0.9425

FIGURE 3
The classification accuracy based on different class balancing algorithms and different levels of noise.
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samples belonged to the minority class have higher chances to

be misclassified. This results in higher Ppr but lower Pre. In

addition, the overall classification accuracy Acc is low. Based

on the class balancing algorithms including SMOTE, BS, and

GSDC, the classification accuracy Acc is significantly

improved. In particular, the classification accuracy and the

other indices based on GSDC outperform those of the other

class balancing algorithms. The error between Gmeans and Acc

is only 0.0007, which means that GSDC can supply

satisfactory class balancing performance. The highest value

of Fvalue indicates that GSDC has the smallest impact on the

classification for the majority class. The evaluation suggests

that GSDC has better global performances.

To evaluate the impact of the imbalance class proportion on

the performance of GSDC, a series of the training datasets are

generated. First, 4,000 samples belonged to the transient

instability class are randomly selected. Then, based on the

ratios of 20:1, 40:1, 80:1, and 160:1, the corresponding

numbers of the samples belonged to the transient stability

class are randomly selected. Therefore, four imbalanced

training datasets can be achieved. The classification results are

listed in Table 4.

FIGURE 4
The values of Sb based on different class balancing algorithms and different levels of noise.

TABLE 4 lassification accuracy based on different imbalance ratios.

Imbalance ratio Without balancing SMOTE BS GSDC

20:1 0.7284 0.8875 0.9016 0.9038

40:1 0.6867 0.8041 0.8128 0.8297

80:1 0.5940 0.6898 0.7169 0.7633

160:1 0.5458 0.6582 0.6328 0.6604
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It can be observed that along with the increasing imbalance

ratio, the classification accuracies based on different class

balancing algorithms gradually deteriorate. This means that in

the extremely imbalanced dataset, the balancing algorithm can

supply limited improvement in terms of the classification

accuracy. However, GSDC still outperforms the other algorithms.

4.3.3 Experiments using the ELDD dataset
The samples in ELDD are not labeled, which causes difficulty

in their classification. Therefore, according to Liu et al. (2019), the

labeling operation is applied on the dataset, and therefore the

labeled dataset can be achieved. In terms of facilitating the

experiments, a labeled subset D that contains five classes and

16,620 samples is generated from the original ELDD. Then, D is

divided into the training datasetDtrain and the testing datasetDtest

in the ratio of 4:6. In the training dataset, the numbers of samples

belonged to the five classes are 3,770, 1,502, 284, 320, and 818,

respectively, of which the samples belonged to the third and the

fourth classes are regarded as the minority samples. Afterward,

based on GSDC, the imbalanced classes in Dtrain are balanced to

generate the balanced training dataset Db
train. BPNN is also

employed as the classifier. The classification results based on

different class balancing algorithms and different levels of noise

are listed in Figures 3, 4. Additionally, white noise is employed in

the following experiments. Noise level refers to the amplitude of

the noise. Each noise sample is added to a training sample inDtrain.

Therefore, the borders of the training samples are blurred, which is

suitable to evaluate the class balancing ability of GSDC.

From Figures 3, 4, it can be observed that when the noise level

is low, with the improvements of the class balancing algorithms,

the accuracy of the classification results is quite similar. However,

along with the increasing noise level, especially when the level

reaches 0.9, the accuracy Acc and values of Sb of the classification

based on SMOTE and BS sharply decreased. In contrast, the

accuracy Acc and values of Sb of the classification based on the

presented GSDC still maintain higher levels. This point

significantly suggests that GSDC has great abilities in terms of

robust and noise immunity.

FIGURE 5
The FID characteristic matrix of 100 BPNN base classifiers.
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4.4 Evaluation of the improved selective
ensemble learning approach

4.4.1 The parameters employed in the evaluation
The base classifiers employed in the evaluation include

BPNN, classification and regression tree (CART), and long

short-term memory neural network (LSTM). The performance

of the presented improved selective ensemble learning approach

is based on the classification performance of these base classifiers.

First, according to step 2 in Section 3.3, a total of 100 labeled

training sub-datasets are generated based on Db
train using

bootstrapping (the bootstrapped number of samples equals to

FIGURE 6
The value variations of (A) IERI and (B) ICRI.
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the sample number of the original dataset). Then, 100 BPNN base

classifiers are trained using the training sub-datasets. Therefore,

the FID characteristic matrix Ξ of these base classifiers can be

achieved. The elements of the matrix Ξ are shown in Figure 5.

According to step 4 in Section 3.3, the CPS strategy is then

applied on the base classifiers. The redundancy removed set of

base classifiers can be achieved.

Figures 6A,B indicate that when LAP reaches 37, the indices

IERI and ICRI become roughly stable and monotonic. In this case,

the centroids of the clusters are kept, as well as the corresponding

base classifiers to form the redundancy removed set of the base

classifiersΩCPS. Afterward, OSI is applied further. To determine a

proper value of μ in Eq. 14, this article exponentially increases the

value of μ from 0.001 to 100. When the value of equivalence

factor μ reaches 1, the weights of base classifiers become stable.

Therefore, in the OSI phase, the value of μ is determined as 1.

4.4.2 Performance evaluation of load
classification using ELDD

According to steps 5 to 7 in Section 3.3, A five-fold cross

validation is employed in this section. Repeat step 5 for five times,

in each of which the weights of base classifiers in ΩCPS can be

computed. The weight matrix Λ can then be formed. According

to step 8 in Section 3.3, the OSI phase finally retains nine base

classifiers, which can be ultimately employed to classify Dtest

based on the majority voting.

BPNN, CART, and LSTM algorithms are adopted as the base

classifiers, on which the improved selective ensemble learning is

applied. In terms of comparison, famous ensemble learning

strategies, including bagging and adaboosting, are also

implemented. Based on the presented approach, and other

ensemble learning strategies, the classification results including

Acc and Sb of classifying Dtest are listed in Tables 5, 6.

From Tables 5, 6, it can be observed that in terms of Acc and

Sb, the presented approach outperforms the famous ensemble

TABLE 5 omparisons of the accuracy of different ensemble learning
strategies.

Algorithm BPNN CART LSTM

Single classifier 0.8012 0.8376 0.7891

Bagging 0.9066 0.9198 0.8843

Adaboosting 0.9589 0.9662 0.9315

Presented approach 0.9653 0.9775 0.9420

TABLE 6 omparisons of Sb of different ensemble learning strategies.

Algorithm BPNN CART LSTM

Single classifier 1.5421 1.5518 1.5398

Bagging 1.5723 1.5756 1.5683

Adaboosting 1.5937 1.5964 1.5880

Presented approach 1.6092 1.6108 1.6059

FIGURE 7
A comparison of the stability of two ensemble learning approaches.
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learning algorithms including bagging and adaboosting. In

addition, the classification results suggest that the presented

approach is able to serve different classifiers with significant

performance improvement.

4.4.3 Stability evaluations of the improved
selective ensemble learning

To demonstrate the stability of the presented improved

selective ensemble learning based load classification, this

section employs BPNN as the base classifier. GSDC is

employed to balance the testing dataset Db
train of ELDD.

Bagging is also implemented in terms of comparison. Both the

classifications for the testing dataset Dtest using the presented

improved selective ensemble learning based BPNN (9 base

classifiers) and the bagging ensemble learning based BPNN

(100 base classifiers) are carried out 300 times. The results are

shown in Figure 7.

Figure 7 first shows that in 300-time experiments, although

more base classifiers involved in bagging, the improved selective

ensemble learning based BPNN outperforms the bagging

ensemble learning based BPNN in terms of classification

accuracy. Second, the improved selective ensemble learning

also performs a correspondingly stable performance. The

accuracies of 300-time experiments are quite close. The results

shown in Figure 7 prove that the presented selective ensemble

learning can improve both the classification accuracy and the

classification stability.

5 Conclusion

Class imbalance and low efficiency prevent load classification

from being effectively carried out. Therefore, this article presents

an improved selective ensemble learning approach to enable load

classification considering base classifier redundancy and class

imbalance. First, a Gaussian SMOTE based on density clustering

is proposed. The minority samples can be effectively synthesized,

mainly using sampling techniques, DBSCAN clustering

algorithm, and Dijkstra algorithm. Therefore, the original

dataset can be significantly balanced. Second, a fuzzy

increment of diversity based clustering pruning strategy is

further proposed. Based on FID characteristic matrix and AP

clustering algorithm, the redundancy of the base classifiers can be

discovered and removed. To improve the generalization of the

classification model, the ensemble margin based empirical risk

function, the Huber loss function, and the K-fold cross validation

method-based optimization selection integration are proposed.

According to the experimental results, the presented GSDC is

able to effectively balance the classes, which finally leads to an

improvement of the classification accuracy. The presented CPS

and OSI strategies can also remove the redundancy of the base

classifiers, which significantly improves the efficiency of the

ensemble learning. All of the positive results indicate that the

presented improved selective ensemble learning approach

considering base classifier redundancy and class imbalance

can be an effective tool to serve practical large-scale load

classification tasks.
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