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The intrinsic uncertainty of sensory information (i.e., evidence) does not

necessarily deter an observer from making a reliable decision. Indeed,

uncertainty can be reduced by integrating (accumulating) incoming sensory

evidence. It is widely thought that this accumulation is instantiated via

recurrent rate-code neural networks. Yet, these networks do not fully explain

important aspects of perceptual decision-making, such as a subject’s ability to

retain accumulated evidence during temporal gaps in the sensory evidence.

Here, we utilized computational models to show that cortical circuits can

switch flexibly between “retention” and “integration” modes during perceptual

decision-making. Further, we found that, depending on how the sensory

evidence was readout, we could simulate “stepping” and “ramping” activity

patterns, which may be analogous to those seen in different studies of

decision-making in the primate parietal cortex. This finding may reconcile

these previous empirical studies because it suggests these two activity

patterns emerge from the same mechanism.

KEYWORDS

lossless integrator, inhibitory cell types, perceptual decision-making, cortical circuits,
computational model

Introduction

One of the fundamental operations of the brain is to transform representations of
external sensory stimuli (i.e., sensory evidence) into a categorical judgment, despite
the inherent uncertainty of this sensory evidence. For instance, we can determine the
direction of the wind, even though its instantaneous direction continuously fluctuates. It
is widely thought that this moment-by-moment uncertainty is minimized by temporally
integrating (accumulating) this incoming sensory evidence (Roitman and Shadlen, 2002;
Smith and Ratcliff, 2004; Gold and Shadlen, 2007; Goldman et al., 2009). Notably, drift
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diffusion model has shown that noisy integration of evidence
could explain various experimental observations such as speed-
accuracy trade-off regarding the decision-making (see Ratcliff
et al., 2016) for a review. Potential neural correlates of this
accumulation process have been identified in a variety of
brain areas, including the lateral intraparietal cortex (area LIP)
(Roitman and Shadlen, 2002; Mazurek et al., 2003; Gold and
Shadlen, 2007), the prefrontal cortex (Kim and Shadlen, 1999),
and the frontal eye fields (Ding and Gold, 2012). In particular,
spiking activity in these brain areas appears to smoothly “ramp
up” (accumulate; i.e., linearly increasing activity over time) prior
to a perceptual decision. Further, the rate of this accumulation,
which governs the time to reach a decision threshold (i.e., the
time to the perceptual decision), is correlated with the ambiguity
of the sensory evidence: as the evidence becomes less ambiguous
(e.g., the instantaneous fluctuations in wind direction decrease),
the rate of the ramping increases (Gold and Shadlen, 2007).

Such neural integration has been modeled in two very
different ways, each of which relies on different coding strategies
and mechanisms of integration (Goldman et al., 2009). In
the first type of model, rate-code neural integrators (NI)
integrate sensory evidence and represent accumulated evidence
as monotonically increasing (“ramping”) spiking activity. In
this rate-code model, the firing rates of individual neurons
increase over time in response to continuous inputs (Roitman
and Shadlen, 2002; Gold and Shadlen, 2007; Wang, 2012).
In an alternative model, location-code NIs store accumulated
evidence as the location of highly elevated spiking activity. In
such a location-code NI, the location of these highly active
neurons, which are referred to as a “bump,” travels through a
network over time (Skaggs et al., 1995; Song and Wang, 2005).
That is, the location of bump activity corresponds to the total
amount of accumulated evidence.

Because ramping activity has been found in several
studies of perceptual decision-making (Gold and Shadlen,
2007; Goldman et al., 2009), it is generally believed that
a rate-code NI is the natural circuit candidate for neural
integration of sensory information. In the rate-code NI,
recurrent excitatory currents compensate for the leak currents,
allowing excitatory neurons to integrate external sensory
inputs (supporting a choice). We note that this rate-code
NI has two distinct properties. First, its dynamics strongly
depends on the relationships between the leak and recurrent
currents. When the recurrent currents are precisely balanced
with the leak currents, the rate-code NI would become a
lossless NI, which can perfectly integrate sensory evidence
and retain the evidence during the temporal gap of the
external evidence. When the recurrent currents are stronger
or weaker than the leak currents, the rate-code NI would
overestimate or underestimate the evidence. Earlier studies
(Kiani et al., 2013; Liu et al., 2015) suggested that the brain
may utilize lossless integrators, suggesting that the recurrent
currents in the rate-code NI need to be precisely tuned

to compensate for the leak currents. Given the stochastic
nature of neural systems, the perfect tuning would be hard
to accomplish (Kiani et al., 2013). Notably, the location-
code NI can readily account for the lossless integration (Song
and Wang, 2005). Second, all neurons in the rate-code NI
show homogenous behaviors. During integration, all neurons’
responses would ramp. That is, the rate-code NI cannot natively
explain “stepping activity” recently identified during decision-
making (Latimer et al., 2015).

Based on the fact that the location-code NI can readily
explain the lossless integrator, we hypothesized that the
location-code NI can support perceptual decision-making.
To address this hypothesis, we asked two questions. First,
can a cortical circuit support the location-code NI? Using a
computational model, we found that a neural circuit consisting
of two major inhibitory neuron types and depressing synapses
can create bump activity, traveling during the presence of
sensory evidence but staying at the same location during
the temporal gap in the flow of sensory evidence. That is,
this circuit can serve as a lossless NI. Second, what kind
of predictions can the newly proposed NI make? We found
that an independent population of “readout” neurons could
convert evidence stored in the NI to population ramping
activity experimentally observed when they are connected with
one another via recurrent connections. Interestingly, while
the population activity monotonically increased, the individual
neurons’ responses show diverse patterns similar to stepping or
ramping activities.

These results raised the possibility that the same
mechanisms could underlie both stepping and ramping
activities. Although this prediction is purely derived from
computational models, we believe that it could aid future
studies on perceptual decision-making. To the best of our
knowledge, there is no direct evidence supporting location-
code NIs associated with perceptual decision-making, but
sequential activations of neurons, consistent with bump activity
propagation, have been reported in multiple brain regions
(Ikegaya et al., 2004; Tang et al., 2008; Pulvermuller and
Shtyrov, 2009; Harvey et al., 2012; Xu et al., 2012). In the future,
we will study the properties of the newly proposed location-code
NI and test its predictions against experimental data.

Results

This section describes how cortical circuits can implement
a lossless integrator. In section “Stability of the rate-code
neural integrators,” we examine the stability of the rate-code
NI during the temporal gap. Section “ Cortical circuits that can
support location-code neural integrators” describes simulation
results suggesting that generic cortical circuits (Figure 1A),
which contain two common types of inhibitory neurons
(Beierlein et al., 2003; Rudy et al., 2011) and depressing
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FIGURE 1

The structure of the two versions of our integrator. (A) Connectivity between all 19 neuronal populations in the discrete integrator.
(B) Interconnectivity between the 17 Pyr-SST populations; see section “Materials and methods” and Tables 1, 2 for more details and parameters.
Red and blue arrows indicate excitatory and inhibitory connections within the network model, respectively. Dashed and thick black arrows
represent onset and sustained stimulus inputs, respectively. (C) Structure of continuous integrator. The five neuronal populations (Pyr, PV1, PV2,
SST1, and SST2) interact with each other via connections shown in the figure. The thin red arrows and blue arrows represent the excitatory and
inhibitory connections between individual neurons, respectively. In contrast, the thick arrows (including red and blue) show connections
between the neuronal populations. All connections between populations are randomly established. Sensory inputs are introduced to Pyr, PV1,
and PV2 (dashed arrows). Periodic boundary condition is used to connect Pyr cells, as shown in the red arrow; see section “Materials and
methods” and Table 3 for more details and parameters.

synapses (York and van Rossum, 2009; Romani and Tsodyks,
2015), can readily realize a lossless (“perfect”) location-code
NI. In section “Continuous location-code neural integrator,”
we propose a location-code NI that can have continuous
attractors (Figure 1C). Finally, in section “Potential links to
decision-making: the contribution of elective and exclusive
connections between integrators and readout neurons,” we

discuss how evidence accumulated in our integrators can
be converted to decision-related neural responses (decision
variables). Interestingly, this readout activity maps onto two
different modes of spiking activity that have been identified
during neurophysiological studies of decision-making: classic
“ramping” activity (Roitman and Shadlen, 2002) and newly
identified “stepping” activity (Latimer et al., 2015).
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Cortical circuits can readily implement
lossless location integrator

Stability of the rate-code neural integrators
We first evaluated the stability of the rate-code NI using the

firing rate model. A rate-code NI was modeled with a single
recurrent population (Goldman et al., 2009) (Equation 1; see the
inset of Figure 2A).

The firing rate of the rate-code recurrent network obeys
Equation 1 (Goldman et al., 2009):

τm
dFe
dt
= −Fe + Fmax

1[
1+ e−β(rFe+E−θ)

] (1)

where, Fe and r are the firing rate and recurrent connections,
respectively; Fmax is the maximum firing rate; θ is the spiking
threshold; E is the external input; and β represents the strength
of stochastic inputs (Ermentrout and David, 2010). The first
term in the right-hand side of Equation 1 represents the leak
current, which corresponds to the subthreshold dynamics of
leaky integrate-and-fire neurons (Miller and Fumarola, 2012).
The selected default parameters are Fmax = 20, β = 1, θ = 0.5,
r = 1, and E = 0, unless stated otherwise. We modeled the gain
(transfer function; i.e., the number of spikes that a neuron can
generate in response to afferent synaptic activity) with a logistic
function (Ermentrout and David, 2010); the firing rate of this
neuron is not zero even when the sum of its synaptic inputs is
smaller than the spiking threshold.

We tested the stability of this network by conducting
a bifurcation analysis with the XPPAUT analysis platform
(Ermentrout, 2007). A bifurcation analysis identifies the steady-
state solutions, in which a system can stay indefinitely until
perturbed. Moreover, this analysis clarifies whether the steady-
state solutions are stable in response to the perturbations of
bifurcation parameters (which, in our analysis, is the strength
of the recurrent connections r and the external inputs E; see the
inset of Figure 2A). In Figures 2A,B, the stable and unstable
steady-state solutions are shown in red and black, respectively.

As seen in these figures, this recurrent rate-code network
(Equation 1) has only two stable attractor states, in which
neurons either fire at their maximum rate (Fmax) or become
quiescent. This implies that if there is a small perturbation in the
strength of the recurrent connections or if there are changes in
the external sensory inputs (e.g., a temporal gap in the incoming
sensory information, E = 0), this network could lose temporally
accumulated information (Kiani et al., 2013).

Cortical circuits that can support
location-code neural integrators

Cortical circuits have three common properties that are
relevant for our model. First, pyramidal (Pyr) neurons in
sensory cortex are topographically organized as a function of
their sensory response profiles via spatial (Hubel and Wiesel,
1962, 1968) and functional (Ko et al., 2013) connections. Second,
cortical circuits also contain parvalbumin positive (PV) and
somatostatin positive (SST) inhibitory interneurons (Rudy et al.,
2011). PV neurons have a fast-spiking pattern of activity,
whereas SST neurons have a low-threshold spiking pattern.
For our purposes, it is important to note that, although most
inhibitory interneurons are broadly tuned to sensory inputs, the
response profiles of SST neurons can be as sharply tuned as those
of Pyr neurons (Ma et al., 2010). Third, via lateral inhibition, SST
neurons inhibit neighboring cortical neurons (Markram et al.,
2004; Adesnik et al., 2012; Zhang et al., 2014; Jiang et al., 2015).

Based on previous modeling studies (York and van Rossum,
2009; Romani and Tsodyks, 2015) that proposed propagating
bump activity can be elicited by depressing synapses, we
built a cortical network model (Figure 1A), in which Pyr
neurons interacted with one another through intra-population
depressing synapses (Markram et al., 1998; Reyes et al., 1998;
Fuhrmann et al., 2002; Petersen, 2002; Cheetham and Fox, 2010;
Lefort and Petersen, 2017) and inter-population unidirectional
static synapses. We refer to this cortical network model as
the “discrete” integrator; see section “Materials and methods”
for more details. Transient sensory stimuli (100 ms), which

FIGURE 2

The bifurcation analysis of rate- and location-code NIs. (A,B) Bifurcation analyses with the recurrent connections (r) and the external inputs (E)
as bifurcation parameters for the recurrent rate-code network model, respectively; the schematics this network model is shown in the inset of
panel (A). Red and black lines represent stable and unstable steady solutions, respectively. Pop in the figure denotes a neuronal population.
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FIGURE 3

The responses of populations of the discrete integrator. (A) Spiking activity of Pyr neurons in all 17 neuronal populations; each population had
400 Pyr neurons. Each row in the plot shows the spike times of an individual Pyr neuron. Each of the 8 populations are shown in different
colors; see legend for the color codes of a subset of these populations. Although the model contains 17 populations, only 8 populations were
activated during our simulations, which we display here. The red and black arrows show sensory-stimulus periods and the temporal gap
between them, respectively. (B) PV1 and PV2 activity during the sensory-stimulus periods and the temporal gap between both. Both PV
populations contained 1,088 PV neurons. (C) SST neuron activity in all 8 populations; there are 16 SST neurons in each population. The same
color scheme is used as in panel (A), and during the temporal gap, active SST and Pyr neurons have the same color, indicating that active SST
and Pyr neurons belong to the same population. (D) Pyr activity when all depressing synapses are replaced with static ones.

mimicked sensory-driven onset responses in sensory cortex
(Cleland et al., 1971; De Valois et al., 2000; de la Rocha et al.,
2008; Piscopo et al., 2013), only drove Pyr cells in the first
population. In contrast, sustained sensory stimuli (after 100 ms)
drove Pyr neurons in all neuronal populations. In our first
simulation, we only provided Pyr and PV neurons with sensory
evidence at two discrete time intervals: time = 100–300 ms and
during time = 800–1,000 ms.

As seen in Figure 3A, the Pyr populations were sequentially
activated by sensory stimulation. Further, on average, both
populations of PV neurons were more active during sensory
stimulation than during the temporal gap (Figure 3B). More
importantly, when there was a temporal gap in the sensory
evidence (as indicated by the black double-headed arrow in

Figure 3A), the sequential activation of the network stopped
but activity was maintained by a specific population of Pyr
neurons (Pyr population 5 in Figure 3A). That is, during a
temporal gap in the sensory evidence, the network retained
the accumulated information, a finding that is consistent
with lossless integration. When we presented the second
sensory stimulus, information resumed propagating through the
network as seen by the sequential activation of Pyr population 6,
followed by population 7, etc.

When we explored the network in more detail, we found
key roles for the inhibitory neurons and for the depressing
synapses. For example, SST neurons were active only during
the temporal gap (Figure 3C) and that bump activity did not
propagate when we replaced the depressing synapses with static
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synapses (Figure 3D). We also noted that the non-specific
feedback inhibition of PV1 neurons play a key role to activate
an appropriate population of neurons (i.e., Pyr population 6 in
Figure 3A, following the temporal gap). Without this inhibition,
when we presented the second sensory stimulus, Pyr population
1 (which was activated by the first initial 100-ms of sensory
stimulation) was inappropriately activated. This altered the
amount of accumulated information (Supplementary Figure 1).

Continuous location-code neural
integrator

The discrete location-code NI (Figure 1A) has limited
precision: the accumulated evidence needs to be quantized to
be stored in the discrete populations. This limitation, however,
is not a fundamental restriction because this discrete network
can be generalized to have continuous attractor states by
distributing Pyr and SST neurons into circular lattices with
uniquely assigned coordinates (Figure 1C). We call this a
“continuous lossless integrator.” For convenience, we refer to
the direction from lower to higher coordinates as the clockwise
direction and higher to lower as counterclockwise. Two Pyr
neurons were connected in this network if the difference
between their coordinates was ≤200. Because the connections
were symmetrical, each Pyr neuron made excitatory synapses
with 400 of its neighboring Pyr neurons.

All Pyr and SST neurons formed non-specific connections
with PV1 neurons. PV2 neurons exclusively provided
feedforward inhibition to SST1 neurons. The connections
between Pyr neurons and SST neurons were formed based on
their coordinates in the circular lattice. (1) Pyr neurons made
one-to-one synaptic (“topographic”) connections with SST1 and
SST2 neurons, when they had the same coordinates. (2) A SST1

neuron inhibited a Pyr neuron when the (absolute) difference
between their coordinates was ≥200. (3) A SST2 neuron
inhibited a Pyr neuron when the coordinate of a Pyr neuron
was lower than that of a SST2 neuron and when the (absolute)
coordinate difference was between 400 and 800. Because of
this connectivity pattern, the propagation of bump activity
in the counter-clockwise direction was dampened, which is
possible with symmetrical chain-like recurrent connections,
and only bump activity in the clockwise direction propagated
through the network.

In our first analysis, we examined whether our continuous
integrator could integrate sensory evidence (see Table 3 and
Supplementary Figure 2 for model-parameter details). To test
this integrator, we first presented a transient sensory input
(time = 100–200 ms) to the first 400 Pyr neurons (i.e., those with
the lowest coordinates), followed by a more sustained sensory
stimulus (time = 100–1,000) to all Pyr and PV neurons. As seen
in Figure 4A, this transient sensory stimulus elevated the rate
of spiking activity strongly enough to generate bump activity.

However, once generated, the feedback inhibition mediated
by the PV1 neurons was strong enough to prevent all other
excitatory neurons from spiking during the presentation of this
transient sensory stimulus.

After the offset of this transient input, bump activity
propagated to other Pyr neurons in the clockwise direction
(Figure 4A). Due to the periodic boundary condition, bump
activity repeatedly circulated the integrator. In our model,
because excitatory synapses had not fully recovered, when the
bump activity returned to the initial location, it dissipated.
As a consequence, the non-specific inhibition mediated by
PV1 neurons became weaker, which, in turn, resulted in Pyr
activity at multiple locations (see Pyr cell activity after 500 ms
in Figure 4A). Concurrently, PV1 and PV2 neurons fired
asynchronously (Figure 4B). SST1 neurons were quiescent
(Figure 4C), but SST2 neurons, which received excitation
from Pyr via topographic connections, mimicked Pyr activity
(Figure 4D). This SST2 activity prevented bump activity
from propagating in the counterclockwise direction due to its
asymmetrical feedback inhibition onto Pyr neurons.

Next, we tested whether this network could perform lossless
integration. Like the discrete neural integrator, we presented
two epochs of sensory stimuli (time = 100 and 300 ms and
time = 800–1,000 ms) that were separated by a period without
sensory stimulation. For simplicity, we did not consider the
onset input at 800 ms because this input had no impact on
the network dynamics in the discrete integrator (Figure 3A
and Supplementary Figure 1). As seen in Figure 4E, bump
activity cascaded through the network until there was a temporal
gap in the sensory evidence. During the temporal gap, bump
activity remained in the same location. Then, it resumed moving
from the previous location, as information was reintroduced,
consistent with lossless integration.

As in the discrete integrator, during the temporal gap in
sensory information, the PV1 and PV2 neurons (Figure 4F)
became quiescent. As a result, the inhibition from the PV1

and PV2 neurons to the SST1 neurons was reduced, which,
thereby, increased SST1 activity (Figure 4G). The firing pattern
of SST2 neurons was comparable to that of the Pyr neurons
(Figure 4H). Because the SST1 neurons were topographically
connected to Pyr neurons, the SST1 inhibited non-active Pyr
neurons, which prevented bump activity from propagating to
a new location. Together, this transforms the network into a
quasi-stable attractor network.

Finally, how sensitive was our model to the strength of
the stimulus inputs (i.e., the amount of sensory evidence)?
Neurophysiological experiments have clearly shown that the rate
of accumulation of the sensory evidence is positively correlated
with the strength of the stimulus inputs. Further, this rate of
accumulation is accompanied by a decrease in reaction time
(Gold and Shadlen, 2007). To test whether our continuous
integrator could account for this correlation between reaction
time and stimulus inputs, we calculated how quickly activity
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FIGURE 4

Integration of sensory inputs with and without temporal gaps. (A–D) Spiking activity in Pyr, PV (PV1 and PV2), SST1 and SST2 neurons in response
to constant sensory input. The model received two types of sensory inputs (the onset inputs marked by yellow arrows and the sustained inputs
marked by greed arrows). The onset inputs are introduced to 400 neurons simultaneously, and the sustained inputs are introduced to all
neurons. During stimulus presentation (100–1,000 ms, marked as the green arrow), the location of bump propagates through the circular
lattice: PV neurons fire asynchronously. SST1 neurons (shown in panels C,G) are quiescent, whereas SST2 activity (shown in panels D,H) mimics
Pyr activity. (E–H) Raster plots of Pyr, PV, SST1, and SST2 activity, respectively, when there was a temporal gap between stimulus presentations.
During the gap (300–800 ms, marked by the black arrow), SST1 neurons became active (G), and the bump activity of Pyr neurons stayed at the
same location.

traveled between adjacent Pyr neurons as a function of the
strength (firing rate) of the sensory inputs, which is controlled
by α in Equation 3. Indeed, as shown in Figure 5A, the
travel time and α were inversely correlated. In other words,
as strength of the sensory inputs increased, bump velocity
also increased. This finding, in part, supports the correlation
between behavioral reaction times and the strength of sensory
evidence; examples of the propagation of bump activity through
the network as a function of different values of α are shown in
Figure 5B.

Potential links to decision-making: The
contribution of elective and exclusive
connections between integrators and
readout neurons

Sequential-sampling models, which can successfully account
for perceptual decision-making, suggest that decisions can be
made when the accumulated evidence reaches a decision-
threshold (Ratcliff and Smith, 2004; Miller, 2015). For instance,
race models assumes that evidence in support of one of two
categorical choices is integrated independently and that a
decision is reached whenever the accumulated evidence hits

a decision-bound (Ratcliff and Smith, 2004; Miller, 2015).
In principle, our lossless integrator can natively realize this
accumulator model, as individual integrators can independently
integrate evidence for available choices.

To address this possibility, we extend the model to perform
a 2 alternative-forced-choice task, which is discussed below.

Gradient connections can implement relative
thresholds for reaction-time decision-making

For the reaction-time tasks, observers should be able to
readout the amount of integrated evidence at any time. That
is, if the brain relies on location-code NIs, it should be able
to compare the locations of the bumps in the two integrators
whenever necessary. This flexible comparison can be realized
by connecting the integrator to readout neurons with “gradient
connections.” In this gradient connection, the connection
probability linearly increases as a function of the coordinates
of integrator’s Pyr neurons. Pyr neurons in the integrator 1
projected to excitatory neurons in readout neuronal population
1 and inhibitory neurons in readout neuron population 2;
integrator 2 is connected to readout neurons in an analogous
manner (Figure 6A). This gradient connection is consistent with
the experimentally observed connectivity (Perin et al., 2011)
suggesting that connection probability decays over distance. The
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FIGURE 5

The continuous integrator was sensitive to the strength of the sensory inputs. (A) The travel time between consecutive Pyr neurons was
inversely dependent on the strength of the sensory inputs; α represents the strength of the inputs to both Pyr and PV1 cells (Equation 3). In the
experiment, we constructed 10 independent models, each of which was randomly constructed with the same rule and received independently
created background noises. We display the mean values and standard deviations calculated from these 10 models. (B) Examples of propagating
bump activity as a function of different input strength (i.e., different values of α in Equation 3).

maximal connection probability p0 in the model can determine
the overall number of connections between the integrator and
readout neurons. Because integrator 1 received stronger sensory
inputs (α1 = 8) than integrator 2 (α2 = 3), bump activity in the
two integrators propagated at different speeds (Figure 6B). As
seen in Figure 6C, readout neuron population 1 showed greater
activity than population 2 until bump activity returned to the
initial location due to the periodic boundary condition. Next,
we further asked how the readout neuron neurons’ responses
change depending on input strengths in two ways. First, we fixed
the strength of sensory inputs (α1 = 6 and α2 = 1) and varied
p0. Figure 6D shows the difference in the average firing rates
between readout neuron populations. The light color lines show
observations in 10 independent simulations, and the thick color
lines, the average over 10 simulations. We found that the onset
of readout neuron population 1 is negatively correlated with p0

(Figure 6D), suggesting that a faster decision can be made if
stronger connections (i.e., higher p0) are established between
location NI and readout neurons. Second, we fixed p0 and the
strength of evidence to integrator 2 (α2 = 1) but varied the inputs
to the integrator 1 (α1). In our 10 independent simulations
(Figure 6E), we observed that decisions can be made faster if
α1 − α2 (the difference in sensory evidence strength between
the two choices) becomes stronger, which is consistent with

the negative correlation between the reaction time and the
ambiguity of sensory evidence (Gold and Shadlen, 2007).

Temporal profile of spiking activity in the
readout neurons: Stepping vs. ramping

The well-described ramping activity in area LIP strongly
supports the existence of rate-code NIs (Roitman and Shadlen,
2002; Mazurek et al., 2003; Gold and Shadlen, 2007). However,
recent studies have raised an alternative possibility that LIP
activity does not smoothly ramp up but instead “jumps or
steps” up to high-activity states during perceptual decisions
(Miller and Katz, 2010; Latimer et al., 2015). Interestingly,
even though individual neurons produce this stepping activity,
the population activity still exhibits ramping activity. To shed
some light on the nature of these two forms of LIP activity,
we tested whether the readout neurons, which encode actual
decision variables in our model, can reproduce either ramping
or stepping activity by considering a single integrator and
readout neuron population (Figure 7), for simplicity; this
single integrator model replicates 100% coherence random-dot
motion trials commonly used to investigate perceptual decision-
making (Roitman and Shadlen, 2002; Mazurek et al., 2003).

To this end, we tested how well individual and population
activities were correlated with time by utilizing the linear
regression analysis. We first tested the correlations between
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FIGURE 6

Readout schemes for decisions. (A) We assumed that there are two continuous integrators (top and bottom of the schematic) and that each Pyr
neuron in each continuous integrator projected to excitatory neurons (E) in one of the two readout neuronal populations. The connection
probability (p = p0

4000n) increased, as the coordinate (n) of Pyr neurons increased. p0 is the maximal connection probability. In this simulation,
both E and I neurons received 200-Hz external inputs via synapses whose strength was 1.3 pA. (B) Raster plot of the two integrators. The first
and second integrators are represented in red and blue, respectively. Because the first integrator had stronger stimulus inputs (α1 = 8) than the
second one (α2 = 3), the bump activity propagated faster in the first integrator than in the second. (C) Raster plots of the two populations of
readout neurons, shown in red and blue, respectively. (D) Time course of firing rate difference between readout neurons depending on p0. In
the experiments, we used 25 ms non-overlapping bins to estimate the time courses of population activity in 10 independent simulations in
which α1 = 6, α2 = 1. In each simulation, we estimated the differences in the firing rates between readout neuron populations 1 and 2, which are
shown in light red, green and blue lines. The thick red, green and blue lines represent the average firing rate over 10 experiments. The error bars
denote the standard errors estimated from 10 experiments. The red, blue and green colors represent the results with p0 = 0.3, 0.6 and 0.9,
respectively. (E) The time course of the firing rate difference between readout neurons depending on stimulus input strengths. We varied α1 in 10
experiments and estimated the difference in firing rates. As in panel (D), the light color lines represent the results in the individual experiments,
and the thick lines represent the average over 10 experiments. The error bars denote the standard errors estimated from 10 experiments.

population activities and time depending on p0. As shown in
Figure 7B, population activities were significantly correlated
with time, and the slope was positive, suggesting that population
activities ramp up regardless of p0. The two examples at

p0 = 0.1 and 1.0 confirmed that population activities ramped up
(Figures 7C,D). On the other hand, individual neurons showed
strikingly different behaviors depending on p0 (Figure 7E).
When p0 was higher than 0.7, individual neuronal activity

Frontiers in Computational Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fncom.2022.979830
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-16-979830 November 2, 2022 Time: 7:20 # 10

Lee et al. 10.3389/fncom.2022.979830

FIGURE 7

Readout neuron activity with gradient connections. (A) The structure of a single set of integrator and readout neurons. (B) Linear regression
analysis of the average firing rate of 400 E readout neurons depending on p0. To see if the population activity ramps up, we used the linear
regression analysis to test if the population activity is correlated with time. The positive slopes indicate the ramping activity. That is, this panel
suggests that the population activity of readout neurons ramps in a wide range of p0. (C) Time course of population activity with p0 = 0.1 (D) the
same as panel (C) but with p0 = 1.0. Panels (C,D) confirm the linear regression analysis in panel (B). (E) Linear regression of individual neuron
activity depending on p0. Unlike the analysis shown in panel (B), we tested if individual neurons’ responses are correlated with time. In the panel,
we showed the mean values from 400 readout neurons. This panel suggests that individual neurons’ responses are correlated with time only
when p0 is sufficiently high. (F) Histograms of p-values from 400 readout neurons’ responses. In this panel, we compared two extreme cases,
p0 = 0.1 and 1.0. As expected, most of the neurons’ responses are correlated with time when p0 = 1.0 (G). Time course of individual neuronal
activity with p0 = 0.1 (H), the same as panel (G) but with p0 = 1.0.

was significantly (p < 0.05) correlated with time. Notably, as
p0 decreased, p-values became bigger. That is, individual cell
activity was not significantly correlated with time, when p0

is low. To further test this notion, we compared the p-values
of the regression analysis when p0 = 0.1 and when p0 = 1.0.

When p0 = 1.0, the firing rates of most readout neurons (313
out of 400) were significantly correlated with time (p < 0.05),
but when p0 = 0.1, only a fraction of neurons (6 out of 400)
showed significant correlation (Figure 7F). The responses of 5
randomly chosen neurons confirmed that individual neurons
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showed transient activity (Figure 7G) when p0 = 0.1 but showed
ramping activity when p0 = 1.0 (Figure 7H).

These results suggest that individual neurons’ responses
are not necessarily correlated with population activities, which
is the hallmark of the stepping activity model. Inspired by
these results, we asked if readout neurons are capable of
replicating stepping-like responses. In the stepping activity
model (Durstewitz and Deco, 2008; Miller and Katz, 2010;
Latimer et al., 2015), neurons switch rapidly between quiescent
and active states, and their firing rates are stable (i.e., constant
over time) in both quiescent and active states. To address
this question, we first examined if readout neurons would
undergo rate changes during decision-making (i.e., integration
of evidence). Specifically, we estimated the time courses of
firing rates using 25 ms time bins and then split them into
quiescent and active periods. In the experiments, we estimated
the mean firing rate over all time bins and determined the
time (T) when the firing rate crosses the mean value for the
first time. The quiescent period is between 100 ms and T
when the firing rate crosses the mean value. The active period
is between T and 550 ms. Figure 8A shows the changes in
individual neurons’ firing rates between quiescent and active
states depending on pconn (i.e., the connection probability of
recurrent connections within the readout neuron population),
suggesting that individual neurons underwent rate changes
during evidence integration. That is, the readout neurons may
have binary states.

Next, we tested if the readout neurons abruptly switched
from quiescent to active states, and if they have constant firing
rates in both quiescent and active states. To this end, we
estimated the time course of firing rates using 50 ms bins (to
obtain smoother responses) and fitted them to the sigmoid
function (Equation 2).

S (x) =
c

1+ e−a(x−b)
+ d (2)

where a, b, c, and d are parameters optimized during curve-
fitting.

After fitting individual neurons’ firing rates into the
sigmoid function, we estimated R2 and selected neurons with
R2 > = 0.85. When p0 = 0.1 and Pconn = 0.15, 12 readout
neurons showed stepping-like responses (Figure 8B). The
number of neurons, showing stepping-like responses, grew
when pconn was increased to 0.21 (Figure 8C). When pconn
was strengthened further (for instance, pconn = 0.25), some
neurons showed multiple activity states (rather than binary)
or the transitions from quiescent to active states took long
(Figure 8D). That is, some neurons’ responses morphed into
ramping-like responses. Interestingly, we found that the number
of potential stepping-response (PSR) neurons increased when p0

increased (Figure 8E). To better understand how p0 and pconn
influence readout neurons’ response patterns, we estimated the
number of neurons with R2 higher than 0.85 (i.e., PSR neurons
that can be explained well by the sigmoid function). We made

two observations (Figure 8F). First, the number of PSR neurons
initially increased as pconn increased but started decreasing after
pconn ∼ 0.28. Indeed, when the pconn was too high, most of
neurons’ responses were ramping. Second, p0 increased the
number of PSR neurons, when pconn was lower than 0.25. These
results raised the possibility that decision neurons could show
either stepping or ramping activities depending on the strength
of evidence (modeled with p0 in the model) and recurrent
interactions between them (modeled with pconn in the model).

Discussion

Perceptual decision-making relies on the accumulation
of sensory evidence (i.e., decision-variables) that is extracted
from ambiguous sensory stimuli (LaBerge, 1962; Ratcliff, 1978;
Roitman and Shadlen, 2002; Mazurek et al., 2003; Ratcliff
and Smith, 2004; Smith and Ratcliff, 2004; Miller, 2015).
It is generally thought that perceptual decision-making is
instantiated through rate-code neural integrators (NIs), which
are based on recurrent inputs to compensate for the leak
currents (Goldman et al., 2009; Wang, 2012). However, the
degree to which rate-code NIs can explain perceptual decision-
making can be limited. For example, rate-code NIs become
unstable when there is a temporal gap in the flow of incoming
sensory evidence (Figure 2), whereas behavioral studies indicate
that participants act as “perfect/lossless” integrators and are not
affected by these temporal gaps (Kiani et al., 2013; Liu et al.,
2015).

How then can the brain make reliable decisions even with
temporal gaps? We propose that the cortex can readily use the
location of bump activity to represent the amount of presented
sensory evidence (Skaggs et al., 1995; Song and Wang, 2005;
see below). In our simulations, bump activity in the integrator
progressed through the network when sensory inputs were
provided but stayed at the same location in the absence of
sensory information. The location of the bump was stable due
to the inhibition of SST cells (Figures 3, 4). This indicates that
our integrator, unlike traditional rate-code NIs, can account for
the robustness of perceptual decision-making during temporal
gaps in sensory evidence.

Comparison to other location code
neural integrators

In terms of function, our model reproduces the findings of
previously reported location-code NIs, which modeled head-
direction neurons encoding the direction of an animal’s head
relative to its body and independent of its location in the
environment (Song and Wang, 2005). However, the underlying
mechanisms between our NI and previously described ones are
quite distinct.
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FIGURE 8

The individual readout neurons’ responses depending on p0 and pconn. (A) Individual neuron responses in the quiescent and active periods
when p0 = 0.1 when pconn = 0.1, 0.15, 0.2, and 0.25. (B) Firing rates of neurons that can be explained by the sigmoid function when p0 = 0.1 and
pconn = 0.15. For clarity, we split the neurons depending on the maximum firing rates. The neurons shown in the same panel share the same
maximum rate. Individual neurons are displayed in different colors. Additionally, we added a random offset value (between –3 and 3) to each
neuron’s firing rates to show all neurons more clearly. (C) The same as panel (B), but p0 = 0.1 and pconn = 0.21. (D) The same as panel (B), but
p0 = 0.1 and pconn = 0.25. (E) The same as panel (B), but p0 = 0.15 and pconn = 0.15. (F) Ratio of neurons, whose responses can be explained by
the sigmoid function. They are referred to as PSR neurons in the main text.

In previous location-code NIs, the shift in the location of
bump activity was realized by so-called “rotation” neurons,
which employed either strictly excitatory neurons (Skaggs
et al., 1995) or strictly inhibitory neurons (Song and Wang,
2005); these rotation neurons are located in the portion

of the thalamus that receives inputs from the vestibular
system. In contrast, we found that a cortical circuit, which
consisted of excitatory pyramidal neurons and different
types of inhibitory interneurons, can readily implement a
location-code NI.
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More specifically, two common inhibitory cortical neurons
(Rudy et al., 2011)—PV and SST interneurons—made distinct
contributions to this operation. PV neurons, which provided
nonspecific feedback inhibition to pyramidal neurons (Ma et al.,
2010; Bock et al., 2011), ensured that bump activity existed only
at a single location. On the other hand, SST neurons mediated
lateral inhibition and transformed the network into an effective
attractor network capable of maintaining accumulated evidence
even during temporal gaps in sensory information (Figures 3C,
4G). We note that this theoretical finding is consistent with the
empirical finding that SST cells are selectively activated during
a delay period when a stimulus is removed and an animal
needs to remember task-relevant information (Kim et al., 2016).
In contrast to the role that interneurons and their inhibitory
synapses played in our network model, depressing excitatory
synapses made bump activity propagate through the network
(Figure 3D). Together, our simulation results suggest that
neurons and synapses in the neocortex are indeed suitable for
controlling and maintaining the propagation of bump activity.

Connections to the rate-code neural
integrators

Earlier theoretical and computational studies proposed the
rate-code Nis that are robust to the imbalance between leak
currents and feedbacks (see Koulakov et al., 2002; Goldman
et al., 2003; Cain et al., 2013). That is, our location-code NI
is similar to these robust integrators in terms of functions.
However, the aim of our study is to gain insights into the
recently proposed stepping activity model (Latimer et al., 2015;
Zoltowski et al., 2019) and its potential links to the ramping
activity. In our model, ramping or stepping activity can emerge
depending on afferent inputs from a location-code NI. Dense
gradient connections (i.e., high p0) induce the ramping activity,
whereas sparse gradient connections (i.e., low p0) induce the
stepping activity, raising the possibility that the two seemingly
different models could represent the two faces of the same coin.

Further, our simulation results suggest that the recurrent
readout neuron populations can convert accumulated evidence
in the location-code NI into ramping or stepping activities. That
is, the location-code NI, providing a “neural memory buffer,”
may be complementary to the rate-code NI and then enable
to the brain retain accumulated evidence during the temporal
gap. Then, the question is, why do we detect ramping activity
more frequently than stepping activity? This may be because the
memory buffer provided by the location-code NI is not always
necessary. If the temporal gap rarely occurs, the brain need not
maintain the memory buffer (i.e., the location-code NI). Instead,
the rate-code NI alone can sufficiently perform reliable decision-
making most of the time. Notably, the common random dot
motion protocol does not contain temporal gaps.

Empirical evidence for location-based
neural integrators relying on bump
activity

Sequential activation, consistent with bump activity
propagation in our model, has been observed in multiple brain
regions (Tang et al., 2008; Pulvermuller and Shtyrov, 2009)
including the visual cortex (Ikegaya et al., 2004; Sato et al.,
2012; Xu et al., 2012), parietal cortex (Harvey et al., 2012)
and frontal cortex (Seidemann et al., 1996). Notably, Harvey
et al. (2012) found that posterior parietal cortex neurons were
sequentially activated during decision-making, raising the
possibility that the location-code NI can exist in cortical regions
like area LIP. That is, it is plausible that both location-code
NIs and readout neurons coexist in area LIP, in which both
stepping and ramping activities have been observed. It should
be noted that the gradient connections in our model, which are
necessary to account for stepping and ramping activities, are
consistent with experimental findings (Perin et al., 2011) that
the connection probability decreased as the distance between
neurons.

Limitation of our model and
concluding remarks

In this study, we only considered a 2-choice task, but it
should be noted that the location-code NI can also be used
for multiple-choice tasks. If multiple choices are available,
the evidence supporting each choice could be tracked by an
independent location-code NI. When the decisions are required,
the readout neurons could determine the best choice using the
winner-take-all mechanism.

While the determination of the exact mechanisms behind
any cognitive functions remains difficult, we would like to
underscore that our model demonstrates that cortical circuits
can natively switch between two seemingly distinct states, the
stable steady state (e.g., bump activity maintenance) and the
sequential activation state (e.g., bump activity propagation).
We are not arguing that location-code NIs preclude the
existence of rate-code Nis in neural systems. As they have
distinct pros and cons, we speculate that location- and rate-
code NIs are rather complementary and can be selected
depending on cognitive demands. We also note (1) that,
to the best of our knowledge, there is no direct evidence
supporting the location-code NI associated with perceptual
decision-making and (2) that our model has a complex structure
with fine-tuned parameters, and thus it remains unclear if our
model is physiologically realizable. We will further study the
properties of the newly proposed location-code NI to address
these limitations.
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Materials and methods

In this study, we developed lossless neural integrators, which
were implemented within the NEST environment (Gewaltig and
Diesmann, 2007), a peer-reviewed, freely available simulation
package. All neurons in the model were leaky integrate-and-
fire (LIF) neurons. The excitatory and inhibitory neurons within
an integrator formed excitatory and inhibitory connections
onto a set of “target” neurons. All integrator neurons and
target neurons had identical internal dynamics; specifically, each
presynaptic spike induced an abrupt increase in a neuron’s
membrane potential that decayed exponentially. These neurons
were implemented using the native NEST model iaf_psc_exp
(Gewaltig and Diesmann, 2007). Table 1 shows the exact
parameters used for the neurons and synapses in both neural
integrators.

The structure of the discrete integrator

The structure of the discrete integrator is summarized in
Figures 1A,B. As seen in Figure 1A, the discrete integrator
consisted of 19 different neuronal populations. 17 of these
neuronal populations contained 400 pyramidal (Pyr) and 16
somatostatin (SST) model neurons. Within each of these 17
populations, Pyr neurons formed excitatory synapses with
both Pyr and SST neurons. These 17 populations were
topographically organized: Pyr neurons within a population
had unidirectional excitatory connections with the adjacent
population (e.g., population 2 projected to population 3 but
not back to population 1). We had a periodic boundary
condition in which the (last) population 17 connected to the
(first) population 1 (see Figure 1B). In contrast, SST neurons
formed inhibitory connections with Pyr neurons in all of

TABLE 1 Neural parameters for neurons and synapses.

Neuronal Parameters Synaptic parameters

C (membrane
capacitance)

1 pF τsyn 2.0 ms

Vth (spike
threshold)

20 mV Delay 1.5

τm (membrane
time constant)

20 ms U 0.2

EL (resting
membrane
potential)

0 mV τref 200 ms for discrete integrator
500 ms for continuous

integrator

Vreset (reset after
spiking)

0 mV

When a spike arrived, the membrane potential instantly jumped to a new value,
which was determined by its capacitance (C) and time constant (τm). When the
membrane potential was higher than the spike threshold, the membrane potential was
reset (Vreset). Without any external input, the membrane potential relaxed back its the
resting membrane potentials (EL). Synaptic events decayed exponentially with a 2-ms
time constant (τsyn). All synapses had a 1.5-ms delay unless otherwise stated; the only
exception is given in Table 2. For depressing synapses, we selected the parameters (U and
τref ) given below.

TABLE 2 The parameters of the discrete integrator.

Total
number

Background
inputs (Hz)

Stimulus input (Hz;
sustained)

Pyr 6,800 2,800 2,000

PV1 1,088 4,500 2,000

PV2 1,088 N/A 2,000

SST 544 3,200 N/A

Connectivity within populations (connection probability, strength in pA)

Pyr→ Pyr (1.0, 1.8) Pyr→ SST (0.4, 0.96)

PV1→ PV1 (0.3,−0.72) PV1→ PV1 (0.1,−0.72)

Connectivity across populations (connection probability, strength in pA)

Pyr→ Pyr (0.2, 0.12)
*delay 10 ms

PV2→ SST (1.0,−6.0)

Pyr→ PV1 (0.2, 0.12) SST→ Pyr (1.0,−4.8)

PV1→ Pyr (0.2,−1.08) SST→ PV1 (0.3,−0.6)

PV1→ SST (0.3,−0.6)

Connection strength for background and stimulus inputs in pA

Pyr 0.12 PV2 0.36

PV1 0.12 SST 0.12

Onset stimulus input

Target Pyr neurons
in

population 1

Firing rate 1,000 Hz

We connected populations by specifying connection probabilities and synaptic
connection strengths. The first value in the parentheses is the connection probability.
The connection strengths followed Gaussian distributions. The mean values of these
distributions are the second value in the parentheses, and the standard deviations were
10% of the mean. The excitatory and inhibitory connections could not be less than or
greater than 0, respectively; when they violated this condition, we set them to 0. We
note that the connection strengths greatly vary depending on the pairs of neurons. For
example, the inhibitory connections from PV2 to SST are 10 times stronger than those
from PV1 to SST.

the other populations. Recurrent connections between Pyr
neurons within a particular population had depressing synapses
(Markram et al., 1998; Reyes et al., 1998; Fuhrmann et al.,
2002; Petersen, 2002; Cheetham and Fox, 2010; Lefort and
Petersen, 2017), but all of the other synaptic connections were
static. We implemented these depressing synapses using the
Tsodyks-Markram model included in the NEST distribution
(Table 1).

The two remaining populations each had 1,088 parvalbumin
(PV) neurons. All of the Pyr neurons had excitatory connections
with the PV neurons in one population (PV1) but not with those
in the second PV population (PV2). Both PV1 and PV2 neurons
formed non-specific inhibitory connections with Pyr and SST
neurons; see Table 2 for the connection probability. These two
PV populations simulated feedback and feedforward inhibition
between Pyr neurons.

The structure of the continuous
integrator

The continuous integrator was composed of a population
of Pyr neurons, two PV populations (PV1 and PV2), and two
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TABLE 3 The parameters of the continuous integrator.

Total
number

Background
inputs (Hz)

Stimulus input (Hz)

Pyr 4,000 3,850 4,800

PV1 1,000 3,850 1,200

PV2 1,000 3,000 1,200

SST1 4,000 2,000 N/A

SST2 4,000 2,000 N/A

Connectivity (Number of presynaptic neurons, strength in pA)

Pyr→ Pyr (400, 0.52) PV1→ SST1 (150,−0.78)

Pyr→ PV1 (400, 0.52) PV2→ SST1 (1,000,−0.78)

Pyr→ SST1 (1, 11.7) SST1→ Pyr (3,600,−0.78)

Pyr→ SST2 (1, 11.7) SST1→ PV1 (1,200,−0.78)

PV1→ Pyr (160,−1.87) SST2→ Pyr (400,−0.78)

PV1→ PV1 (160,−0.78)

Due to the lack of population structure, we connected neurons by specifying the number
of presynaptic neurons to each neuron type. The frequency of stimulus inputs given
below is the default value used unless stated otherwise; see also Equation 3. The first
value is the number of presynaptic neurons, and the second value is the connection
strength in pA. The excitatory and inhibitory connections could not be less than or
greater than 0, respectively; when they violated this condition, we set them to 0. The
background inputs to all neurons in the continuous integrator are mediated by synapses
whose strength are 0.13 pA.

populations of SST neurons (SST1 and SST2); see Figure 1C.
Table 3 lists the parameters of these neuronal populations;
see Supplementary Figure 2 for visual presentation of
synaptic connections between neuron populations. In this
network, 4,000 Pyr, SST1 and SST2 neurons were distributed
in a circular lattice, each of which had unique coordinate
between 1 and 4,000. We arbitrarily set the coordinates to
increase in the clockwise direction. The neuronal numbers
were arbitrary and were not constrained by the ratio of
excitatory to inhibitory neurons, which is roughly 4:1. It
should be noted that it is straightforward to extend this
network model to include more excitatory neurons. For
example, instead of a single Pyr neuron at each coordinate,
a small population of Pyr neurons at each coordinate can be
instantiated without changing any of the details of the network
structure.

Pyr neurons were mutually connected, via excitatory
connections, to their neighboring Pyr neurons when the
difference between their coordinates was ≤± 200, which
is equivalent to a distance-dependent connection probability
(Perin et al., 2011). These connections were established with a
periodic boundary condition: Pyr neuron 4,000 and Pyr neuron
1 were mutually connected.

Pyr neurons interacted with the PV1, SST1, and SST2

populations in distinct ways. First, the pattern of connectivity
between the Pyr and PV1 populations was randomly generated.
Second, a Pyr neuron projected only to those SST1 and
SST2 neurons that had the same coordinates (i.e., a one-
to-one topographic mapping). The connection strength
was designed to be just strong enough for a single Pyr

“spike” to cause a SST1 or SST2 neuron to fire (Table 3),
like a single layer-5 pyramidal-neuron spike can induce
SST-expressing Martinotti neurons to fire (Silberberg and
Markram, 2007). Finally, SST1 and SST2 neurons also had
inhibitory connections with Pyr neurons but had different
connectivity rules. SST1 neurons formed connections
only with those Pyr neurons in which the SST2-and-Pyr
difference was ≥200. In contrast, SST2 neurons formed
connections only with those Pyr neurons with lower
coordinate values.

Other important model details are that PV2 neurons
randomly inhibited SST1 neurons; the connection probability
is shown in Table 3. Further, the PV1 and PV2 populations
were independent of this circular lattice (see Figure 1C). In
our continuous integrator, all excitatory synapses between Pyr
neurons were depressing, whereas all inhibitory synapses were
static.

External inputs for both integrators

The excitability of each neuron depended on the sum
of its synaptic inputs from all of the other neurons in
the network and from external inputs. Tables 2, 3 show
the neuron-specific rates of these external inputs, which
were modeled with Poisson spike trains. In the model,
there were “background” and “stimulus inputs” (i.e., sensory
information). Background inputs were independent of stimulus
presentations and mimicked afferent inputs from other cortex
(Potjans and Diesmann, 2014). Stimulus inputs had both
“transient” and “sustained” modes of activity. The transient
mode represented the transient onsets of neural activity
that have been observed in the sensory systems including
retina, lateral geniculate nucleus and cortex (Cleland et al.,
1971; De Valois et al., 2000; de la Rocha et al., 2008;
Piscopo et al., 2013). We assumed that this transient activity
helped to ensure that bump activity was always initiated
at the same location in the network. Transient inputs
(duration: 100 ms) were introduced to the first 400 and
100 Pyr neurons in the discrete and continuous integrators,
respectively. In contrast, the sustained sensory inputs formed
projections with all Pyr, PV1, and PV2 neurons during
the entire stimulus. The frequency (Isustained) of the sensory
inputs to PV1 neurons is given in Equation 3, and Pyr
neurons received sensory inputs equivalent to 4 × Isustained.

Isustained = 400+ α× 100(Hz) (3)

Traveling time for the bump

Using the continuous integrator, we tested the relationship
between the propagation speed of the bump and the strength
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of the sensory input by calculating the time course of the
last 400 Pyr neurons (i.e., those with 400 highest coordinates).
Specifically, we generated an event-related spike histogram
using non-overlapping 10-ms bins of spiking data. “Traveling
time of the bump” was defined as the time, relative to stimulus
onset, when the number of spikes in a single bin exceeds the
sum of the mean plus two standard deviations of the number
of spikes during the simulation period.
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