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ABSTRACT 
 

An empirical model is developed and tested on cubic solids for the calculation of bandgaps. The 
dataset for the model is derived from a semi-local approximation in which the local density 
approximation (LDA) treats the exchange-correlation energy and potential. The agreement 
between obtained result and experimental data is very good and is of the same order as the more 
expensive methods. 
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1. INTRODUCTION 
 

Materials play important roles in our quality of 
live and survival. Human existence had 
witnessed progressive development from the 
Stone Age, till this present silicon age. The 
capacity to make available different material 

types has helped to shape the different level of 
developments witnessed at these times. In the 
early years, material investigation and 
development was majorly through the traditional 
‘trial by error’ approach. Over time, the adoption 
of multidisciplinary approach to materials 
investigation and synthesis had proved a 
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productive route. The role of statistical and 
quantum mechanics at describing any material 
composition down to the atomic level can’t be 
overemphasized. One of the most successful 
statistical and quantum mechanics based tool 
used by material scientist today is the Density 
Functional Theory (DFT). It has demonstrated 
acceptable role in complementing new materials 
development efforts. 
 
Most DFT calculations use semi-local 
approximation such as the local-density 
approximation (LDA) [1,2] or the generalized 
gradient approximation (GGA) [3]. The semi-local 
approximations are computationally cheap 
compared to the more sophisticated methods. 
They have shown capacity for results that are 
accurate enough for predictions and have in 
some cases helped to interpret experimental 
data better. Their application to solids has not 
yield acceptable results in all cases. As an 
example, the LDA and GGA will accurately 
predict structural as well as the energetic 
properties of molecular species and periodic 
solids but will severely underestimate the band 
gap of semiconductors and insulators. 
 
A large share of today’s technological 
advancement is semiconductor dependent. 
Semiconductors are materials with band gap, 
which needs to be properly characterized prior to 
synthesis and fabrication. The LDA-DFT will 
underestimate bandgap by as much as 37.90% 
while its GGA-DFT counterpart will 
underestimate bandgap by a whopping 47.09%. 
In pursuit of better band gap 
estimation/prediction, other methods had been 
developed. The first among these alternative 
methods is the optimized effective potential 
(OEP) method. Its performance had showed 
mixed results, with better band gap prediction in 
some instances and strong underestimation or 
overestimation in others [4,5]. Another better 
method is the LDA + U, which is a variant of DFT 
with on-site Coulomb self-interaction potentials 
[6]. The method (LDA + U) is as cheap as the 
semi-local approximations, but only applies to 
localized electrons. A much more improved 
method is the hybrid functionals (HSE), which 
have shown success in many classes of solids. It 
is however computationally expensive [7,8]. The 
DFT plus Dynamic Mean Field Theory (DFT + 
DMFT) method is known to give accurate results 
but it is a more significantly expensive 
calculations [9]. The GW is a method known to 
yield very accurate band gaps, but with highly 
expensive calculations [10–15]. The modified 

Becke and Johnson (mBJ) exchange potential 
[16] is capable of yielding band gaps with 
accuracies comparable to those from more 
expensive schemes. 
 
The need for necessary platforms (hardware and 
software) for electronic structure calculations 
can’t be overemphasized. The deployment of 
expensive platforms for individuals or institution 
with meager resources can hamper, if not totally 
make the conduct of qualitative research a 
mirage. With the availability of fast personal 
computers (PC’s) and open source ab initio DFT 
codes, the need to contribute creditably to 
ongoing research efforts in the materials science 
community shouldn’t become jeopardized on the 
account of lack of affordable tools. It is in this 
light that a much less expensive way of 
calculating more precisely the fundamental 
bandgap of cubic semiconductors and insulators 
using an empirical model and LDA-DFT 
generated data are discussed. 

 
2. METHODOLOGY 
 
A multiple regression method is chosen for 
developing the model. Multiple regression, refer 
to set of techniques for studying the straight-line 
relationships among two or more variables [17].  
The equation to be evaluated is of the form: 
 
 	�� = �� + ����� + �����+...+����� + ��      (1.1) 

 
where ��  is the independent variables and ��  is 
the dependent variable. The subscript � 
represents the observation (row) number. The �� 
are the unknown regression coefficients while ��  
is the error/residual of observation for the ��� 
dataset. To obtain the unknown regression 
coefficients, the least squares analysis method is 
used, where the relationship between a 
dependent variable and � independent variables 
can be written as: 
 
�̂� = �� + ����� + �����+...+�����       (1.2) 

 
with the �′� selected to minimize the sum of the 
squared residuals. 
 
In matrix form, (1.1) can be written as:  
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The values of �  as an estimate of �  can be 
obtained by solving the normal equations as 
follows; 
 
� ′�� = �′�          (1.4) 

 
Where 
 

� = ��′��
��
�� ′��                                 (1.5) 

 
and �′� is:  
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thus, 
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                                                                       (1.8) 

After solving (1.8), the values of  �′�  are 
substituted into (1.2). 
 

The input datasets needed to develop the model 
are given in Table 1. 
 

These datasets (LP (���) and LDA ��  (���)) are 

obtained using the Quantum Espresso (QE) DFT 
code [18]. Based on the input datasets, all other 
statistical data needed to evaluate the �′� as an 
estimate of  �′� are given in Table 2. 
 
From Table 2, ∑ ��� = 146.0897 , ∑ ��� =
22.1757 , ∑ �� = 36.767 , ∑ ���

� = 1561.6174 ,  
∑ ���

� = 69.498,   ∑ ������ = 201.6091,   ∑ ����� =
338.3608,  ∑ ����� = 109.7854. 
 
Inserting these values into (1.8), it becomes: 
 

�

��
��
��

�= �
14 146.0897 22.1757

146.0897 1561.6174 201.6091
22.1757 201.6091 69.4985

�

��

�
36.767
338.3608
109.7854

� 

                                                           (1.9) 
 

�

��
��
��

�= �
12.42933 −1.04039 −0.94788
−1.04039 0.088109 0.076372
−0.94788 0.076372 0.095292

��
36.767
338.3608
109.7854

� 

                                           (1.10) 
 

     �

��
��
��

�= �
0.897341
− 0.05476
1.452197

�       (1.11) 

 

The estimated regression equation is obtained by 
substituting ��,�� and ��into (1.2), leading to: 
 

�̂� = 0.897341− 0.05476��� + 1.452197��� (1.12) 
 

Table 1. QE derived Lattice Parameter (LP (���)) and Bandgap (LDA ��  (���)) alongside 

experimental bandgap data (Expt. ��  (��) 

 

S/N Materials LP (���) LDA �� (���) Expt. �� (��) 

1 AlSb 11.5991 1.2238 1.686 

2 GaAs 10.6068 0.9173 1.519 

3 InAs 11.4011 0.3483 0.414 

4 InP 11.0078 0.8886 1.424 

5 GaSb 11.4038 0.4207 0.811 
6 MgO 7.8051 5.4092 7.83 

7 ZnSe 10.5792 1.4286 2.825 

8 ������ 7.203 2.0214 3.3 

9 GaP 10.2038 1.5133 2.339 

10 CdS 10.9949 1.0554 2.583 

11 CdSe 11.3971 0.6797 1.846 

12 InSb 12.1998 0.3465 0.234 

13 CdTe 12.2001 0.8215 1.606 

14 CsCl 7.4881 5.1014  8.35 
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Table 2. Estimated linear multiple regression for the Lattice Parameter (LP (���)), Bandgap 
(LDA ��  (���)) and the experimental bandgap (Expt. ��  (��) 

 
S/N ��� ��� �� ���

�  ���
�  ������ ����� ����� 

1 11.5991 1.2238 1.686 134.5391 1.497686 14.19498 19.5560826 2.0633268 
2 10.6068 0.9173 1.519 112.5042 0.841439 9.729618 16.1117292 1.3933787 
3 11.4011 0.3483 0.414 129.9851 0.121313 3.971003 4.7200554 0.1441962 
4 11.0078 0.8886 1.424 121.1717 0.78961 9.781531 15.6751072 1.2653664 
5 11.4038 0.4207 0.811 130.0467 0.176988 4.797579 9.2484818 0.3411877 
6 7.8051 5.4092 7.83 60.91959 29.25944 42.21935 61.113933 42.354036 
7 10.5792 1.4286 2.825 111.9195 2.040898 15.11345 29.88624 4.035795 
8 7.203 2.0214 3.3 51.88321 4.086058 14.56014 23.7699 6.67062 
9 10.2038 1.5133 2.339 104.1175 2.290077 15.44141 23.8666882 3.5396087 
10 10.9949 1.0554 2.583 120.8878 1.113869 11.60402 28.3998267 2.7260982 
11 11.3971 0.6797 1.846 129.8939 0.461992 7.746609 21.0390466 1.2547262 
12 12.1998 0.3465 0.234 148.8351 0.120062 4.227231 2.8547532 0.081081 
13 12.2001 0.8215 1.606 148.8424 0.674862 10.02238 19.5933606 1.319329 
14 7.4881 5. 5.1014 8.35 56.07164 26.02428 38.19979 62.5256 42.59669 
Total 146.0897 22.1757 36.767 1561.6174 69.4985 201.6091 338.3608 109.7854 
 
where �̂�  is the predicted bandgap, ���  is the 
calculated lattice parameter and ���  is the 
calculated bandgap. On a general note, (1.12) 
can be expressed as: 
 
�̂� = 0.897341− 0.05476��� + 1.452197��� + �� 
                                           (1.13) 
 
where the residual ( �� ) of the model is 
determined as:  
 
�� = �� − �̂�                              (1.14) 
 
The residual and other indices calculated for 
each input dataset are given in Table 3. 

 

The reliability (�� ), of (1.13) can be evaluated 
using: 
 

� = �
�����

��
= � 1 −

��

��
                                (1.15) 

 

with �� = ∑ ��� − �́�
��

��� , �� = ∑ ��
��

���  and 

  

�́ =
∑ ��

�
=
��.���

��
= 2.626214                        (1.16) 

 

�� = 1 −
�.������

��.�����
= 0.972363                  (1.17) 

 
The result in (1.17) indicates that the regression 
model has ~97% fit with the data used. 

Table 3. Estimated residual and other values for the lattice parameters, LDA bandgap and 
experimental bandgaps 

 
S/N LDA �� 

(���) 

Expt. ��  

(Yi) 

Predicted 

�� ��̂�� 

Residuals 
(��) 

��
� �� − �́ ��� − �́�

�
 

1 1.2238 1.686 2.0393 0.3533840 0.12488029 -0.940214 0.884002366 
2 0.9173 1.519 1.6486 0.1296249 0.01680262 -1.107214 1.225922842 
3 0.3483 0.414 0.7788 0.3648306 0.13310143 -2.212214 4.893890782 
4 0.8886 1.424 1.5849 0.1609882 0.02591720 -1.202214 1.445318502 
5 0.4207 0.811 0.8838 0.0728216 0.00530299 -1.815214 3.295001866 
6 5.4092 7.83 8.3251 0.4951562 0.24517972 5.203786 27.07938873 
7 1.4286 2.825 2.3926 -0.4323568 0.18693248 0.198786 0.039515874 
8 2.0214 3.3 3.4383 0.1383844 0.01915024 0.673786 0.453987574 
9 1.5133 2.339 2.5362 0.1972008 0.03888817 -0.287214 0.082491882 
10 1.0554 2.583 1.8279 -0.7550794 0.57014493 -0.043214 0.00186745 
11 0.6797 1.846 1.2603 -0.5856931 0.34303650 -0.780214 0.608733886 
12 0.3465 0.234 0.7324 0.4984799 0.24848223 -2.392214 5.722687822 
13 0.8215 1.606 1.4222 -0.1837443 0.03376198 -1.020214 1.040836606 
14 5.1014 8.35 7.8955 -0.4544701 0.20654310 5.723786 32.76172617 
Total  36.767   2.198124  79.53537 
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Table 4. Theoretical and experimental band gaps (in eV). The structure is indicated in 
parenthesis. For comparison, results from the literature which were obtained by other 

methods (mBJ, HSE03, HSE06, G0W0, and GW) are also shown. The experimental values were 
taken from Refs. [7,8,11,15,19–21] 

 
Solid LDA mBJ HSE GW G0W0 Expt. This Work 
Si (A4) 
Ge (A4) 
AlP (B3) 
MgO (B1) 
ZnS (B3) 
ZnO (B1) 
CdS (B3) 
GaAs (B3) 
GaP (B3) 
GaSb (B3) 
CdSe (B3) 
CdTe (B3) 

0.569 
0.164 
1.509 
5.409 
2.287 
1.294 
1.055 
0.917 
1.513 
0.421 
0.680 
0.822 

1.17
a
       

0.85a 

2.32
a 

7.17
a 

3.66a 

2.68
a 

2.66a 

1.64
a 

- 
- 
- 
- 

1.28
b 

0.83b 

2.51
b 

6.67
b 

3.49b 

2.49
c 

2.25b 

1.12
b 

- 
- 
- 
- 

1.41
d 

0.95d 

2.90
d 

9.16
d 

4.15d 

3.80
d 

2.87d 

1.85
d 

- 
- 
- 
- 

1.12
e 

0.66f 

2.44
e 

7.25
e 

3.29e 

2.51
f 

2.06e 

1.30
e 

- 
- 
- 
- 

1.17 
0.74 
2.45 
7.83 
3.91 
3.44 
2.42 
1.52 
2.32 
0.81 
1.84 
1.61 

1.17 
0.55 
2.53 
8.33 
3.67 
2.34 
1.83 
1.65 
2.54 
0.88 
1.26 
1.42 

a
mBJ Ref. [16]. 

b
HSE03 [7]. 

c
HSE06 [22]. 

d
Reference [15]. 

e
Reference [14]. 

f
Reference [12] 

 
3. RESULTS AND DISCUSSION 
 
The results obtained using the model, alongside 
data from other sophisticated calculations are 
given in Table 4. For Si (A4 structure), the 
percentage difference between experimental 
data and the traditional LDA is 51.4%. It is 9.4% 
for HSE, 20.5% (GW), 4.27% (G0W0), 0% (mBJ) 
and also 0% for the newly developed model. The 
result for Ge (also A4 structure) shows 
percentage difference of 77.8% between 
experimental data and LDA while it is 12.2% 
(HSE), 28.4% (GW), 10.8% (G0W0), 14.9% 
(mBJ) and the model 25.7%.  The compound AlP 
(B3) belongs to the zinc blende cubic structure. 
The difference between its experimental data 
and LDA is 38.4%. It is 2.4% for HSE, 18.44% 
(GW), 0.4% (G0W0), 5.3% (mBJ) and 3.3% for 
the developed model. GaAs is another 
compound with the B3 structure. The percentage 
difference between its experimental bandgap and 
the theoretical predicted LDA is 39.7%. It is 
26.3% (HSE), 21.7% (GW), 14.5% (G0W0), 7.9% 
(mBJ) and 8.6% for the developed model. The 
experimental bandgap for MgO is 7.83 eV. It is 
an insulator with the B1 structure. The predicted 
bandgap using the model is 8.33 eV (difference = 
6.38%). The difference is 14.8% (HSE), 17% 
(GW), 7.4% (G0W0), 8.4% (mBJ) and 30.9% 
(LDA). ZnO is another compound with the                  
B1 structure. Its experimental bandgap is                    
3.44 eV. The percentage difference between this 
experimental bandgap and LDA                           
derived  bandgap for ZnO is 62.4%. It is 32% for 
the newly developed model, 22.1% (mBJ),  
27.6% (HSE), 10.5% (GW) and 27% for           
G0W0. 

4. CONCLUSION 
 

The calculation of the electronic structure 
requires the use of exchange-correlation 
potential within the Kohn-Sham equation. An 
exchange-correlation potential that depends 
solely on semi-local quantities is found to give 
poor band gaps in semiconductors and 
insulators. While the majority of ab initio DFT 
codes available to material scientist rely on semi-
local dependent exchange-correlation potential, 
the more accurate methods/codes are very 
expensive. The summary is that accurate band 
gaps can be obtained in semiconductors and 
insulators with an exchange-correlation potential 
that depends solely on semilocal quantities. The 
accuracy of the obtained result compared with 
the expensive hybrid and GW methods shows 
that the proposed model can lead to calculations 
that are cheap (requires no additional investment 
on hardware and software) and thus can be 
applied to cubic systems in an efficient manner. 
Although, the present work had focused on cubic 
lattices, its extension to other material systems 
remains an interesting adventure.  
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