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The smart grid model is developed with some changes to help in implementing

a demand response program which was initially developed for a Pecan Street

project. Correspondingly, the real-time solar and load data are collected from

the data port for the city of Austin. A single day is selected for our analysis of all

four seasons of the year. The flat rate, and real-time and day-ahead pricing

information are collected from ComEd. The key challenge for addressing

business problems is the flexibility of consumption. However, without

considering the properties of loss aversion, the system would not be a

practical solution. So, in this article, a dynamic demand response program

based on price elasticity that integrates loss aversion characteristics is

proposed. The proposed system is compared for all pricing schemes and all

seasons. Four scenarios are created for peak time rebate with different

combinations of loss aversion factor values and all the possible

combinations of rebates. This article directs how these combinations could

change the demand curve and how the utility can make a decision about the

specific importance of the criteria, such as the total demand carrying capacity,

peak demand reduction, and in obtaining optimum profit for utility and the

consumer.
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Introduction

Motivation

In most countries, on one hand, the growing population of the world and on the other

hand, the rise in electricity consumption per capita have contributed to the management

of the demand side being more significant. DR is regarded as one of the most impressive

methods of demand-side management, where the peak of consumers will be shifted from
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high-price hours to low-price hours (Abapour et al., 2020). For

implementing innovative DR programs, tariffs for electricity

purchases must be designed to maximize the economic

interest and to alter the pattern of consumption. This can be

achieved by introducing incentive mechanisms. The first one is to

decrease the customer demand by attempting to offer rewards to

the customer during peak hours. The second means is to avoid

the occurrence of supply–demand imbalance as far as possible

(Ajoulabadi et al., 2020).

The DR programs are classified based on the control

mechanism, offered motivations, and decision variable which

was clearly described by Rajendhar and Belwin Edward (2019).

The programs discussed here like the flat rate(FR), real-time

pricing (RTP), day-ahead pricing (DAP), and peak time rebate

(PTR) programs fall under time-based DR programs. The earlier

studies explored the elasticity of residential loads, that is, the

potential elasticity of demand and reduction of demand with

regard to various prices (H. A. Aalami et al., 2019). Furthermore,

there are some major variables that have not been completely

discussed. To be addressed: most of the previous market elasticity

studies are focused on price-based DR, such as the possible

reduction in demand with a dynamic pricing scheme

(Hosseini et al., 2019; Monfared, Ghasemi et al., 2019). There

is, however, little work performed to target incentive-based DR′s
(IBDR) elasticity, namely, the relationship between the reduction

of overall peak demand and financial incentives.

Literature survey

Based on the DR, Jiang et al. (2019) proposed an efficient

real-time pricing model. In order to express the relationship

between price and energy consumption dynamics, price elasticity

is used. RTP can offer many advantages as a measure of demand-

side management, such as peak shaving, generation deferral, and

network investment, promoting the introduction of renewable

energy. The authors introduced a new model in Sharifi et al.

(2018) for DR programs for economic models, based on the

methodology of time-of-use. The essential advantages of the

model were demonstrated based on price-elasticity. In a smart

grid system, the real-time electricity pricing mechanism is

applied compared to the flat rate pricing mechanism. It

results in monetary savings due to the reduction of electricity

bills and to involve the consumer directly in the reduction of peak

loads by reducing the grid burden and encouraging the

interaction of renewable sources with the grid (Dhundia, 2016).

Lu and Hong (2019) proposed a new real-time incentive-

based demand response algorithm for reinforcement learning

and deep neural network smart grid systems. It intended to help

the service provider to buy energy resources from its subscribing

customers to manage energy volatility and strengthen the grid. In

particular, deep neural networks are used to forecast

unpredictable prices and demands for energy in order to solve

the potential uncertainties. Reinforcement learning is then

implemented to achieve the optimum reward rates for various

clients, taking into account the income of both service providers

and clients. Chai et al. (2019) suggested an incentive-based

demand response model to optimize the benefits of electricity

retailers. The breakthrough is that, given their diverse activities

during both peak and valley times, the models provide utility and

elasticity of different customers. The optimum reduction of clients

with a certain reward price can be achieved by solving the customer

benefit optimization model at peak times. The variance of customers

can be measured with a certain reward price, according to the

elasticity during the valley times. Then, the optimum incentive

price can be found based on the suggested DR model by

evaluating the sensitivity of incentive prices to retailer benefits.

From utility‘s viewpoint, IBDR has significant prospects for

power system peak demand control. Shi et al. (2020)

incorporated a systematic approach by integrating the

technological model and the social–behavioral survey to

determine IBDR ability. The outcome validates the strategy

suggested and acts as guidance for IBDR initiatives for utilities.

The Pecan Street research network, which was established in

2009, is the world’s only real power, gas, and water test bed. More

than 1,000 houses, 250 solar homes, and 65 electric vehicle users

have contributed data to it. Every home’s energy production and

consumption are tracked continuously, 24/7/365, and can be

dissected down to the circuit level. These high-resolution data

shed light on the production, usage, and storage of energy

(Residential data page of Pecan street data port, 2022).

Exelon Corporation (NASDAQ: EXC), a Fortune

100 energy corporation with around 10 million customers

for electricity and natural gas, is based in Chicago and owns

ComEd. More than 4 million customers, or 70% of the state’s

population, in northern Illinois rely on ComEd for power. The

service area of ComEd is essentially bordered to the south by

Iroquois County (about Interstate 80), to the north by

Wisconsin, to the west by Iowa, and to the east by Indiana

(ComEd’s Hourly Pricing, 2011).

Objectives and novelty

The objectives of the article are as follows:

1. To develop a smart grid simulation setup to implement a

dynamic DR program with real-time data on load, generation,

pricing signals, and seasons;

2. To test the system for different pricing signals and different

scenarios of loss aversion, rebates, and elasticity constants.

The novelties of the article are as follows:

1. To propose a dynamic DR program based on price elasticity

that integrates with the loss aversion characteristics;
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2. To see how a demand price characteristic would be effected

and to suggest the best ways based on the priorities of the

parameters such as the peak demand, load demand, and

overall cost for the given conditions, combinations, and

seasons.

Modeling and data fetching for a
smart grid system to incorporate a DR
program

The flow diagram of the article is depicted in Figure 1. The

simulation model of the proposed system is depicted in Figure 2.

The model for the smart grid is based on the model developed by

the Centre of Electromechanics, University of Texas (Austin), for

the Pecan Street Project including some modifications

(University of Texas, 2011; Dhundia, 2016). A substation is

represented by a three-phase source with a Ph–Ph voltage of

13.8 kV, which is connected to a static load that is represented by

a three-phase series RLC load through a cable. A three-winding

residential transformer is tapped from the output of the cable.

It is of 50 KVA power rating with a voltage ratio of

13.8 kV/120V–120 V. The secondary voltages of the

transformer are as follows: Line 1 to Neutral= 120 V ∠ 0°,

Line 2 to Neutral= 120 V ∠ 180°, Line1 to Line 2 = 240 V ∠ 0°,

and neighborhoods 1 and 2 are connected to the output of the

transformer. Each neighborhood is connected with five

homes. Homes with data ids 7951, 8386, 661, 3039, and

3538 of the Pecan Street Project are connected to

Neighborhood 1. Homes with data ids 8565, 9922, 4031,

6139, and 9278 are connected to Neighborhood 2. Out of

those previously mentioned, homes with data ids 661, 3039,

3538, 4031, 6139, and 9278 are having PV connections. The

loading scenario and PV generation data on all houses are

obtained from the Pecan Street project dataport that is used to

get the grid power (“Residential data page of Pecan street data

port,” n. d.).

PGrid � Pused − PPV, (1)

where PPV is the power generated by PV arrays for a given

temperature and irradiance. This PGrid is the power used to

calculate the electricity charges incurred by the user. The PV

profile, grid profile, and load profile of all the seasons are shown

in Figure 3.

The Pecan Street dataport continuously monitors each

home’s energy use and production at intervals of 1 s to 1 min

and beyond. The time slots are on the horizontal axes. Here,

15 min is referred to as a single time slot. The analysis is

conducted throughout each of the four seasons for an entire

day. Even though we can collect data for 24 h by using a 60-min

time slot, a 15-min time slot provides higher resolution data for

outcome analysis. This high-resolution data shed light on the

production, usage, and storage of energy.

The total power distributed among the legs is as

follows: PTotal � PGrid;

The total power consumed by the split phase load is as

follows:

PTotal � P1 + P2 + P3, (2)

where P1 � Power to Leg 1 at 120V; P2 � Power to Leg 2 at 120V;

and P3 � Power to Leg 3 at 240V. Since only PTotal is known, we

randomly distribute the total power to each leg as follows.
Choosing

P3 � PTotalp a randomdistribution number between 0 and 1( ),
(3)

Premaining � PTotal − P3 (4)
Then,

P1 � 0.75pPremaining; P2 � 0.25pPremaining (5)

Each leg current phasor is calculated from the basic power

equation

P � 1
2

VpkI
p
pk( ) (6)

Then,

Ipk � 2p
P

Vpk
( )

p

(7)

where [p] = complex conjugate,Vpk = voltage phasor (peak), and

Ipk = current phasor (peak). Once the current for each phase is

computed, it is used to drive to consumer power from the grid.

I=P/V.

FIGURE 1
Flow diagram of the article.
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The energy supply charges (ESCs) can be calculated for

different pricing schemes as follows:

For the flat-rate mechanism,

ESC � ∑Total kWhdrawnfrom the grid
pFlat rate($/kWh) (8)

where the flat rate value is calculated as an average of the RTP

pricing of the day.

For the RTP mechanism,

ESC � ∑Hourly kWhdrawnfrom the grid

pHourly RTP($/kWh) (9)
For the DAP mechanism,

ESC � ∑Hourly kWhdrawnfrom the grid

pHourly prices that are informed a day before (10)

FIGURE 2
Schematic representation of a data-driven smart grid system for incorporating a DR program.

FIGURE 3
Power profile of all seasons.
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For PTR pricing,

ESC � Total kWhdrawnfrom the gridpFlat rate
$

kWh
( )( )

− Total kWhdrawnfrom the grid during peak hours(
pReward) (11)

The standard seasonal information on Austin is categorized as

summer, fall, winter, and spring. During the year of case study

conduction, 20 June to 22 September is summer, 22 September to

21December is fall, 21December to 20March iswinter, and 20March

to 20 June is spring. A single day from each season has been

considered for our analysis, that is, February 5, May 5, August 5,

and November 5. The days of February and November are on the

weekend. The days of May and August are on a weekday. So, the

seasonal behavioral analysis can also be performed with these data. As

mentioned previously, PPV, PUsed, and PGrid information on all those

days are obtained from the Pecan Street Project dataport. The price

information is obtained from the CommonWealth Edison company

dataport (“ComEd’sHourly Pricing,” 2011). The price information on

all the seasons for the flat rate, RTP, and DAP is shown in Figure 4.

Proposed price elasticity-based
demand response program

Loss aversion

Risk aversion is the behavior of human beings (in particular,

investors and consumers) in finance and economics, who strive

to minimize uncertainty, if they are subjected to uncertainty. It is

the reluctance of a person to participate in an unpredictable

payoff scenario rather than a more predictable payoff but maybe

a lower expected payoff scenario. (For example, a risk-averse

investor may prefer to invest their money in a lower but

guaranteed bank rate instead of a stock that may have a high

return rate, which also involves an opportunity to lose value)

(Mohajeryami, Schwarz, & Baboli, 2015).

The fact that losses and disadvantages have a greater effect on

perceptions than benefits and advantages is a well-established

behavioral fact. This results in a feature of utility that is steeper

for losses than for gains. A traditional presumption that assumes

a symmetry between the gain and loss value simplifies the

study of an individual decision. However, it is not practical. It

can, therefore, lead to over- or under-estimated assumptions. In

Figure 5, a clear illustration of a value function, that can describe

a broad range of outcomes, is shown. In riskless and risky

situations, loss aversion is distinct. In risky situations, the

value function of loss aversion is clearly steeper. The riskless

scenarios include both real-time pricing and peak time discounts.

During peak hours, the utilities charge more in real-time

pricing (RTP), so any load that can be shifted to peak hours

appears to the consumer as a loss relative to the price of off-peak

times. On the other hand, based on their load reduction, the peak

time rebate (PTR) relies on rewarding the clients at the peak time.

Any load that can be shifted to off-peak times is also equivalent to a

gain. Their perceived value, therefore, belongs to the two opposite

sides of the value function, although they are the same method,

namely, shifting the flexible loads from peak to off-peak times.

Price elasticity-based demand response
program:

The price-elasticity curve is shown in Figure 6. When the

price decreases, the demand for almost all goods and services

increases. This demand shift is not linear. The non-linear

FIGURE 4
Price profile of all the seasons and schemes.
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demand curve can be linearized around the particular time to

quantify this effect. It is regarded as the demand elasticity of the

price. In other words, market elasticity is a standardized indicator

of the shift in demand because price increases.

E � P0

d0
.
zd

zp
(12)

Here, E = demand elasticity; d = the value of demand; P = the

price of electricity; and P0 and d0 are the initial price of electricity

and the demand value, respectively. If electricity prices differ over

different periods, the following reactions to demand are

(i) Some of the loads (e.g., illuminating loads) are not capable

of moving from one time to the next and can only be on/off.

Thus, these loads have just a single period of sensitivity and it is

called “self-elasticity,” and it often has a negative value:

Exx � Δdx

Δpx
≤ 0. (13)

(ii) Such periods of consumption can be changed from high to

off-peak or low periods. Such behavior is referred to as

sensitivity for several periods, and “cross-elasticity” is

measured. This value is positive at all times.

Exy � Δdx

Δpy
≥ 0, (14)

whereΔdx is the change in demand in period ‘x’; Δpx is the change

in price in period ‘x’; and Δpy is the variation in price in period ‘y’.

In this article, we will model the DR program depending on

price elasticity and articulate how RTP, DAP, and PTR programs

affect the prices and demands of electricity and how these

programs can achieve the maximum customer benefit.

Modeling for a single period

Assume that

d(i) is the consumer’s demand; p(i) is the electricity spot

price; I(i) is the incentive ($/kWh); and R (d(i)) is the revenue of

the consumer. Also suppose that, depending on the price chosen

for the incentive I(i)), the consumer changes his/her own

demand from d0(i) (original value) to d(i). Thus, due to

running PTR, P ($) would be as P (Δd(i)) = I(i).Δd(i) (H.

Aalami et al., 2008).

Assume that the consumer’s benefit for the ith period is as

shown in

B d i( )( ) � R d i( )( ) − d i( ).p i( ) + P Δd i( )( ) $( ), (15)
P Δd i( )( ) � λ.IB i( ).Δd i( ), (16)

where IB(i) is an incentive bonus, and in this scenario, this is a

reward paid on every peak decrease in kWh. λ, It is a coefficient

that represents the actual value of the incentive or reward’s

nominal payment. It is believed that each person is trying to

maximize their benefit. So,

zB d i( )( )
zd i( ) � zR d i( )( )

zd i( ) − p i( ) + zP Δd i( )( )
zd i( ) � 0. (17)

Consequently,

zR d i( )( )
zd i( ) � p i( ) + λ.IB i( ). (18)

Marginal utility is equivalent to the energy price at the optimum

value. According to H. Aalami et al. (2008), for quadratic

customer revenue function, the Taylor series expansion is

used. So,

FIGURE 5
Value function.

FIGURE 6
Price demand curve.
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R d i( )( ) � R d0 i( )( ) + zR d0 i( )( )
zd i( ) ×Δd i( )

+ 1
2
×
z2R d0 i( )( )
zd2 i( ) × Δd i( )( )2, (19)

where d(i) represents a change from d0(i) (optimal point) in client

demand. The following relation must be maintained if the initial

demand is optimum prior to the introduction of the DR program.

zB0

zd i( ) �
zR d0 i( )( )
zd i( ) − p0 � 0, (20)

zR d0 i( )( )
zd i( ) � p0. (21)

Using (18) and the concept of demand price elasticity (12),

z2R d i( )( )
zd2 i( ) � zp

zd
� 1
E
×
p0

d0
. (22)

Plugging (21) and (22) into the extension to the Taylor series gives

R d i( )( ) � R d0 i( )( ) + p0.Δd i( ) + 1
2
.
1

E i( ).
p0

d0
. Δd i( )( )2. (23)

It is easy to rewrite Eq. 23 as follows:

R d i( )( ) � R d0 i( )( ) + p0.Δd i( ) 1 + Δd i( )
2 × E i( ) × d0

[ ] (24)

Expanding d(i) = d(i)-d0(i) and afterward relating (24) to

(18) offer

p i( ) + λ.IB i( ) � p0 i( ) × 1 + d i( ) − d0 i( )
E i( ) × d0 i( )[ ], (25)

p i( ) + λ.IB i( ) � p0 i( ) + p0 i( ) × d i( ) − d0 i( )
E i( ) × d0 i( ). (26)

So, the consumption of the consumer can also be evaluated as

follows:

d i( ) � d0 i( ) × 1 + Ei × p i( ) − p0 i( ) + λ.IBi)
p0 i( )[ ]. (27)

When I(i) is zero (i.e., no incentive award) in the aforementioned

equation, d(i) would be equal to d0(i). Consequently, the price of

energy would not change and the elasticity of the price will be

equal to 0.

Modeling for the multi-period

The cross-elasticity between the periods i and j is described as

follows:

E i, j( ) � P0 j( )
d0 i( ) ×

zd i( )
zp j( ), i ≠ j, (28)

E i, j( )≤ 0, if i � j,
E i, j( )≥ 0, if i ≠ j.

{

In (28), we conclude that zd(i)
zρ(j) is constant. The demand

response to price variance could, therefore, be characterized as

a linear function. Here, 15 min is known as a one-time slot. The

demand response model for 24 (96-time slots) hours a day can be

obtained by incorporating self- and cross-elasticity of demand as

follows:

d i( ) � d0 i( ) + Ei ×
d0 i( )
p0 i( ) × p i( ) − p0 i( ) + λ.IB i( )

+∑96
j�1
j ≠ i

E i, j( ) × d0 i( )
p0 j( ) × p j( ) − p0 j( ) + λ.IB j( )( ),

i � 1, 2 . . . 96. (29)

The aforementioned equation shows how high the

customer’s consumption should be in order to reach

maximum profits in 24 h. The change in demand in Eq. 29

comes from two sources. The source is self-elasticity, expressed in

the first term, and cross-elasticity, expressed in the second term,

is the other source. Both price- and reward-sensitive demands are

expressed in the model. In order to achieve the maximum profit

in 24 h, the aforementioned equation indicates how high the

consumption of the consumer should be. In the following section,

we will illustrate how incentives could change the demand curve

through executing FR, RTP, DAP, and PTR programs in the

numerical results segment. Load profiles of the consumers are

now pre-classified as low consumption, off peak and peak

TABLE 1 Categorization of the load profile.

February 5 May 5 August 5 November 5

Load profile Interval Load profile Interval Load profile Interval Load profile Interval

Low consumption 0–4 kW 14–28 0–5 kW 1–24 (-50) to 5 kW 26–66 (-5) to 8 kW 39–63

48–64 32–43

Off-peak 4–8 kW 1–13, 35–47, and 65–88 5–10 kW 25–31 5–20 kW 1–25 9–20 kW 1–38 and
64–67

44–66 67–72

Peak 8–16 kW 29–34 >10 kW 67–96 20–36 kW 73–96 20–30 kW 68–96

89–96
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categories based on the different bands of power consumption

and the time duration where it was obtained. The categorization

of load profile is shown in Table 1. The self and cross elasticity

values are fixed based on the literature and by examining with

various set of values to obtain the desired outcomes. The pre-

fixed self and cross elasticity values are shown in Table 2.

Analysis and discussion of results

The flat rate is assumed as the average electricity price of

dynamic RTP. Real-time pricing (RTP) is a service that

specifically provides consumers with real-time hourly rates.

In day-ahead pricing (DAP), a consumer will be told a day in

advance of the price of electricity. A peak time rebate (PTR) is

a program in which clients earn discounts during peak hours.

Loss aversion is not considered (λ = 1) in the PTR1 program.

Loss aversion is considered in the PTR2 program (λ = 0.5).

Any dollar lost is considered to be twice the worth of any

dollar gained. The PTR3 program is the same as PTR2, except

for the doubling of the cross-elasticity constants. In PTR1,2,3

programs, the reward awarded to a client is assumed to be

2.6 times the flat rate value during peak hours. PTR4 is the

same as PTR1, except that the reward being awarded is

doubled, that is, 5.2 times the flat rate value.

A peak price only applies during the designated summer days,

that is, June–September. Also, a very low night-time rate that applies

during the five windiest months, that is, March–May and

November–December (e.g., 5 August, 0.0583$, 5 May, 0.03$, and

5 November, 0.0307$). The experimental rate will be the same as the

normal Austin energy rate (e.g., 5 February 0.0564$) for the

remaining 3 months of January, February, and October

(“ComEd’s Hourly Pricing,” 2011; McCracken and George, 2014).

Scenario 1: Impact of pricing systems on
all season parameters and to illustrate the
numerical results of how incentives could
alter the demand curve

The impact of the pricing scheme on the total cost, total

demand, and peak demand for all seasons has been clearly

analyzed here. Initially, the analysis has been done for 5th of

February. Corresponding results are tabulated in Table 3. In

contrast to flat-rate pricing, the RTP scheme does not show any

effect on parameters such as overall cost, total demand, and peak

demand here. However, with a loss of utility income of –30%

without any impact on the total demand and peak demand, the

DAP schemewill have a negative impact. Compared to other pricing

schemes, peak demand was reduced in the case of PTR1,2,3
(–13.06 percent to –26.13 percent). A fair amount of peak

demand is reduced in PTR1, that is., -26 percent with a loss of

-15 percent in utility profits. The potential to minimize the peak

demand to half (-26.13 percent to -13.06 percent) and half of the

utility income (15.26 percent to -7.63 percent) can be saved relative

to PTR1 by considering the loss aversion (λ = 0.5) in PTR2. In

conclusion, PTR2 has a moderate impact as opposed to PTR1, both

in terms of peak reduction and total cost. The doubling of the cross-

elasticity values in PTR3 as opposed to PTR2 indicates no effect in

terms of peak reduction. However, it shows a good impact in

maintaining utility in profits (-7.63% to -1.2%) and also by

improving the overall carrying capacity of the demand

(2.53 percent to 8.96 percent).

In the case of PTR4, the peak demand was drastically

reduced, that is, -50 percent with a huge compromise of

-64.6 percent in the total utility income, which is an adverse

effect and not advisable. Of all PTR conditions, PTR3 is the best

solution for peak reduction (-13 percent) without

compromising on utility revenue (-1.2 percent) with load

TABLE 2 Self and cross elasticities.

Peak Off-peak Low

Peak -0.10 0.005 0.005

Off-peak 0.005 -0.10 0.003

Low 0.003 0.005 -0.10

TABLE 3 Results of February 05.

Pricing scheme Price in $/kWh Reward in $/kWh Total cost in $ Total demand in kWh Peak demand in kWh

Flat rate 0.0564 24.83 440.08 130.99

RTP Dynamic 23.57 (-5.08%) 433.82 (-1.42%) 132.72 (+1.31%)

DAP 0.0392, Dyn 17.23 (-30.6%) 436.82 (-0.74%) 130.83 (-0.12%)

PTR1 0.0564 0.1475 21.04 (-15.26%) 462.4 (+5.07%) 96.75 (-26.13%)

PTR2 0.0564 0.1475 22.93 (-7.63%) 451.24 (+2.53%) 113.87 (-13.06%)

PTR3 0.0564 0.1475 24.53 (-1.2%) 479.52 (+8.96%) 113.87 (-13.06%)

PTR4 0.0564 0.282 8.77 (-64.64%) 482.75 (+9.69%) 65.53 (-49.97%)
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capacity improvement (9 percent) as a result of the shifting load

to non-peak hours and low-price hours. Figure 7 shows the

demand curve of all pricing schemes for the month of February.

Figures 8, 9 shows the bar chart of all parameters and all pricing

schemes for the month of February and May respectively.

Figure 8 shows the bar chart of all parameters and all

pricing schemes for the month of February.

Then, the analysis has been done for 5th of May, August

and November. Corresponding results are tabulated in

Tables 4–6 respectively. If utility income is only the

criterion, DAP is considered the best in May. According to

the Pecan Street report (Rate Structure Information for Time-

of-Use Pricing, 2011; McCracken and George, 2014), the

explanation for low income in May is due to the very low

night-time rate that applies during the five windiest months

(March–May and November–December). When the key

concern is peak demand reduction, then PTR1 is the best

option. However, because of the compromise in utility

revenue (36.2 percent), it is not advisable. As far as all

parameters are concerned, then PTR3 is the best choice for

May with all the parameters in a moderate range. In PTR3,

with a compromise of 9.5% utility revenue, 13.09% peak

demand can be reduced with increased loading capability

by 9.7%. In August and November, the trend of all the

parameters remains the same. PTR3 is the optimal solution

by keeping all parameters in concern.

FIGURE 7
Demand curve of all pricing schemes for February 05.

FIGURE 8
Bar chart of all parameters and all pricing schemes for February 05.
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TABLE 4 Results of May 05.

Pricing scheme Price in $/kWh Reward in $/kWh Total cost in $ Total demand in kWh Peak demand in kWh

Flat rate 0.03 18.13 605.25 341.11

RTP Dynamic 16.98 (-6.34%) 579.45 (-4.2%) 313.49 (-8.1%)

DAP 0.0389, Dyn 23.43 (+29.2%) 604.6 (-0.1%) 341.19 (0.02%)

PTR1 0.03 0.07845 11.55 (-36.2%) 619.68 (+2.3%) 251.79 (-26.18%)

PTR2 0.03 0.07845 14.84 (-18.1%) 612.47 (+1.19%) 296.45 (-13.09%)

PTR3 0.03 0.07845 16.4 (-9.5%) 664.34 (+9.7%) 296.45 (-13.09%)

TABLE 5 Results of August 05.

Pricing scheme Price in $/kWh Reward in $/kWh Total cost in $ Total demand in kWh Peak demand in kWh

Flat rate 0.0583 62.78 1,076.6 596.43

RTP Dynamic 60.47 (-3.6%) 1,068.37 (-0.7%) 562.59 (-5.6%)

DAP 0.0460,Dyn 50.1 (-20.1%) 1,102.34 (+2.39%) 596.75 (+0.05%)

PTR1 0.058315 0.1524 38.71 (-38.3%) 1,071.31 (-0.49%) 440.56 (-26.1%)

PTR2 0.058315 0.1524 50.75 (-19.1%) 1,073.95 (-0.24%) 518.5 (-13%)

PTR3 0.058315 0.1524 55.14 (-12.1%) 1,149.24 (+6.74%) 518.5 (-13%)

FIGURE 9
Bar chart of all parameters and all pricing schemes for the month of May.

TABLE 6 Results of November 05.

Pricing scheme Price in $/kWh Reward in $/kWh Total cost in $ Total demand in kWh Peak demand in kWh

Flat rate 0.03067 33.64 1,097 648.7

RTP Dynamic 33.68 (0.09%) 1,099 (0.18%) 646.6 (-0.325%)

DAP 0.0275, Dyn 30.14 (-10.41%) 1,098.1 (0.09%) 644.6 (-0.638%)

PTR1 0.307 0.0803 20.01 (-40.5%) 1,097.4 (0.03%) 478.9 (-26.18%)

PTR2 0.307 0.0803 26.83 (-20.25%) 1,097.2 (0.015%) 563.8 (-13.09%)

PTR3 0.307 0.0803 29.44 (-12.49%) 1,182.3 (+7.77%) 563.8 (-13.09%)
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Scenario 2: Impact of pricing schemes for
all seasons on all parameters and contrast
between seasons

The percentage change in total cost, total demand, and

peak demand is shown in bar charts for all pricing schemes in

Figures 10–12, respectively. Percentage change in total cost:

utility revenue has dropped in the range of 3% to 6 percent for

RTP pricing in all seasons, and PTR1 for utility revenue or

total cost of all seasons has dropped in the range of 15% to

40 percent. Due to λ ′s variation from 1 to 0, the total cost of

PTR2 is half of PTR1. A range of 1 percent decreased to

12 percent for PTR3. Percentage change in total demand:

the total demand reduction is in the range of 1 to 4 percent

for RTP pricing in all seasons. The percent increase in the total

demand range is 0 to +5 percent in PTR1. In PTR2, the

percentage increase in the total demand range is 0 to +2%,

that is, the exact half of PTR1. Percentage change in peak

demand: the percentage peak decrease range for RTP is 0 to

–8 percent. The percentage peak reduction range for PTR1 is

26 percent. The percentage peak reduction range for PTR2 is

exactly half of PTR1 at –13 percent. The percentage peak

reduction range for PTR3 is exactly the same as PTR2 at

13 percent.

PTR1 has a positive effect on the reduction of peak demand

(-26%) and the rise in total demand (0–5%). However, the reduction

in utility income also had a major effect (15 to 40 percent). The

credit for PTR2,3 is half the credit for PTR1 in all seasons. The cause

is that λ = 0.5 is taken into account in PTR2,3, and in the demand

response equation, reward 0 is replaced by 0.5*reward0. The value of

λ is also expressed in the value of the credit. At the λ = 1 condition,

peak demand is drastically reduced in all the seasons. Peak demand

FIGURE 10
Percentage change in the total cost for all seasons and all pricing schemes.

FIGURE 11
Percentage change in total demand for all seasons and all pricing schemes.
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is decreased and halved at λ = 0.5 compared to λ = 1; peak demand

comparison at different conditions of λ = 0(FR), 0.5(PTR2), and

1(PTR1) is shown in Figure 13.

The total demand for February and May is between

440 and 660 units. Also, the total cost is between $11 and

$24 with average flat rate values of 0.0564 and 0.03. The total

demand surged by almost 80% in August and November, that

is, in the range of 1,050 to 1180 kwh, and cost ranges from 33

$to 50$.With the same range of the total demand, the total

cost of November is almost half of that of August because the

RTP price signal variation is based on the season and nature

of the day. For the total demand range of ≈440units in

February and ≈1,097 units in November, it charges almost

in the same range of ≈24 to 30 $.

Scenario 3: Rebate or reward that has
given during peak hours is 2.6 times of the
flat rate (PTR4). If it is doubled, that is, the
reward is equal to 5.2 times the flat rate,
what will be the response?

The FEB is reviewing this situation. The corresponding

changes in parameters due to doubling of rebate are tabulated

in Table 7. The flat rate is 0.0564 for the FEB. The incentive is

now boosted to 0.2820 (i.e., 5.2 times the flat rate) during

peak hours. Peak demand is decreased by 49 percent relative

to the flat rate. Also, the total demand is raised by 9%, and the

utility’s total revenue is decreased by 64%. Compared to

PTR1, just by changing the rebate value, much change has

FIGURE 12
Percentage change in peak demand for all seasons and all pricing schemes.

FIGURE 13
Percentage change in peak demand for all seasons and all values of loss aversion.
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been observed in the percentage change in peak demand and

total cost. However, it is not at all suggested as it is happening at

the loss of utility revenue.

Scenario 4: Equal loss scenario and peak
reduction scenario (for any season)

The equal loss scenario criterion is the one that evaluates how

much peak reduction can be accomplished with the same amount

of economic loss. In the peak reduction scenario, utilities are

interested in peak reduction, regardless of the cost. The month of

May is considered for analyzing these scenarios. For equal loss

scenario, total demand and peak demand responses are shown in

Figure 14. The implications of equal loss scenario and peak

reduction scenario on the parameters are listed out in Tables 8, 9

respectively.

To retain equivalent financial loss, i.e., –6.34 percent, the PTR1

rebate is reduced to 0.0343 from $0.07845 per kWh. PTR1 can

achieve a –11.4 percent peak reduction in PTR1 without taking into

account the loss aversion scenario (i.e., λ = 1), compared to a

–8.1 percent peak reduction in RTP. In the same way, a

–7.91 percent reduction compared to RTP is accomplished by

considering loss aversion in PTR2. In terms of peak reduction,

PTR3 shows the same effect as PTR1, i.e., –11.51 percent. The added

advantage with PTR3 is the improvement in total demand serving

capability of 8.5% and peak reduction of –11.4% is attained by

considering loss aversion and doubling the cross elasticity constants.

Compared to RTP, the corresponding peak reduction of

8.11 percent in PTR is achieved at λ = 0.31. RTP is

responsible for utility loss of 6.34 percent for the same peak

load reduction, while 11.24 percent in PTR1. Compared to RTP

(4.26 percent), the total demand serving capacity is better in

PTR1 (+0.7 percent). The selection of either RTP or PTR1 is solely

TABLE 7 Doubling of the rebate scenario.

Pricing scheme Reward in $/kWh Total cost in $ Total demand in kWh Peak demand in kWh

FR 24.83 440.08 130.9

PTR1 2.6*0.0564 21.04 462.4 96.75

PTR4 5.2*0.0564 8.77 482.7 65.53

FIGURE 14
Total demand and peak demand for the equal loss scenario.

TABLE 8 Equal loss scenario.

Pricing scheme Price in $/kWh Reward in $/kWh Total cost in $ Total demand in kWh Peak demand in kWh

FR 0.03 18.13 605.25 341.1

RTP Dynamic 16.98 (-6.34%) 579.45 (-4.26%) 313.4 (-8.09%)

PTR1 0.03 0.0343 16.98 (-6.34%) 611.56 (+1.04%) 302.0 (-11.44%)

PTR2 0.03 0.0474 16.98 (-6.33%) 609.61 (+0.72%) 314.12 (-7.91%)

PTR3 0.03 0.069 16.98 (-6.36%) 657.23 (+8.58%) 301.83 (-11.51%)
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dependent on the priority of the cost, else load demand serving

capacity for the same peak reduction.

Scenario 5: For the same value of rebate, if
λ is changed from 0 (FR), 0.5 (PTR2), and 1
(PTR1), then what will happen?

For the same value of rebate, change in loss aversion value effects

the parameters that are shown in Table 10. For the same reward

value, a decrease in peak demand is caused by λ approaching from

0 to 1. The value range is from 313.4 to 251.4 for May and 562.5 to

440.5 for August. At the same time, this allows the total demand to

rise. For May, its value ranges from 579.4 to 619.6 and for August, it

ranges from 1,068.3 to 1,071.3. In conclusion, the pattern of a

significant reduction in peak demand and a rise in total demand is

observed as λ approaches 0 to 1.

Scenario 6: For the same value of reward
and λ values, are elasticity constants
doubled?

For the same value of reward and λ values, but elasticity

constants are doubled. Then the corresponding implications

on the parameters are shown in Table 11. The total demand is

significantly increased through the doubling of cross

elasticity values. Their values change from 612 to 664 for

May. The range is 1,073–1,149 for August. The peak demand

remains unchanged for May (296–296) and August

(518–518). Therefore, the peak demand has been shown to

remain unaltered, and overall demand has risen by

7–8.4 percent.

Conclusion

The potential of demand response initiatives has offered

new perspectives for the electricity market to participate in

the process of making decisions by the clients. Time-based

DR programs help enhance the indices of service and

reliability. Choosing the right one among them depends on

financial and technical aspects. These aspects should be

integrated into the utility function of the customer. The

influence of loss aversion is studied on the PTR program

with different scenarios in this paper. Of all PTR conditions,

without sacrificing on utility revenue with load capacity

increase, PTR3 is the best option for peak reduction. There

are also season-based conclusions, such as a drastic change in

some parameters for a specific season or between different

TABLE 9 Peak reduction scenario.

Pricing scheme Price in $/kWh Reward in $/kWh Total cost in $ Total demand in kWh Peak demand in kWh

FR 0.03 18.13 605.25 341.11

RTP Dynamic 16.98 (-6.34%) 579.45 (-4.26%) 313.49 (-8.09%)

PTR1 0.03 0.07845 16.09 (-11.24%) 609.73 (+0.73%) 313.42 (-8.11%)

TABLE 10 For different values of loss aversion.

Season May August

Pricing scheme λ Reward Total demand Peak demand λ Reward Total demand Peak demand

FR

RTP 0 579.4 313.4 0 1,068.3 562.5

PTR2 0.5 0.07845 612.4 296.4 0.5 0.1524 1,073.9 518.5

PTR1 1 0.07845 619.6 251.8 1 0.1524 1,071.3 440.5

TABLE 11 Doubling of the elasticity constant case.

May August

λ Reward Elasticity
constant

Total
demand

Peak
demand

λ Reward Elasticity
constant

Total
demand

Peak
demand

PTR2 0.5 0.07845 0.005 and 0.003 612.4 296.4 0.5 0.0583 0.005 and 0.003 1,073.9 518.5

PTR3 0.5 0.07845 0.01 and 0.006 664.3 (+7%) 296.4 0.5 0.0583 0.01 and 0.006 1,149.2 (+8.4%) 518.5
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seasons in relation to other parameters. It also discusses the

situations that make the system financially and technically

unviable. The best outcomes of the peak load reduction

scenario and equal loss scenario are well-explored. In

conclusion, as λ approaches 0 to 1, the trend of a sharp

reduction in the peak demand and an increase in the total

demand is observed. The peak demand has been shown to

remain constant, and the total demand has increased by

doubling the cross-elasticity values.

Data availability statement

Publicly available datasets were analyzed in this study. These

data can be found at: ComEd’s Hourly Pricing. (2011). Retrieved

from https://dataport.pecanstreet.org/academic and from

https://dataport.pecanstreet.org/academic.

Author contributions

RP has conceptualised, implemented, investigated and

validated the proposed methodology for the smart grid

environment. And also prepared the original manuscript.

BJ has supervised the whole work and reviewed the

manuscript. JI has given valuable inputs in implementing

of the the work. HC has edited the manuscript for better

visualization.

Acknowledgments

PR received his Bachelor of Technology degree from

Kakatiya University College of Engineering, Telangana, India,

in 2007. He obtained master’s degree from JNTU, Hyderabad,

India. He has completed his doctoral degree from the School of

Electrical Engineering, Vellore Institute of Technology, Tamil

Nadu, India. He has more than 11 years of teaching and research

experience in electrical engineering in reputed organizations

including VIT and Ministry of Manpower, Sultanate of Oman.

His research interest includes energy management, demand-side

management/demand response, optimization, energy efficiency

in buildings, and grid-connected PV Systems, IoT. JB

(corresponding author) received his B.E. in Electrical

Engineering from Manonmaniam Sundaranar University,

Tamilnadu, India, in 1999, an ME in Power Systems from

Annamalai University, Tamil Nadu, India, in 2002 and a PhD

from Anna University, Chennai, in 2013. He has been working as

an Associate Professor at Vellore Institute of Technology, Tamil

Nadu, India. He has more than 19 years of experience in teaching

and research. His major scientific interest is focused on power

system optimization and protection, optimal location of FACTS

and DG devices, renewable energy systems, and demand-side

management. He has been serving as secretary for the IEEE

i-PACT conference 2017, 19, and 21. IJ was born in India and

received his bachelor’s degree in Electrical Engineering from The

Indian Engineering College and master’s degree in Power

Systems Engineering from Annamalai University with first

class in 2000 and 2001, respectively. He has completed his

Ph.D. degree in the Department of Electrical and Electronics

Engineering, Indian Institute of Technology, Roorkee, India, in

the year 2007. He is presently working as a Professor in the

School of Electrical Engineering, Vellore Institute of Technology

(VIT). His field of interest is unit commitment, economic

dispatch, power system restructuring and deregulation,

artificial intelligence applications to power system, and

FACTS. CH has 2.6 years of teaching experience. He received

his bachelor’s degree in Electrical & Electronics Engineering from

Jawaharlal Nehru Technological University, Anantapuramu,

India, and a master’s degree in Power Electronics & Drives

from VIT University, Vellore, India, in 2013 and 2016,

respectively. He received his Ph. D from VIT University,

Vellore, India, in the year 2022. He has published various SCI,

Web of Science, Springer Book Chapters, and SCOPUS indexed

journals. His research interests include PV cell modeling, fuel cell

modeling, soft computing, artificial intelligence, power point

tracking techniques, liquid dielectrics, spectroscopy analysis,

and design of high step-up dc-dc converters for electric

vehicle application.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors, and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Frontiers in Energy Research frontiersin.org15

Puppala et al. 10.3389/fenrg.2022.1079695

https://dataport.pecanstreet.org/academic
https://dataport.pecanstreet.org/academic
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1079695


References

Aalami, H. A., Pashaei-Didani, H., and Nojavan, S. (2019). Deriving nonlinear
models for incentive-based demand response programs. Int. J. Electr. Power &
Energy Syst. 106, 223–231. doi:10.1016/j.ijepes.2018.10.003

Aalami, H., Yousefi, G. R., and Parsa Moghadam, M. (2008). “Demand response
model considering EDRP and TOU programs. Transmission and Distribution
Exposition Conference,” in 2008 IEEE PES powering toward the future. doi:10.1109/
TDC.2008.4517059

Abapour, S., Mohammadi-Ivatloo, B., and Tarafdar Hagh, M. (2020). Robust
bidding strategy for demand response aggregators in electricity market based on
game theory. J. Clean. Prod. 243, 118393. doi:10.1016/j.jclepro.2019.118393

Ajoulabadi, A., Ravadanegh, S. N., and Mohammadi-Ivatloo., Behnam (2020). Flexible
scheduling of reconfigurable microgrid-based distribution networks considering demand
response program. Energy 196, 117024. doi:10.1016/j.energy.2020.117024

Chai, Y., Xiang, Y., Liu, J., Gu, C., Zhang, W., and Xu, W. (2019). Incentive-based
demand response model for maximizing benefits of electricity retailers. J. Mod.
Power Syst. Clean. Energy 7 (6), 1644–1650. doi:10.1007/s40565-019-0504-y

ComEd’s Hourly Pricing (2011). ComEd’s hourly pricing. Retrieved from
Available at: https://dataport.pecanstreet.org/academic.

Dhundia, S. (2016). Real time pricing simulator for a smart grid.

Hosseini Imani, M., Niknejad, P., and Barzegaran, M. R. (2019). Implementing
Time-of-Use Demand Response Program in microgrid considering energy storage
unit participation and different capacities of installed wind power. Electr. Power
Syst. Res. 175, 105916. doi:10.1016/j.epsr.2019.105916

Jiang, J., Kou, Y., Bie, Z., and Li, G. (2019). Optimal real-time pricing of electricity based
on demand response. Energy Procedia 159, 304–308. doi:10.1016/j.egypro.2019.01.011

Lu, R., and Hong, S. H. (2019). Incentive-based demand response for smart grid
with reinforcement learning and deep neural network. Appl. Energy 236 (2018),
937–949. doi:10.1016/j.apenergy.2018.12.061

McCracken, B., and George, T. (2014). Pecan street smart grid demonstration
project interim Technology performance report.

Mohajeryami, S., Schwarz, P., and Baboli, P. T. (2015). Including the behavioral
aspects of customers in demand response model: Real time pricing versus peak time
rebate. North American Power Symposium. doi:10.1109/NAPS.2015.7335116NAPS

Monfared, H. J., Ghasemi, A., Loni, A., and Marzband, M. (2019). A hybrid price-
based demand response program for the residential micro-grid. Energy 185,
274–285. doi:10.1016/j.energy.2019.07.045

Rajendhar, P., and Belwin Edward, J. (2019). “Application of demand response
and co-simulation approach for renewable integrated home energy management
system: A review,” in IET generation, transmission & distribution (United Kingdom:
Wiley). doi:10.1049/iet-gtd.2018.5791

Rate Structure Information for Time-of-Use Pricing (2011). Rate structure
information for time-of-use pricing. Retrieved from Available at: https://www.
pecanstreet.org/wp-content/uploads/2011/07/Pricing-trial-rate-overview.pdf.

Residential data page of Pecan street data port (2022). Residential data page of
Pecan street data port. Retrieved fromAvailable at: https://dataport.pecanstreet.org/
academic.

Sharifi, R., Fathi, S. H., Anvari-Moghaddam, A., Guerrero, J. M., and
Vahidinasab, V. (2018). An economic customer-oriented demand response
model in electricity markets. Proc. IEEE Int. Conf. Industrial Technol., 1149.
–1153. doi:10.1109/ICIT.2018.8352340

Shi, Q., Chen, C. F., Mammoli, A., and Li, F. (2020). Estimating the profile of
incentive-based demand response (IBDR) by integrating technical models and
social-behavioral factors. IEEE Trans. Smart Grid 11 (1), 171–183. doi:10.1109/
TSG.2019.2919601

University of Texas, C. for electromechancis (2011). Simulink smartgrid
simulation 1: The basics. Retrieved from Available at: https://www.youtube.com/
watch?v=UvOJh534cok&t=228s.

Frontiers in Energy Research frontiersin.org16

Puppala et al. 10.3389/fenrg.2022.1079695

https://doi.org/10.1016/j.ijepes.2018.10.003
https://doi.org/10.1109/TDC.2008.4517059
https://doi.org/10.1109/TDC.2008.4517059
https://doi.org/10.1016/j.jclepro.2019.118393
https://doi.org/10.1016/j.energy.2020.117024
https://doi.org/10.1007/s40565-019-0504-y
https://dataport.pecanstreet.org/academic
https://doi.org/10.1016/j.epsr.2019.105916
https://doi.org/10.1016/j.egypro.2019.01.011
https://doi.org/10.1016/j.apenergy.2018.12.061
https://doi.org/10.1109/NAPS.2015.7335116
https://doi.org/10.1016/j.energy.2019.07.045
https://doi.org/10.1049/iet-gtd.2018.5791
https://www.pecanstreet.org/wp-content/uploads/2011/07/Pricing-trial-rate-overview.pdf
https://www.pecanstreet.org/wp-content/uploads/2011/07/Pricing-trial-rate-overview.pdf
https://dataport.pecanstreet.org/academic
https://dataport.pecanstreet.org/academic
https://doi.org/10.1109/ICIT.2018.8352340
https://doi.org/10.1109/TSG.2019.2919601
https://doi.org/10.1109/TSG.2019.2919601
https://www.youtube.com/watch?v=UvOJh534cok&t=228s
https://www.youtube.com/watch?v=UvOJh534cok&t=228s
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1079695


Nomenclature

Acronyms

DR demand response

FR flat rate

RTP real-time pricing

DAP day-ahead pricing

PTR peak time rebate

IBDR incentive-based demand response

ESC energy supply charge

Variables

PGrid power drawn from the grid

PUsed power consumed by the loads

PPV PV power generated

PTotal total power distributed among the legs

P1,2,3 power to legs 1, 2, and 3, respectively

Vpk voltage phasor (peak)

Ipk current phasor (peak)

E demand elasticity

d value of demand

p price of electricity

Δd change in demand

Δp change in price

I(i) incentive($/kWh)

R(d(i)) revenue
IB(i) incentive bonus

λ coefficient that represents the actual value of the incentive or

reward’s payment

Indices

i,j time periods
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