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ABSTRACT 
 

Objective: To determine possible MPro enzyme inhibitors by using structure-based virtual screening 
methods, in the ZINC Biogenic Data Set containing natural products and natural product-like 
molecules. 
Materials and Methods: QVina, an AutoDockVina derivative, was used in virtual screening 
operations, GROMACS in molecular dynamics studies and SwissAdme server in ADME 
(Absorption, Distribution, Metabolism, and Excretion) calculations. KNIME (Konstanz Information 
Miner) and ChemAxon software were used for filtering data and creating three-dimensional 
structures of the molecules. 
Results: Seven out of totally screened 51535 natural products or natural products like molecules 
were identified as possible candidate to be used as SARS–CoV–2 Main Protease (MPro) enzyme 
inhibitors based on the results obtained from structure based virtual screening and ADME models.  
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Conclusion: Among the seven potent molecules, two of them (ZINC000604382012 and 
ZINC000514288074) were selected as candidate molecules for further studies according to the 
results obtained from g_mmpbsa simulations and synthetic accessibility models. In addition, a 
workflow has been established to identify novel or potent M

pro
 enzyme inhibitors. 

 
 
Keywords: SARS–CoV–2; natural products; virtual screening; docking; molecular dynamics; bioactive 

molecule design. 
 
1. INTRODUCTION 
 
The SARS-CoV-2 (COVID-19) outbreak emerged 
in Wuhan, China, towards the end of 2019 and 
soon turned into a pandemic. Although the 
numbers are not certain, more than 85 million 
people have been affected by the disease and 
more than 1.5 million people have died so far. [1] 
Significant progress has been made in 
developing vaccines to prevent the infection of 
SARS-CoV-2 and mass vaccination studies have 
started in some countries. However, there is still 
no significant drug developed for use in 
treatment. [2] Multiple approaches are being 
evaluated in the treatment of the virus, and 
studies are still ongoing. Preventing the entry of 
the virus into the cell, preventing its replication, 
slowing the autophagy of the host cell, etc. are 
the examples of these approaches. Antibodies, 
peptides, proteins and small molecules can be 
used to block the entry of the virus into the cell. 
Proteases such as RNA-dependent RNA 
polymerase (RdRp), papain-like cysteine 
protease (PL

pro
) or main protease (M

Pro
) can be 

targeted to circumvent the virus replication. [3] In 
order to inhibit these proteases, studies have 
been carried out with molecules developed or 
under development for some other viruses. For 
example, Choy et al. studied the inhibition of the 
replication of SARS-CoV-2 in Vero-E6 cells with 
16 antivirals, including the well-known HIV M

pro
 

(3CLpro) inhibitor, lopinavir EC50 value of 
remdesivir was found to be 23.15 μM and EC50 
value of lopinavir was found to be 26.63 μM in 
the in-vitro assay used in the research. In the 
same study, the EC50 value of emetine, which is 
an anti-protozoal molecule, was determined as 
0.46 μM. [4] However, the expected clinical 
results were not obtained from the trail performed 
with the aforementioned lopinavir and its 
companion ritonavir.[5] 
 
Similar unsatisfactory results from such well-
known antivirals have prompted researchers to 
conduct studies for the discovery of new 
antivirals. As the first attempts, drug repurposing 
approach was carried out with the existing drug 
molecules. [6-8] Although there are many reports 

about the fact that quite a large number of drug 
molecules can find various uses at different 
points in the life cycle of the virus, an accepted 
protocol has still not been reached. Because of 
this situation, it has become important to screen 
novel molecules that may be lead bioactive / 
drug molecules and to carry out studies on using 
them to cure viral infection. 
 
Virtual screening methods are one of the first and 
frequently used methods to identify and develop 
such novel bioactive / drug molecule or 
molecules. [9] This method can be used alone to 
identify lead molecules that can be used in 
studies, as well as a complement to high-
throughput screening (HTS) studies. [10] There 
are many successful examples of discovering a 
novel bioactive, lead-like molecule using this 
approach. [11] For example, Vangrevelinghe and 
colleagues analyzed 400000 molecules using 
virtual screening methods and determined potent 
and selective CK2 inhibitor molecules among the 
prioritized molecules using docking scores. [12] 
Another example of the successful application of 
this method was the determination of Dipeptidyl 
Peptidase IV Inhibitors by Ward and colleagues. 
As a result of their virtual screening studies using 
800000 molecules, they tested the bioactivity of 
4000 molecules and discovered approximately 
50 inhibitors. [13] Various virtual screening 
studies have been conducted in which not only 
inhibitors but also receptor agonists were 
discovered. Schapira and colleagues have 
discovered two new nuclear hormone receptor 
agonists using rational virtual screening methods. 
[14] While it is possible to increase these and 
similar examples, we can recommend that those 
who want to get more information about the 
subject should read the chapter prepared by 
Matter and Sotriffer. [15] 
 
From the past to the present, natural products 
have been quite common resources in the 
discovery of bioactive / drug molecules. Many of 
them are still used as medicine. Newman and 
Cragg's review article published in 2020 contains 
very important information about the use of 
natural products as drugs. [16] According to the 
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article, 71 (5.1%) of 1394 small molecule class 
drugs accepted as drugs by the FDA between 
1981 and 2020 were natural products, 14 (1%) 
were natural products of plant origin, 356 (27.5%) 
were natural products or natural product 
derivatives, 434 (30.5%) are molecules that 
mimic natural productsalthough they are 
synthetic. For the mentioned molecules, the total 
reaches to 64.1 percent, indicating that more 
than half of the accepted molecules are natural 
products, natural products analogues or 
derivatives. [16] This rather high number is an 
indication that natural and its derivatives continue 
their existence as very important resources in the 
discovery of new bioactive / drug molecules. 
Considering the above-mentioned issues, we 
carried out virtual screening operations with 
natural products and natural product-like 
molecules deployed in ZINC “Biogenic Dataset” 
which can be developed as new SARS-CoV-2 
M

Pro
 inhibitor or inhibitors. 

 

2. MATERIALS AND METHODS 
 

2.1 Materials 
 

The ZINC "Biogenic Dataset" containing the 
molecules used in this study was downloaded on 
April 10, 2020. [17] The storage and processing 
of data were carried out in the Ubuntu 18.04 
installed workstation with an i7 processor, Nvidia 
GTX 960 and GTX 1050 graphics card with 16 
GB RAM capacity. Other materials and software 
used are described in the methods section in the 
relevant places. 
 

2.2 Methods 
 

2.2.1 Preparation of molecules 
 

The downloaded dataset was transferred to 
KNIME (Konstanz Information Miner, KNIME AG, 
Zurich, Switzerland) and it was put into docking 
simulations after various filtration processes. [18] 
As the first step, molecules existing in the 
"Biogenic Dataset" catalog were loaded to 
KNIME workspace and smiles of molecules were 
transformed into chemical structures. Following 
this process, molecules marked as "in-vitro 
biogenic" were selected from the molecules in 
the catalog and the others were removed. This 
process was carried out to focus on working with 
secondary metabolites (natural products) or 
similar (natural products like) molecules. Upon 
this selection MannholdLogP, Hydrogen Bond 
Acceptors, Hydrogen Bond Donors, Rotatable 
Bonds Count, Lipinski's Rule of Five, Topological 
Polar Surface Area (A), Molecular Weight (g/mol 
- Da), XLogP, SP3 Character, and Rotatable 

Bonds Count (non terminal) parameters were 
calculated using the "CDK Molecular Properties" 
node in order to determine the molecules that 
comply with the Lipinski rule of 5 rule (Ro5) and 
investigate distribution of this parameters of the 
molecules. [19] The compatibility of molecules 
with Ro5 was tested with the node "CDK 
Lipinski's Rule of Five" and compatible molecules 
were selected. Molecules passing through the 
Ro5 filter were transformed into a format that 
RDKit software can read with the "RDKitFrom 
Molecule" node, then hydrogens were added and 
their three-dimensional structures were optimized 
by using the MMFF94 force filed with a maximum 
of 1000 iterations with the help of the "RDKit 
Optimized Geometry" node. Molecules whose 
three-dimensional structure had not been 
optimized have been optimized with the help of 
ChemAxon Marvin Sketch. [20] All of the 
molecules were saved in sdf format and 
converted into mol2 and then pdbqt formats 
using OpenBabel. [21] 

 

2.2.2 Screening binding affinities of 
molecules with docking  

 

Docking simulations were performed on TRUBA 
servers with QVina 2.1, a derivative of 
AutoDockVina. [22, 23] The coordinates of the 
binding site were determined with the aid of the 
inhibitor N3 in the pdb file coded as 6LU7. [24] 
Accordingly, the x, y, z coordinates of the center 
of the box were defined as -10.83, 12.58 and 
68.73, respectively. The dimensions of the box in 
x, y, z axes were determined as 18.75, 33.75 and 
22.5 Å, respectively in order to cover residues in 
the binding pocket of the ligand N3. The docking 
simulation of each molecule was repeated once, 
requiring a maximum of five poses to be created 
and the difference in simulated binding energies 
between poses to be 0.5 kcal/mol (energy_range 
= 0.5). In addition, the parameter exhaustiveness 
(time taken to find a better binding poses) of 
each molecule was set to 64. The simulated 
bonding energies obtained from docking poses 
were compiled with the Python script written in 
house. The top 250 of the molecules with the 
lowest simulated binding energies were 
transferred to “SwissAdme Server” in order to 
calculate ADME (Absorption, Distribution, 
Metabolism, and Excretion) related properties. 
[25] 
 
2.2.3 Calculation of ADME properties of the 

top 250 molecule 
 

As we mentioned in the previous section, ADME 
properties of 250 molecules with the best 
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simulated binding energy were obtained using 
SwissAdme Server. Accordingly, the structures 
of the molecules were converted into smiles 
format and uploaded to the server. The results 
from the server were saved in csv format and 
processed (in) KNIME workspace. Molecules 
with high gastrointestinal absorption, not labeled 
as possible inhibitor of CYP isoenzymes, and 
with no PAINS and BRENK alerted were 
selected. In addition, by examining the common 
properties of drug molecules such as Lipinski, 
Ghose, Veber, Egan, Muegge, molecules that 
are compatible with the filters were selected and 
the filtering process at this step was completed. 
[26-31] 
 
2.2.4 Screening binding affinities of 

molecules with second round docking 

 
With the same target structure (6LU7) and same 
search space parameter second round of 
docking screenings were performed using 
molecules which passed ADME filters, with 
higher exhaustiveness value (128, default value 
is 8) to search possible better binding pose or 
poses and for triplicate to ensure about 
reproducibility of the docking simulation results. 
 
2.2.5 Molecular dynamics and MM-PBSA 

studies 

 
Molecular dynamics and MM-PBSA studies were 
performed using GROMACS 5.1.4 and 
g_mmpbsa software. [32,33] Data formats 
compatible with molecular dynamics studies of 
the molecules we screened were prepared using 
Acpype. [34] In the preparation of the topology 
files compatible with GROMACS of molecules, 
Acpype default settings were used and the 
obtained parameter files were used in MD 
simulations.The AMBER99SB force field was 
used to prepare the topology and coordinates of 
the receptor. [35] After combining the coordinate 
and topology files of the receptor and the 
molecule, the resulting system is placed in a 
dodecahedron water cube whose edges were set 
to be at least 1 nm away from the system 
created. The ion concentration of the cube 
formed was adjusted to 0.15 M using sodium and 
chloride ions. The energy minimization of the 
created system was carried out by using the 
steepest descent minimization method in a 
maximum of 50000 steps, when the maximum 
force falls below 10 kJ /mol. The equilibrium 
process of the energy minimized system was 
carried out in two steps by using NVT and NPT 

ensembles. The positions of the proteins and 
molecules are fixed during the equilibrium 
simulations. NTV equilibrium process was 
continued for 100 ps with time step 2 fs, the 
temperature of the system was set to 300 K, 
modified Berendsen thermostat (V-rescale) was 
used as a thermostat. In NPT equilibrium 
process, time step 2 fs and simulation time was 
determined as 100 ps similar to NVT.  Also, 
similar to NVT, proteins and molecules are fixed 
in their places. Brendensen was used as barostat 
in NPT and 1 bar was used as reference 
pressure. After these two equilibrium steps, the 
production MD step, in which proteins and 
molecules are released and their interactions are 
examined, was carried out. This step was 
advanced 2 ns (1,000,000 steps) in total by using 
2 fs time steps, long range interactions were 
calculated with PME, neighbor searching Verlet 
cutoff – scheme. The leap-frog integrator was 
used as integrator in the production MD 
operations. As a result of the production MD 
operations, the shifts and rotations in the system 
were corrected, and then the RMSD values of 
the protein and molecules compared to the initial 
coordinates were calculated using GROMACS. 
Following these procedures, MM-PBSA method 
was applied with the help of g_mmpbsa module 
and binding free energies of the molecules were 
calculated. MM-PBSA calculations were 
performed by taking a sample at 200 ps (11 
samples in total) using production MD 
simulations between 0 and 2 ns using default 
settings.  

 
3. RESULTS AND DISCUSSION 
 
After loading the 307814 molecules in the 
"Biogenic Dataset" to KNIME, and molecules 
marked as “in-vitro biogenic” in the catalog have 
been selected for further studies. The number of 
these molecules were determined as 
85553.Table 1 shows the upper and lower limits 
of the parameters of these molecules before and 
after the Ro5 filter was applied. After the Ro5 
filtration, the number of molecules decreased to 
51542. The filtered molecules were transferred to 
"RDKit to Molecule" node and structure of the 
51535 was generated correctly. Three-
dimensional optimization was applied 
successfully to 50572 molecules and 
unsuccessfully to 963 molecules. The 
unsuccessful attempts were completed using 
ChemAxon software as mentioned in the method 
section. 
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Table 1.  The upper and lower limits of the parameters of these molecules before and after the 
Ro5 filter was applied 

 
 Before Ro5 

filter applied 
(n = 85553) 

After Ro5 
filter applied 
(n = 51542) 

 Lower 
limit 

Upper 
limit 

Lower 
limit 

Upper 
limit 

MannholdLogP -1.07 8.94 0.80 4.54 
Hydrogen bond acceptors 0 31 0 10 
Hydrogen bond donors 0 20 0 5 
Rotatablebonds count 0 69 0 20 
Topological polar surface area (Å

2
) 0.00 506.13 0.00 242.31 

Molecular weight (g/mol - Da) 58.005 1062.423 58.005 499.341 
XLogP -9.597 84.587 -5.235 5.000 
SP3 character 0.000 0.444 0.000 0.392 
Rotatablebonds count (non terminal) 0 62 0 10 

 
When the simulated binding energies obtained 
from the docking simulation were examined, it 
was determined that the lowest value was -10.9 
(best binding), the highest value was -2.5 (worst 
binding), and -7.105 mean value was the median 
was -7.2 kcal/mol. The histogram plot of the 
simulated binding energies is shown in Fig. 1. 
The best simulated binding energy results of the 
docking processes were in molecules coded as 
ZINC000015675941 and ZINC000247722436 
with a value of -10.9 kcal/mol. (Fig. 2). The worst 

results were obtained in molecules coded as 
ZINC000033830853 and ZINC000085530484 
with a value of -2.5 kcal/mol. (Fig. b). Binding 
poses of the worst two molecules were shown in 
Fig. 3. When the top 250 molecules were 
examined, it was determined that the lowest 
binding energy was -10.9 and the highest binding 
energy was -9.1 kcal/mol. In addition, it was 
determined that the average binding energy of 
this group of molecules was - 9.33 and the 
median value was -9.2 kcal/mol.  

 

 
 

Fig. 1. The histogram plot of the simulated binding energies of 51535 molecules 
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Fig. 2. Docking poses of ZINC000015675941 and ZINC000247722436 with a value of -10.9 
kcal/mol 

 

 
 

Fig. 3. Docking poses of ZINC000033830853 and ZINC000085530484 with a value of -2.5 
kcal/mol 

 
It is very important that the molecules to be 
developed or studied as drugs must be adsorbed 
in the gastrointestinal (GI) system. With the effect 
of the Ro5 filter we applied in the first step, 234 
out of 250 molecules were marked as having 
high GI absorption values. CYP isoenzymes are 

responsible for metabolizing drug molecules and 
making them suitable for excretion from the 
body. Possible inhibition of these enzymes may 
prevent the working molecule from being 
developed as a drug or cause the project to be 
terminated due to the toxicity problem in the later 
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stages of the studies. The results obtained from 
the SwissAdme Server were examined and it 
was observed that 18 out of 234 molecules with 
high GI absorption properties were not marked 
as possible inhibitors of any CYP isoenzyme. In 
the study carried out by Beall and Holloway (j), it 
was determined that some functional groups 
caused false positive results in bioactivity 
screening studies (PAINS Filter). When 18 
molecules that were not labeled as CYP 
inhibitors were examined, it was determined that 
anyof them did not contain such a functional 
group. Some functional groups may add 
unwanted ADME properties to the studied 
molecules. In the study conducted by Brenk et 
al., by evaluating a large molecule library, such 
functional groups were determined and adapted 
to in silico studies. When 18 molecules passing 
through the PAINS filter were examined in terms 
of the mentioned functional groups, it was 
determined that 14 of them do not contain any of 

these. When Lipinski, Ghose, Veber, Egon and 
Mugge filters which were created by examining 
the physicochemical properties of drug 
molecules are applied together, it is possible to 
create a consensus about the molecule being 
developed as bioactive / drug molecule would 
have drug – like properties. When the remaining 
14 molecules were examined using these filters, 
it was determined that 7 of them were suitable for 
all filters. As a result, when the data obtained 
using the SwissAdme Server were evaluated, it 
was determined that 7 of the 250 molecules had 
good or favorable ADME properties and these 
molecules are suitable for bioactive / drug 
development studies (Fig. 4, Table 2). The 
simulated binding energies of the remaining 7 
molecules were found to be between -10.9 
kcal/mol and -9.1 kcal/mol. and these molecules 
were subjected to the second round of docking 
process in order to make more detailed 
investigations about binding poses.

 

 
 

Fig. 4. Structures and ZINC codes of selected seven molecules 
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Table 2. Some physicochemical properties of top seven molecules 
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ZINC000247722436 C24H21N5O4 443.159 3.11 7 1 2 96.77 1.617 0.148 0 
ZINC000514288074 
(isochaetominine C) 

C24H22N4O4 430.164 3.22 6 1 5 95.74 1.693 0.148 2 

ZINC000247722440 C24H21N5O4 443.159 3.11 7 1 2 96.77 1.617 0.148 0 
ZINC000604382012 C23H31FN4O3 430.238 3.11 7 0 4 56.33 0.869 0.242 2 
ZINC000255249761 C27H34O6 454.236 3.77 6 1 6 82.06 2.910 0.313 1 
ZINC000015672292 C23H23N3O5 421.164 3.11 7 0 4 108.71 2.501 0.167 4 
ZINC000020463919 C20H25F3N4O5 458.178 2.34 9 4 9 126.15 0.124 0.211 5 
(MW = Molecular Weight ,HBA = Hydrogen Bond Acceptors, HBD = Hydrogen Bond Donors,  RBC = Rotatable Bonds Count, TPSA = Topological Polar Surface Area (Å2), 

RBC(nt) = Rotatable Bonds Count (non terminal)) 
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The second round of docking simulations were 
repeated three times for each molecule. The 
average and standard deviations of the binding 
energies of the poses and the RMSD values of 
the structures were calculated from these 
simulations. The average binding energies 
obtained and the results obtained from the first 
round of docking simulation were compared and 
shown in Table 2. Standard deviations of the 
binding energies obtained from the docking 
simulations in the second round were 0.000 for 
each of the molecule. The average RMSD values 
of the binding poses were examined and it was 
observed that they varied between 0.001 and 
0.643, and the standard deviation values varied 
between 0.000 and 0.236. These values show 
that reproducible results were obtained in the 
second round docking process. The results 
obtained in the first docking round were 
compared with those obtained in the second 
round and they were quite close to each other.  
ΔΔG values for the same molecules of these two 
rounds were 0.0 for each of the molecules. The 
average of the RMSD values of the poses 
obtained in the first round and the poses 
obtained in the second round varied between 
0.001 and 0.601. Although the upper limit of this 

comparison is a little bit high, other values are at 
acceptable levels (Table 3). As it was seen that 
reproducible results were obtained in the second 
round of docking simulation, the poses obtained 
were used as starting structures in MD 
simulations. 
 
MD simulations of the 7 molecules, the known 
inhibitor N3 and the receptor (protein structure of 
M

pro
enzyme) free of ligand were completed 

without any problem and the obtained 
information was processed. RMSD plots of 
receptors obtained for each molecule, the known 
inhibitor N3 and free receptor as a result of MD 
simulations are shown in Fig. 5. When the graph 
was examined, it was observed that the RMSD 
values of the protein structure for most of the 
molecules were lower than 0.25 nm (2.5 Å) and 
they formed relatively stable complexes during 
the simulation. When the RMSD values of the 
molecules were examined, it was observed that 
some of them remained quite stable during the 
simulation (ZINC000247722436), while others 
were more mobile (ZINC000020463919) (Fig. 6). 
When the RMSF values of the Ca of proteins 
were examined, it was observed that they are not 
very different from each other (Fig. 7). 

 
Table 3. Results of first and second round of docking simulations 
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ZINC000247722436 -10.9 -10.9 0.0 0.0 0.001 0.001 0.001 0.000 
ZINC000514288074 -10.1 -10.1 0.0 0.0 0.153 0.031 0.100 0.024 
ZINC000247722440 -9.9 -9.9 0.0 0.0 0.008 0.004 0.007 0.004 
ZINC000604382012 -9.2 -9.2 0.0 0.0 0.029 0.021 0.388 0.005 
ZINC000255249761 -9.1 -9.1 0.0 0.0 0.314 0.097 0.193 0.085 
ZINC000015672292 -9.1 -9.1 0.0 0.0 0.467 0.434 0.156 0.124 
ZINC000020463919 -9.1 -9.1 0.0 0.0 0.601 0.079 0.643 0.236 
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Fig. 5. RMSD plots of receptors with molecules 
 

 
 

Fig. 6. RMSD plots of  LIG_N3, ZINC0000247722436 and ZINC000020463919 
 



 
 
 
 

Akgün; JPRI, 32(48): 36-51, 2020; Article no.JPRI .65683 
 
 

 
46 

 

 
 

Fig. 7. RMSF plots of the Ca of receptors with molecules 
 
Before calculating the binding free energies, the 
partial charges assigned to the atoms in the 
molecules by Acpype were calculated and 
grouped according to the total charge obtained. It 
was emphasized that the software we use 
(g_mmpbsa) can create variable results for 
molecules and proteins with different charges in 
the user mail groups. The sum of the charges 
assigned by Acpype on the atoms was 0 for 
ZINC000514288074, ZINC000255249761, 
ZINC000015672292, 1 for LIG-N3, 
ZINC000247722436, ZINC000247722440, 
ZINC000020463919 and 2 for 
ZINC000604382012. The molecules grouped 
according to their charge and their calculated 
binding free energies are shown in Table 4. 
When Table 4 is examined, it is observed that as 
the total charge on the molecules increases, the 
contribution of electrostatic interactions to the 
binding free energy increases. It is highly 
expected to observe increase in the electrostatic 
interaction between molecules and protein as the 
partial charges of increase. Of the 7 molecules 
we examined, 6 were found to have higher 
binding free energies (worse binding), while four 
ZINC000604 (-325.588 +/- 16.754 kJ/mol), had 
lower binding free energies than the known 
inhibitor LIG_N3 (-305.174 +/- 26.247 kJ/mol). 
When the molecule we mentioned was 
examined, it was observed that it has total 
charge of 2. As expected, its electrostatic 
energies are higher than other molecules. 
Among those with 0 total charge, the best 

binding free energy was found to belong to 
ZINC000514288074 with -112.657 +/- 13.933 kJ 
/mol and those with 1 total charge, the best 
binding free energy was found to belong to 
ZINC000514288074 with -242.320 +/- 12.248 kJ 
/mol. 
 
We also assessed the synthesis difficulties of 
potential molecules in this project where we are 
in search for a novel natural product or a natural 
product like molecules as M

pro
 inhibitors. For this 

process, the SwissAdme webserver was used 
because of its high prediction accuracy. The 
SwissAdme server scores the synthetic 
accessibility (SA) of the molecules between 1 
(easy to synthesize) and 10 (difficult to 
synthesize). According to the model’s results, the 
lowest SA value was 4.43 to the molecule 
ZINC000514288074 and the highest was 6.97 
that belonged to the molecule 
ZINC000255249761. The SA value of 
ZINC000604382012, the molecule with the 
lowest binding free energy, was determined as 
4.64, which is a relatively high value by the 
model but fair among the studied selected 
molecules. 
 
When all the above-mentioned features are 
combined, it was observed that there are no 
significant differences between the docking 
scores of the molecules we study, the 
reproducibility of the docking poses, docking 
energies and the ADME properties.
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Table 4. Binding free energies, sum of partial charges of atoms and synthetic accessibility of the selected molecules 
 

 Van der 
Waal 
Energy 
(kj/mol) 

Electrostatic 
energy 
(kj/mol) 

Polar 
solvation 
energy 
(kj/mol) 

SASA 
energy 
(kj/mol) 

Binding free 
energy 
(kj/mol) 

Sum of 
Partial 
Charge 
of 
Atoms 

Synthetic  
Accessibility 
(SA) 

LIG_N3 -277.324 
+/- 20.874 

-213.144 
+/- 27.830 

214.402 
+/-55.890 

-29.107 
+/-1.708 

-305.174 
+/-26.247 

1 - 

ZINC000247722436 -167.076 
+/- 17.654 

207.883 
+/- 17.096 

160.466 
+/-25.161 

-16.466 
+/-1.265 

-231.073 
+/-9.852 

1 5.49 

ZINC000514288074 -197.852 
+/- 6.142 

-17.787 
+/- 8.602 

111.904 
+/-9.323 

-18.922 
+/-0.373 

-122.657 
+/-13.933 

0 4.43 

ZINC000247722440 -193.068 
+/- 6.583 

-244.571 
+/- 20.006 

215.566 
+/-14.094 

-20.247 
+/-0.917 

-242.320 
+/-12.248 

1 5.49 

ZINC000604382012 -154.234 
+/- 18.219 

-409.287 
+/-  70.447 

254.785 
+/-83.241 

-16.851 
+/-1.231 

-325.588 
+/-16.754 

2 4.64 

ZINC000255249761 -142.191 
+/- 5.329 

-15.648 
+/- 6.027- 

82.648 
+/-11.915 

-16.932 
+/-1.183 

-92.123 
+/8.763- 

0 6.97 

ZINC000015672292 -177.012 
+/-19.807 

-19.712 
+/- 4.894 

108.060 
+/-12.474 

-17.274 
+/-1.027 

-105.939 
+/-14.016 

0 4.53 

ZINC000020463919 -170.388 
+/- 14.971 

-200.160 
+/-20.247 

182.558 
+/-20.028 

-19.553 
+/-1.797 

-207.543 
+/-13.860 

1 5.79 
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Fig. 8. Selected candidate molecules ZINC000604382012 and ZINC000514288074 
 
It was observed that the calculated binding free 
energy values increased with the increasing total 
partial charges of the molecules we studied. In 
this case, molecules with similar charges have 
been compared among themselves. Since we 
aimed to work with natural products or natural 
product like molecules that have relatively 
complex structures, it is obvious that the 
synthetic accessibility (SA) values of the 
molecules will also be important. After evaluating 
all these conditions, it is appropriate to select 
ZINC000604382012 (-325.588+/-16.754 kJ/mol) 
because of having lower simulated binding free 
energy values than LIG_N3 (-305.174 +/- 26.247 
kJ/mol) and ZINC000514288074 (-122.657+/-
16.754 kJ/mol) because of having lowest SA 
values of 4.43 among filtered seven molecules. 
(Fig. 8) 
 
4. DISCUSSION 
 
In this study, we worked with 85553 molecules 
classified as "in-vitro biogenic" in the ZINC 
"Biogenic Dataset" containing natural products, 
natural product derivatives and natural products 
like and some other molecule groups like FDA 
approved drug etc.. One of the most frequently 
used filters in medicinal chemistry studies, Ro5, 
was applied to these molecules. After Ro5 filter, 
the number dropped to 51422. Preparing these 
molecules to the docking simulations, KNIME 
software and various add-ons were used. During 
this process, a KNIME workflow has been 
created that can be used in other projects. There 
are some studies in the literature about preparing 

molecules for virtual screening processes using 
KNIME software. One of these is VSPrep, which 
was prepared by Gally and his colleagues. [36] 
This workflow contains some filtrations and 
structure preparation nodes like our workflow. 
However, it has a more general application, as it 
only deals with library preparation for virtual 
screening operations unlike our workflow. It was 
observed that the simulated binding energies 
varied between - 10.9 and - 2.5 kcal/mol as a 
result of the docking virtual screen performed 
using the QVina 2.1 (AutoDockVina derivative) 
software with 51535 molecules whose three-
dimensional structure was optimized. According 
to the docking study performed by Keretsu et al 
using AutoDockVina, the simulated binding 
energy of the known inhibitor N3 is -7.8 kcal/mol. 
[37] In our study, the number of molecules with a 
simulated binding energy lower than -7.8 
kcal/mol is 9525. Considering the 250 molecules 
with the best binding energy in our project in 
terms of efficient use of the available resources, 
we have examined only 2.62 percent of the 
possible active molecules in detail. As a result of 
evaluating the ADME properties of the best 250 
molecules, we found that only 7 of them meet the 
criteria we set. There are some studies in the 
literature that have used the SwissAdme server 
in virtual screening studies to examine the ADME 
properties of the screened molecules against 
SARS–CoV-2 MPro enzyme. For example, Sepay 
et al. used SwissAdme in their study on the 
evaluation of chromone-derived molecules as 
M

Pro
 inhibitors to predict ADME properties. 

According to their evaluations, they mentioned 
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that some of the molecules they think could be 
inhibitors of one CYP isoenzyme, and some of 
them could be more than one CYP isoenzyme 
inhibitor, so the related molecules possibly have 
toxic effects. [38] Compared with these results, 
since the molecules we focused on in our study 
were not marked as possible CYP isoenzyme 
inhibitors, the possibility of encountering toxicity 
problems is lower than their molecules. However, 
the SA values of the molecules examined by 
Sepay and colleagues are lower than the natural 
product and natural product-like molecules we 
examined in our study. This shows that the 
aforementioned molecules of them will be easier 
to synthesize. Joshi et al. evaluated the potential 
usage of natural products isolated from lichens 
as SARS-CoV-2 Mpro inhibitors using the 
methods similar to our study. [39] After screening 
the molecules isolated from 412 lichens with the 
help of AutoDockVina, they evaluated the ADME 
properties. They carried out molecular dynamics 
and MM-PBSA studies of the molecules that 
passed the filters they applied. Among the 
natural products they screened, there are some 
with better simulated binding energy compared to 
our molecules.  For example, the docking score 
of the molecule named as Rugulosin had -13.2 
kcal/mol. However, this molecule did not pass 
the ADME filters they applied. Of the 27 
molecules with better binding energy than X77, 
the ligand of enzyme of interest, only four were 
able to pass the Ro5, PAINS, and Drug-Likeness 
filters. Two of these four molecules failed to pass 
filters associated with toxicity. The binding 
energies of these two molecules calculated by 
AutoDockVina were -8.7 for rhizocarpon acid and 
-8.4 kcal/mol for calycin. The binding free 
energies of the known inhibitors X77, rhizocarpic 
acid and calycin were also calculated by the 
authors. Accordingly, it was determined that the 
known inhibitor X77 had the values –of 91.78 ± 
11.09, calycin - 42.42 ± 9.21 and rhizocarpic acid 
- 57.85 ± 8.89 kJ/mol. These numbers are lower 
than the numbers we obtained from both docking 
and MM-PBSA studies. 
 

Among the candidate molecules, 
ZINC000604382012 is marked as a natural 
product-like synthetic molecule in the ZINC 
database. In the searches we made in the ZINC 
database, it was observed that this molecule did 
not have a biological activity study indexed in 
CHEMBL. In addition, there are no clinical 
studies on ZINC000604382012. 
ZINC000514288074 (isochaetominine C) is an 
alkaloidal metabolite isolated from a Marine-
Derived Aspergillus sp.[40] For example, the MIC 

values of this molecule against Staphylococcus 
aureus, Bacillus subtilis, Micrococcus luteus, 
Salmonella typhimunium, Proteus hauseri, 
Escherichia coli microorganisms are above 100 
µg / ml concentration. The cytotoxicity of 
ZINC000514288074 on some cell lines was also 
examined. The IC50 values of the molecule on 
A549 and K562 cell lines were determined as 
18.55 and 14.40 µM, respectively. The last 
reported biological activity of 
ZINC000514288074 is the Na

+
 / K

+
 ATPase 

inhibition value, which is reported as 37.35 µM. 
[40] According to the ZINC database, there are 
no clinical studies on ZINC000514288074. 
 

5. CONCLUSION 
 

As a result, the molecules we have mentioned as 
candidate lead-molecules by considering many 
conditions are advantageous compared to the 
examples mentioned in the literature. In addition, 
it has been observed that it is possible to find 
more candidate molecules among the molecules 
that have not been examined in detail, especially 
since they were not listed among the top 250 
molecules after the first docking step when 
compared to the studies in the literature related 
with this target.  
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