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Abstract

We deal with backward doubly stochastic differential equations (BDSDEs) with a weak
monotonicity and general growth generators and a square integrable terminal datum. We
show the existence and uniqueness of solutions. As application, we establish the existence
and uniqueness of Sobolev solutions to some semilinear stochastic partial differential equations
(SPDESs) with a general growth and a weak monotonicity generators. By probabilistic solution,
we mean a solution which is representable throughout a BDSDEs.
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1 Introduction

Backward doubly stochastic differential equation (BDSDE for short) at the form

T T T
Yt:§+/ f(s,Ys,Zs)ds—F/ g(s,YS,ZS)dgs—/ ZodWs | 0<t<T (E&59)
t t t

with two different directions of stochastic integrals, i.e., the equation involves both a standard
(forward) stochastic integral dW; and a backward stochastic integral dB;.

The existence and uniqueness of solutions to BDSDEs of type (E$¥9) were first established in
Pardoux and Peng [1] they have proved the existence and uniqueness under uniformly Lipschitz
conditions. Since then, the BDSDEs have been intensively studied and a lot of papers were
devoted to the development of the theory of BDSDEs as well as their relation with the stochastic
optimal control problems see [2], [3], [4], and stochastic partial differential equations(SPDEs), we
are especially concerned in this paper with the last connection. Was firstly initiated by Pardoux
and Peng [1] to give probabilistic interpretation for the solutions of a class of semilinear SPDEs
where the coefficients are smooth enough, the idea is to connect the following BDSDEs system

vEe = h(XEE) 4 [T X0 YT 28 dr + [T (r, X0 YR, Z87) d B, — [T Z5dW,,
XbT = a4 [T (XET)dr+ [To (XDT) AW,

with the following semilinear SPDE

u(t,x) = h(m)Jr/ (ﬁu(r,x)Jrf(r,x,u(r,x),U*Vu(r,x)))dr
+/Tg(r,x,u(r,:c)7U*Vu(r,x))d§n t<s<T,

where )
1 B P . .

After what’s realised by Pardoux and Peng [1] numerous authors show the connections between
BDSDEs and solutions of stochastic partial differential equations. Bally and Matoussi [5], and
[6], [7], studied the solutions of quasilinear SPDEs in Sobolev spaces in terms of BDSDEs with
Lipschitz coefficients, in Bahlali et all [8], and [9], they have prove the existence and uniqueness
of probabilistic solutions to some semilinear stochastic partial differential equations (SPDEs) with
superlinear growth gernerator, Zhang and Zhao [10] considered BDSDESs under Lipschitz conditions
in spatial integral form on infinite horizon and related their solutions with the stationary solutions
of certain SPDEs. And then [11], [12], [13] studied the same BDSDE but under linear growth and
monotonicity conditions. They also proved that the solution of finite horizon BDSDE gives the
solution of the initial value problem of the corresponding SPDE in Sobolev space see [14], and the
solution of the infinite horizon BDSDE gives the stationary solution of the SPDEs.

Due to the application of BDSDEs, many works have been made to relax the assumptions on the
driver f. see for example [8], [15], [16], [17], [18], where Shi et al [16], and [19], [20], provided a
comparison theorem which is very important in studying viscosity solution of SPDEs with stochastic
tools, and Bahlali et al [8] provided the existence and uniqueness in the case with a superlinear
growth generator and a square integrable terminal datum.
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In this paper, we obtain existence and uniqueness results for BDSDEs when the coefficient f has a
weak monotonicity and general growth in y and lipschitz in the variable z, secondly we connect this
kind of BDSDEs with the corresponding semilinear SPDEs with superlinear generator for which
we establish the existence and uniqueness of Sobolev solutions. The rest of paper is organized as
follows.

e In Section 2, we will present some preliminary notations needed in the whole paper.
e In Section 3, we give the estimate for the solutions of BDSDE (E*/9).

e In Section 4, we consider our main results, the existence and uniqueness of solution for
BDSDE (E&/9).

e In Section 5, we give an application to Sobolev solutions for semilinear SPDEs.

2 Notations, Assumptions and Definitions

Let (Q, F, P) be a complete probability space. For T' > 0, let {W;,0 <t < T} and {B:,0 <t < T}
be two independent standard Brownian motion defined on (£, F, P) with values in R? and R’
respectively.

Let FV := 0 (Ws;0 < s <t) and }-t},BT :=0 (Bs — By;t <s<T), completed with P-null sets. We
put, Fy := F' Vv ffT. It should be noted that (F%) is not an increasing family of sub o— fields,
and hence it is not a filtration.

For each t € [0,T], we define
Gr:=F" Vv Fr,

the collection (gt)te[o,T] is a filtration.
For any d, k > 1, we consider the following spaces of processus:

o Let M?2 (O, T, Rd) denote the set of d—dimensional, F;—measurable stochastic processes
{p+;t € 0,77}, such that EfOT }cpt‘th < o0.

o We denote by §?2 ([O, T] JR’“) the set of k—dimensional continuous, F; — measurable stochastic

processes {i¢;t € [0, T]}, which satisfy E(supg<,<r |<pt|2) < 0.
e L2 the set of Fr- measurable random variables ¢ : Q — R* with IE€|£|2 < +o0.

Let f: Qx[0,7] x RF x RF*H— R* g: Qx[0,T] x R¥ x R¥*¢ — R**! be measurable functions
such that, for every (y,2) € R* x R**? f(.,y,2) € M (0,T,R*) and g (-, y,2) € M (0, T,R**").

Now, we consider the following BDSDE
T T T
Yt:§+/ f(s,YS,Zs)der/ g(s,YS,ZS)dES—/ ZsdWs, 0<t<T (EST9),
t t t

¢ is called the terminal datum and f the generator.

Definition 2.1. A solution of equation (Ef’f’g) is a couple (Y, Z) which belongs to the space
S? ([0, T],R¥) x M? (0, T,R**%) and satisfies (ES79).

We consider the following assumptions:

H.1) dP x dt-a.e. (almost everywhere), z € R¥*4 y — f(w,t,y, z) is continuous.
y Y Y
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(H.2) f satisfies the weak monotonicity condition in y, i.e., there exist a nondecreasing and concave
function k(-) : RT — R, with k (u) > 0 for u > 0, k(0) =0 and [, k' (u)du = 400 such that
dP x dt-a.e.¥ (y1,92) € R* 2z € R**4

<y1 - y27f(t7w,y1,z) - f(t,w7y2,z)> <k (|y1 - y2|2) .

H.3)i is Lipschitz in z, uniformly with respect to (w,t,y) i.e., there exists a constant ¢ > 0
Yy
such that Vy € R*, and Vz,2z' € R**¢, dP x dt-a.e.,

|f(’LU,t,y,Z) - f (wvt,yvz/) ‘ S C|Z - Z/|-
ii) There exists a constant ¢ > 0 and a constant 0 < o < % such that dP x dt-a.e.,
‘g(wat7y32) -9 (watay/72/) ‘ S C|y - y" +Oé’2 - Z/"

(H.4) f for y has a general growth, i.e., dP x di-a.e., Vy € R”

|f (8w, 9,0) | < |f (,w,0,0) [+ ([y]),

where ¢ : R — R™ is increasing continuous function.
(H.5)
f (t,w,0,0) € M? (0, T,R¥),

g (t,w,0,0) € M? (0, T,R*").

3 Estimate for the solutions of BDSDE (Eg’fvg).

We propose the following assumption on f and g.
(H.6) dP x dt-a.e., ¥(y, z) € R¥ x R**4

(o f (bw,y,2) < ([9]*) + Al 2] + [v]oe,

where A is a positive constant, o is a positive and (F;) progressively measurable processus with
EfOT |0’t |2dt < oo and (-) is a nondecreasing concave function from R* to itself with v(0) = 0.

(H.7) dP x dt-a.e., ¥(y, z) € R¥ x RF*4
g (t,w,,2) |* < Ay|” + |2 + e,

with A is a positive constant, 0 < v < i and 7¢ is a positive and (F:) progressively measurable
processus with E fOT nedt < oo.

Proposition 3.1. Let f and g satisfy (H.6) and (H.7), let (Yi, Zi)icjo,r) be a solution to the
BDSDE with parameters (§,T, f,g). Then for each § > 0 there exists a constants K > 0 depending
only on 4, \ and =y such that

(i) for each 0 <t <T:

T T T
B(sw P +E( [ 1200) < (P2 [ v@EnP e [ ol
T t t t

0<s<

+E /tT nsds)Kexp (K(T —1)).
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(i1) Moreover for each & > 0 there exists a constants K > 0 depending only on 6, A and ~y such that
for0<r<t<T:
2 T 2 2 T 2
E<t§s§2T|Yu\ ‘ﬂ) +E(/t 1Zs|2ds fr) < (=(lel )fr)m/t w (& (1vel?] 7)) ds

1 T 2 T
+E]E (/ los|® ds J-'T> + 2E (/ nsds
t t

Proof: For the first part, applying It’s formula to |Y;|? yields that, for each 0 <t < T,

ﬂ) )R exp (RT).

T T T
W+/ 1Z,2ds = |§|2+2/ <Ys,f(s,Ys,Zs)>dS+2/ (Yo g (5, Yo, Z2))dB
t t t

T T
_2/ (Ys,Zs)dWs—s—/ l9(s, Vs, Z2)2ds,
t t

taking expectation, we get

T T T
JEIYtI2+E/ Z.2ds = E|s|2+2E/ (Y;,f(s,Y;,Zs)>ds+2E/ (Yo g (s, Yo, Z2))dBs
t t t

T T
,Q]E/ (Ys, Zs)dWs + IE/ lg(s, Ys, ZS)|2 ds.
" t

Now, by (H.6) and Young’s inequality, we have

IN

T T
2
2/t (Yo, f(s, Yo, Z2))ds 2/t (00¥aP) + A Y] 1Z4] + 3] 02 ) ds,

IN

T T
2/ P ([Ys]?) ds + (2,\2+5)/ Y. [* ds
t t

T 2 T 2
los” / A
Jr/t 5 ds + ) 5 ds,
T T
EI£|2+2JE/ ¥ (|Ys]?) ds + (2>\2+>\+6)E/ |V, |? ds
t t

1 T T
+7]E/ los|? ds +]E/ nsds.
5 t t

Since fg(YS,Zs)dWS and f;(Ys,g(s,Ys,Zs»st are a uniformly integrable martingale. For each
0 <t < T, we have the following inequality

1 T e
(5 — 7) E/ |Zs|” ds < Ay, (3.1)
t

T T T T
Ay :IE|§\2+2E/ (| Ys|?)ds + (2)\2+/\+6)E/ |YS|2ds+%E/ |as\2ds+IE/ nsds.
t t t t

Then by (H.7), we have

2 (1 T e
P+ (5-0)E [ 12l
t

IN

where,

Furthermore, it follows from the Burkholder-Davis-Gundy and Young’s inequality, we have

T T
QE(sup /(Ys,Zs>dWS> < 2C,E | sup \Yu“// |Zs?ds |,
t<u<T |Ju t<u<T t
S () + e ([ )
< E( su Y. + E Zs|“ds |, (3.2
- 2 t§u£T| | 142y t 12| (32)
< oo.
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By assumptions (H.6), (H.7) and using (3.1) — (3.2), we have

IE( |Y\2>+]E/T|Z\2d << 2 ><1+ 4G, )IE(A)
su s s|°ds —_— —_— .
2ty ! S\1-2 (t2y)(1-29))

Jensen’s inequality, Gronwall’s Lemma and Fubini’s theorem, in view of the concavity condition of
1 (+), then there exists a constant K > 0 such that ¢ € [0, 7]

T T K T
IEI( sup \Ys|2> +IE/ |ZPds < (KIE|§|2+2K/ Y(E|Y:?)ds + FIE/ los|?ds
t t t

0<s<T
T
+KE/ nsds) exp (K (T —1t)).
¢

For the second part, we will use the same operation but applied the conditional expectation with
respect to Fr,r € [t,T] instead of the mathematical expectation.

Using the Burkholder-Davis-Gundy, 2ab < % + eb? inequalities and assumption (H.7), we have

T T
E( sup ‘/ (Ya, 9(s, Ye, Z2))dBs E) < cpE< sup_(Yul ([ [ la(s, Ya, 20)12 s ﬁ),
t<u<T /u t<u<T Jt
1 2 Gcz T 2
< sE( sup vl F )+ 2 ([ 1g6s Ve, 20 as| 7 )
2e t<u<T 2 Jt
<

1 exc? eyC? T
+ PIE( sup |Yul?|F- +7P]E</ |Zs|? ds
2¢ 2 t<u<T 2 t

eC? T
— PR (/ nsds ]-',,~>
2 t

co. (3.3)

)

.FT)

Applying It’s formula to |Y;|2, V¢ € [0,T], and we using (H.6), (H.7), (3.3) and E (ftT(Ys, Zs)ydW,
=0, we have for any 0 <r <t <T

T )\02
IE( sup |Yu|2‘fr)+1E(/ \Z,|? ds ]-‘T> < ]E((At)ua)Jr(iJr6 ”)IE( sup |Yu|2‘}'r)
t<u<T t 2e 2 t<u<T
1 2+ 02 T
e (ar (57 ) ) e ([ it 7)
t

2 T
- ([
2 t

Since 0 < v < % it is enough to take C’g = 6%, we have

7).

T
1+ A
]E( sup |Yu|? .7-1)4—]E</ |Zs|?ds .7-}) < ]E((At)|.7-"r)+i]E< sup \Yu|2‘}}>
t<u<T ¢ 2e t<u<T
1 T 1 T
bet1p (/ |Z.|*ds J-'T> +—IE(/ nsds .FT),
8e ¢ 2€ f
we choosing € = %,get
2 T 2 3(A+1) 5
E(@S‘;T‘Y“' ﬂ)%(/ﬁ 1212 ds ﬂ) < E(@OIF)+ E(@S‘;T‘Y“' 'f)
3(A+1) T 5 3 T
+ DT E(/t |Zs|” ds ]:T)+4/\+3]E<./t, nsds .FT),
since0<3i;\71;,) < 1, we obtain
T T
4N+3 3
E Yo |? Z2ds| Fr) < E((A)|F)+ ————F <ds| Fi
(jsow, e+ [ 12 7)< B (sranim+ e ([ nasl 7)),
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from which together with Gronwall’s Lemma, Fubini’s theorem and Jensen’s inequality, in view of
the concavity condition of 1 () then there exists a constants K > 0 such that for 0 <r <t < T

E(OSSEETWUF'E) +]E</tT\ZS|2ds fr) < (2(1er|®) +2/tTw(E(\YS|2|H))ds+ %E(/f\as\ds fr)
T
+2]E(/f nsds

hence the required result. |

}'7-) )R exp (RT),

4 The Main Results

Theorem 4.1. Let £ € L?, assume that (H.1)-(H.5) are satisfied. Then equation (E/9%) has a
unique solution.

4.1 Proof of uniqueness

Suppose that f and g satisfies the assumption (H.1) — (H.5). Let (Y;l,Ztl) and ng, Zf) be two
solutions of the BDSDE with parameters (§,7), f,g). Then (Yt,Zt) = (Yt1 -Y2 7z - Zf) is a
solution to the following BDSDE

T T T
Yt:/ f(s,Ys,Zs)ds—i-/ g(s,i@,zs)st_/ Z.dW.,  te[0,T],
t t t

where for each (Yt, Zt) € RF x RF*4

f_‘(tzghz:t) :f(t7}:/i+}/t27?t+2152) _f(t7Y;52,Zt2)7
g(tamvzi) :g(t7m+}/t27zt+ztz)7g(t7Y'tQaZt2)

It follows from (H.2) and (H.3) (¢) that dP X dt — a.e.,
<)77f_(t,Y,Z)> <Y7f(ta?+y2aZ+Z2) —f(t,YQ,Z2)>
k(I77) +elv](2],

IN

then the generator f (s, Y, Zs) of BDSDE with ¢ (u) = k (u) , A = ¢, o+ = 0 satisfied the assumption
(H.6).

It follows from (H.3) (i7) that dP x dt — a.e.,

907, 2) < |7 +al2P.
then the assumption (H.7) is satisfied for the generator g (57?5725) of BDSDE with a = ~ and
ne = 0.

Thus, it follow from Proposition 3.1 (i) that there exists a constant K > 0 depending only on d, A
and v such that, for each 0 < ¢ < T, we have

T T
]E( sup |}75‘2) —HE(/ ‘ZSIst) SC’/ (k (IE sup ’Yu|2))d8,
0<s<T t t s<u<T

where C' = 2K exp (KT) in view of [, k™! (u) du = oo, Bihari’s inequality yields that, V¢ € [0, T]

T
IE( sup |)75|2—|—/ |Zs’2ds> =0.
0<s<T ¢

The proof of the uniqueness is then complete. |
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4.2 Proof of existence

Let ¢ be a function of C* (R*, R™) with the closed unit as compact support, and satisfies [, ¢ (v) dv =
1. For each n > 1 and each (w,t,Y) € Q x [0,T] x R*, we set

f'ﬂ (t7}/t7‘/t) = n f t Yt7vt)*¢(n}/t)
/ F (60, Vi) 6 (n (Ye — v)) do. (4.1)

Then f, is an (F;)-progressively measurable process for each Y € R* and

fo (LY V) = /ka<t7Yt—%,Vt)¢(v)dv,

~/{U:\v\§1} f (t7Yt B %’Vt) ¢ (v) dv. (4.2)

Let us turn to the existence part. The proof will be split into three lemmas and after the proof of
Theorem 4.1.

Lemma 4.1. Let f and g satisfies the hypothesis (H.1)-(H.5), V € M? (O,T7 RkXd) and £ €
L2 (]:TJR’“) , if there exists a positive constant 8 such that

dea.s.,‘f‘SB ddetfa.e.,‘g(t,w,0,0)’Sﬂ ’f(t,w,0,0)|§ﬁ and ‘W!Sﬁ. (4.3)

Then there exists a unique solution to the following BDSDE:
T T T
Y, =¢ +/ f(s,Ys,Vs)ds +/ g(s,Ys,Vs) d§5 7/ ZsdWs te€[0,T]. (4.4)
t t t

Proof: Tt follows from (H.3) (i), (H.4) and (4.3) that, for each Y € R¥ dP x dt — a.e.,
|f(s,Ye, V| < cB+ B+ (|Ya]). (4.5)

Thus, checked from (4.1) that for each n > 1, fn(¢,Y%, V%) is locally Lipschitz in Y uniformly with
respect to (t,w). Furthermore, for each n > 1 and Y € R*, it follows from (4.2) and (4.5) that
dP x dt — a.e.,

el = | f S Ve W) do]

IN

(cﬁ+ﬂ+s0(|Yt\+1))/ b dv=cB+p+o(Yi+1). (46)

vilv|<1}

Now, for some large enough integer v > 0 which will be chosen later, let p, be a smooth function
such that 0 < py, <1, pu(Yz) =1 for |Yz| < w and pu(Yz) = 0 as soon as |Y;| > u + 1. Then for each
n > 1, the function p, (Y3) fn (¢,Y:, V2) is Lipschitz in Y, uniformly with respect to (¢,w).

Thus, from Pardoux-Peng [15], we know that for each n > 1, the following BDSDE has a unique

solution (Y;", Z{"),c (0.7

T T T
t t t
It follows from (H.2) and (4.2) that for each n > 1 and (V7',Y;?) € R**, dP x dt — a.e.,

<Ytl - }/t27fn (t7 Ytl7‘/t) - f'ﬂ (t,Yt27‘/t)> S /
{oifvl<1}

k(I =2)") o) dv =k (I = v2))
(4.8)
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For each n > 1 and Y; € R¥, combing (4.6) and (4.8) yields that dP x dt — a.e.,
k(IYe*) +1Yel (B + B+ (1)),

Then the assumption (H.6) is satisfied for the generator p, (Y;"*) fn (¢,Y{",V;) of BDSDE (4.7) with
w(u):k(u)7 A=0, o :C/B_Fﬁ'i_(p(l)
It follows from (H.3) (i7) that dP x dt — a.e.,

IN

|g(t7y;na‘/t)|2 S 2|g(t7}/tn7‘/;5)7g(t5030)|2+2‘g(ta070)‘23
< 2|V + 207 |Vl + 219 (,0,0)*.

Then the generator g (t,Y;", Vi) of BDSDE (3.10) with A = 2¢, v = 2a% and n, = 2|g (t,w,0,0)|?
satisfied the assumption (H.7).

Thus, it follow from Proposition 3.1 (43) with § = 1 that there exists a constant K > 0 depending
only on d, A and  such that, for each 0 < r <t < T, we have

s (1P =)+ ([ 1202 as

7)< (E(Ié\z(}'r)+2/tTk(JE()Y;"\2’FT))ds+(0/3+/3+¢>(1))2T

T 5 _ _
+4]E</ lg(s,w,0,0)|? ds ]-',\> )Kexp (RT).
t

Note § = K exp (KT) and using the (4.3), we get

(2[5 e ([ 1222 as

fr) < §ﬁ2+2é/tTk(JE(\Yfﬂfr))ds+§(c5+ﬁ+¢(1))2T+4éﬁ2T.

Furthermore, since k (-) is a nondecreasing and concave function with &k (0) = 0 it increases at most
linearly, i.e., there exists A > 0 such that k (z) < A(x + 1) for each z > 0, yields that

E(1P|F) +E (/le:les

J—‘T) < OB (AT +1)+20AT + 0 (cB+ B+ (1))*T
+20A /TE (‘stﬂ ]-‘T) ds.

By Gronwall’s lemma and with r = ¢, yields that

T
Yo+ E (/ \Z:Fds) <.
t

where u® = (08% (4T + 1) + 2A0T + 0 (cB + B + ¢ (1))* T) exp (240T). By the previous inequality,
yields that for each n > 1 and Vt € [0, T
{ VPP <,

E(J) 1227 ds) <. (4.9)

By (4.7) and (4.9), we can conclude that (Y;", Z{")  solves the following BDSDE:

tefo, T
T T T

Y;”:§+/ fn (s,YS”,VS)ds+/ g(s,Y;’,vs)dR—/ ZrdW., 0<t<T. (4.10)
t t t

In the sequel, we shall show that ((Y,S",Zt") is a Cauchy sequence in the space

8% (0,7, R*) x M? (0,T,R**?).

tE[O’T]>n€N*
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In fact, for each m > 1 and m > 1, let AY,;"™ =Y;" — Y™ and AZ”™ = Z}' — Z{". Then for each
0<t<T

T T T
MTW:/‘AWW@AKWJ@%+/HAfm@AK“ﬁ%M&—/mAﬂmmm,mﬂ)
t t t

where
Afn’m (87 AYtsn,m7 ‘/S) = fn (57 A)/.sn’m + Ysm7 ‘/S) - fm (87)/5m7 VS‘) 9

Ag™™ (s, AYV™ Vs) = g (s, AY"™ + Y, Vi) — g (5, Y™, Vi)
It follows (4.8) that for each AY;*™ € R*, dP x dt — a.e.,
(AY AP AY V) < K (JAY ) 4 A fa (8 VE) = fn (87 V)

Then the the generator Af™™ (¢, AY,"™,V;) of BDSDE (4.11) with ¢ (u) = k(u), A =0, o¢ =
|frn (8, Y™, Vi) — fm (8, Y™, V4) | satisfied the assumption (H.6).
It follows from (H.3) (i¢) that dP x dt — a.e.,

[Ag™T (6, YT VI < elAay TR
Then the assumption (H.7) is satisfied for the generator Ag™™ (¢, AY;"™,V;) of BDSDE (4.11)
with A =¢, v =0 and n; = 0.

Thus, it follow from Proposition 3.1 (i) with 6 = 1 that there exists a constant K > 0 depending
only on J, A and ~ such that, for each 0 <t <T

T T
E ( sup \AYS"’"L|2> +E (/ |AZr™? ds) < 29/ k (E sup |AYu"’m|2> ds (4.12)
¢ t

0<s<T s<u<T
T
+0E/ |f’ﬂ (vasmaVS)ifm (87Ysm7‘/5)|2d87
t
where § = K exp (K (T —1t)).

On one hand, it follows from (4.2) that, for each n,m > 1, t € [0,T] and each AY;*™ € R*,
dP x dt — a.e.,

{v:]v|<1} |f (t7 Y- %’ Vt) -f (t’Y;m - %’ V’f) ’¢(U) dv,

and also from (4.5) and (4.9), we get
F (LY =) - (BY - =) | S 2(ptD)+cB+B)
< 00.

Using the continuity of f in y, we have

lim [f(6Y" = 20) = f (1Y = 2 v) | =0,

n,m— oo

applying Lebesgue’s dominated convergence theorem, we get

On the other hand, we obtain dP x dt — a.e.,

IN

2(p(u+1) +cf+ ) < oo,
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applies again Lebesgue’s dominated convergence theorem,yields that
n,m—oo

T
lim IE/ | (5, Y Va) = fm (s,YSm,VS)|2d5:0. (4.13)
t

Now, taking the limsup in (4.12) and by Fatou’s lemma, monotonicity and continuity of k (-) and
(4.13) , we get

T
lim sup (E sup ‘AYSn’m{z +E (/ |AZ:L’m|2ds>
n,m—oo 0<s<T t S

IN

T
29/ k( lim _supE ( }Aygvm\?)
t n,m-—o0 s

T n,m2
+ E (/ ‘AZu" | du))ds.
s

Thus, in view of f0+ k! (u) du = oo, Bihari’s inequality yields that, for each 0 < ¢ < T

T
lim IE< sup |AYS"’m\2> +E (/ \AZ;L’m|2ds> =0,
¢

n,m—oo 0<s<T

sup
<u<T

which means that ((Yt", Ztn)ze[o T]) is Cauchy sequence in the space S? (O7 T, Rk) x M? (0, T, ]ka‘i) .
’ neN*
Let (Y2, Z,g)te[0 ) be the limit process of the sequence ((Yt”, Zt")te[0 T]) in the process space
’ ’ neN*

8% (0,T,R*) x M? (0,T,RF*?).
On one hand, using (4.2), (4.6) and (4.9), we have
‘fn(svysnzvgn S Cﬁ+5+@(‘yn|+1)7
< eB+B+e(utl) < oo,
by definition of f, and applying (H.1), we have that f, converge a.e. to f. Thus by Lebesgue’s

dominated convergence theorem, we have

T
lim }f’ﬂ (87}/sn7‘/-5)_f(87}/é7‘/é)|d820
0

n—o0

In other hand, from the continuity properties of the stochastic integral, it follows that

ftTg(sasta Vs)dgs - ftTg (’S?Y'S?VS) d§5

SUPo<i<T — 0,

SUPg< i< ftT Z3dWs — ftT ZsdWs| — 0, as n — oo in probability.

from wich it follow that Y™ converge uniformly in ¢ to Y i.e., lim,_ (SUPogth Y — Yt\) = 0.
Finally, we pass to the limit n — oo in (4.10), we deduce that (Y%, Zt), |, 7y solve BDSDE (4.4). 8

Lemma 4.2. Let f and g satisfies the hypothesis (H.1)-(H.5), V. € M?(0,T,R**%) and ¢ €
L2 (]—"T,Rk) , if there exists a positive constant 8 such that

dP —a.s., [¢|<pB dPxdt—ae.,|g(t,w,0,0)|<B and |f(t,w0,0)|<p. (4.14)
Then there exists a unique solution to the following BDSDE (4.4) .

Proof: In this lemma, we will eliminate the bounded condition with respecte to the processus

(V&) iejo,r) in Lemma 4.1. For each n > 1 and Z € R**4 denote g, (Z) = ﬁ, then |¢.(Z)| =
supZ(l% <inf (|Z],n). It follows from Lemma 4.1, that for each n > 1, there exists a solution

(Y, Ztn)te[o,T] to the following BDSDE

T T T
=gk [ S ) ds+ [ (V) dEL - [ ziaw., o<e<T. (15)
t t t
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In the sequel, we shall show that ((Y}",Z{”)te[o T]) is a Cauchy sequence in the space
’ neN*
8% (0,T,R*) x M? (0, T, RF*7) .

In fact, for each n > 1 and m > 1, let AY;"™ =Y{" —Y;" and AZ"™ = Z{* — Z{". Then for each
0<t<T

T T T
MT”:/)AWWQAKWJ@@+/HAf”@Anmﬁ%M&—/“Aﬂmm%,@w)
t t t

where
Afn7m (Sa Ast7m7 VS‘) = f (87 AstJn + )/smv gn (‘/S)) - f (87 Ysm7 qm (‘/«9)) I

Ag™™ (s, AY™ V) = g (s, AY" ™ + Y qn (Vs)) — 9. (5, Y™ g (V5)) -
(H.6) and (H.7) is satisfied for the generator Af™™ (¢, AY,"™, V;) with ¢ (u) = k (u), A =0,
Ot = |f (t7 Ym: an (Vt)) -f (t7 Ym: qm (Vt))l
respectively Ag™™ (¢, AY,"™,V;) with v = @ and 7 = 0 of BDSDE (4.16).

Indeed by (H.2), we get
(DY AL (U AY V) < B (JAYT ) JAY S (Y™ g (V) = F (6 g (V)]
and by (H.3) (ii), we have

|Ag™™ (8, AY"™ V)2 < e| AP + a|gn (Vi) — g (V2)] -

Thus, it follow from Proposition 3.1 (i) with 6 = 1 that there exists a constant K > 0 depending
only on 4, A and  such that, for each 0 <¢ < T

n,m 2 T nom 2 T nom 2y
]E(DSSSQT‘AYS | )+]E(/t |[az ™% ds) < (2K/t kE|AY"™|%)d
T m m 2
+OKE [ 1R Y an(Ve) = £ YT am (Vo)) |? ds) exp(K (T = 1)
using (H.3) (i) and 0 = Kexp (K (T —t)), we get
T T T
]E( sup |AY™ \2> +E (/t laz™ {2ds) < 20./t k(Elay] ™)) ds+9c]Ev/t lan (Vs) — am (Vi)|? ds.  (4.17)

0<s<T

since k (z) < A (1 + z), we obtain

IN

T
E( sup |AYS"’m\2+/ \AZ?’m|2d8>
¢

0<s<T

T
wAT+2a4/ E(fmp\Ayymﬁ>ds
t

s<u<T
T
0 [ g (V) = g (VO ds,
t
Applying Gronwall’s Lemma and (a — b)2 < a®+b?, yields that for each ¢ € [0,7] and each n,m > 1

2 T 2
E( sup |AY™| +/ |az™ ™2 s
0<s<T t

IN

(29AT T GCE-AT (lan (Vo) 2 + lam (V2)I?) ds) exp (20AT) ,

IN

T
<2GAT + QGCJE/ Vs |? ds) exp (20AT) .
0

By taking the limsup in (4.17), we have

IN

T
lim sup E( sup |AYSn’m|2+/ |AZ?’m|2dS>
¢

n,m— oo 0<s<T

T
nmsw(w/k(mmﬁﬂﬂ@
t

n,m— oo

T
+ HCIE/ |gn (Vs) — g (V5)|* ds),
t
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by continuity and monotonicity of & (-), Fatou’s lemma, we have

n,Mm—r00 0<s<T n,m—»00

T T
lim sup IE( sup |AYS"’m|2+/ |AZ§’m\2ds) < 29/ k(lim sup E\AYS"’W|2> ds
t t
T

+ 0c]E/ lim sup |gn (Vi) — gm (Vs)|? ds.
t

n,m—oo
since

T
IE/ lim sup |gn (Vi) — gm (Vo) ds = 0.
t

n,m— 00

Thus, in view of f0+ k™! (u) du = oo, Bihari’s inequality yields that, for each 0 <t < T

T
lim sup IE( sup |AYS"’m|2+/ |AZ§’m|2ds> =0.
t

n,m— oo 0<s<T

We know that ((Yt”, Zt")te[0 T]) is Cauchy sequence in the space S? (O, T, Rk) xM? (0, T, ]R’”d) .
’ neN*

Let (Y, Zt)te[o,T] be the limit of the sequence ((Ytn7Zf)

M? (0, T, RF*?).

. 2 k
te[O’T])neN* in the space S ((), TR ) X

Applying (H.1), (H.3) (i), (H.4), (4.14) and Lebesgue’s dominated convergence theorem, we have

T
lim ’f (8, Y qn (V5)) — [ (s, Y5, V) }ds =0,

n—oo 0

from wich it follow that Y™ converge uniformly in ¢ to Y i.e, lim, oo (SUPogth Y — Yt\) = 0.
Finally, we pass to the limit n — oo in (4.15), we deduce that (Y%, Zt)te[O,T] solve BDSDE (4.4). 1

Lemma 4.3. Let f and g satisfies the hypothesis (H.1)-(H.5) and ¢ € L2 (]—'T,Rk) , if there exists
a positive constant B such that

dP — a.s., }§| <pB dP xdt-—a.e., !g(t,w70,0) | <pB and |f(t,w70,0) | < B. (4.18)
Then there exists a unique solution to the following BDSDE (E's’f’g).

Proof: By Lemma 4.2, we can construct the iterative sequence. Let us set as usual (Y}O, ZP) = (0,0)
and define recursively, for each n > 1

T T T
yt":g+/ f(s,Y;”‘,ZQ‘l)ds+/ g(s,st,Z?_l)dES—/ ZrdWs, te[0,7]. (4.19)
t t t

It follows from (H.2) and (H.3) (¢) that dP x dt — a.e.,
V(Y8 2070) = (Y 207) = (50,2071 ) + £ (5,0, 2071)),
< B (P) I (e] 257+ 11 (,0,0)1),

then the assumption (H.6) is satisfied for the generator f (S,YS",Z;L*I) of BDSDE (4.19) with
¥ (u) =k(u), \=0, 00 =c|Z | +|f(t,0,0)|.

It follows from (H.3) (i2) that dP x dt — a.e.,

lg (6, V7", 207N |* < 2¢[V" )2 + 202 | 20717 + 219 (£,0,0)[%,
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then the generator g (¢,Y;", Z{'"") of BDSDE (4.19) with v = 2a*, A = 2c and n; = 2 lg(t,0,0)|.
satisfied the assumption (H.7).

Thus, it follow from Proposition 3.1 (i) that there exists a constant K > 0 depending only on §, A

and v such that, for each 0 <¢ < T
T T
IEI( sup |Ys"|2) +E (/ \Z:|2ds) (KIEI|§|2 +2K/ k <]E ( sup YT"|2>) ds
0<s<T t t rels,T]
K T n—1 2
+ F]E/t (c]Zd | +1£(5,0,0)])" ds

IA

—|—2K]E/t |g(s,0,0)|2d8) exp (K(T —1t)).

By = Kexp (K (T —t)),wenote H(t) =6 (E l€)? + %EftT |f (5,0,0)|* ds + QEftT lg (s,0,0) ds).
Using (4.18), we have H(t) < 63% (1+ 2F 4 2T') = 0h. Therefore

2 r 2 r 2 26c r 112
]E( sup |Y| >+]E (/ |Z2| ds) < 9h+20/ E{E( sup |Y,"| ds+ JE/ |Z37 ds.
0<s<T t t r€[s,T] 4 t

Since k (z) < A(1+4z), we get

n|2 T n2 T n|2 20¢* T
E( sup |Y'|"|+E (/ 24 ds) < 9h+2A9T+2A9/ E( sup |V7|7)ds+ ]E/
0<s<T t : t re[s,T) 8 t

Let us set 1 = max {T — 22 7 — 12 0} . Then for each t € [¢1,T] ,we have exp (K (T — t)) < 2,
thus 0 < 2K and

n2 T n2 T n|2 4Kc? T
E( sup |Y]| +[E(/ |z d5> < 2Kh+4KAT+4AK/ E( sup |Y7]7)ds+ [E/
0<s<T t t rels,T) é t

—12
Z:’ 1| ds.

Z;L_1|2 ds,
we take § = 16K ¢?, obtain

T T 1 T
]E( sup |V +/ \Z:|2ds) < 2Kh+4KAT+4AK/ E| sup Y| ds+7]E/ |z ds.
0<s<T t t re(s,T] 4 t
Applying Growall’s lemma yields that for each t € [91, T
n|2 T n|2 1 T n—1\2
E( sup |YJ'|"+ |Z " ds | < (2Kh+4KAT + <E [ |Z}7'| ds ) exp (4AK (T —t)).
0<s<T ¢ 4/
For each ¢ € [91,T], we have exp (4AK (T —t)) < 2, then we deduce for each n > 1
n|2 T n|2 1 T n—112
E( sup YOI+ [ |Z271°ds) < 4Kh+8KAT + SE |Z&7H" ds,
T t t

0<s<

A

8Kh + 16K AT. (4.20)

In the sequel, for each n > 1 and m > 1, let AY;"™ =Y;" — Y™ and AZ"™ = Z] — Z". Then
V¢ € [0,

T T T
AYV™ = / Af™™ (s, AY"™) ds + / Ag™™ (s, AY,"™)dBs — / AZPT AW, (4.21)
¢ ¢ ¢

where
Af™T (s, AV = f (s, AYU Y Z0TN) = f (s, Y, 207

Agn,m (57 Ast7m) =g (57 A)/sn’m + Ysm7 Z\?—l) -9 (57 Ysm7 Z;n_l) .
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It follows from (H.2) and (H.3) that dP x dt — a.e.,
(A7 AT AV = (AP (s AV Y 20 = f (5, Y2, 27Y),
B (1AY 7P ) 4+ AV (6 Y 2070 = (65 207

IA

Then the the generator Af™™ (¢, AY,”™) of BDSDE (4.21) with
() =k(w),A=0,00= | (&Y, 277) = f (&Y, 27|
satisfied the assumption (H.6).
It follows from (H.3) (i7) that dP x dt — a.e.,
g™ (5, AV < AV 4 aazn i

Then the assumption (H.7) is satisfied for the generator Ag™™ (¢, AY,"”™) of BDSDE (4.21) with,
c=A a=~andn =0.

Thus, it follow from Proposition 3.1 (i) that there exists a constant K > 0 depending only on §, A
and v such that, for each 0 <¢ < T

T
]E< sup |AYS"’m}2)+E</ \Azg””\zds>
0<s<T t

IN

exp(K (T — t))(2K /tT k (]E |AYS"~m\2) ds

+

K T _ 1.2
?E/t £, v, 2070 = s, v 20| ds).

Let us set ¥7 = max {T'— 2 0} . Then for each ¢ € [¢J1,T], we have exp (K (T —t)) < 2 and

T 2K c? T _ —1)2
E( sup |Ay™|? +]E(/ |AZ:’”m}2ds> < 4K/ (Elayy ™ %) ds + / lazy=tmt s,
0<s<T Jt ’ Jt

take § = 8K c?, we have

T T
IE( sup |AYS”””\2) +E (/ |AZ§’m|2ds) < 4K/ k (IE|AYS"’7"|2> ds
0<s<T t t
1 T n—1,m—1|2
+ B |AZ" T ds. (4.22)
t

Using monotonicity and continuity of k(-), (4.20), and taking the limsup in (4.22), by Fatou’s
lemma, we have

T
limsup | E sup |AY:L’m|2 +]E(/ }AZ?’M‘st)
n,m— 0o 0<s<T h t :

IN

4K/ <hm sup ]E‘AY_:’”W'F) ds

1 T C1m—112
+ —]E/ lim sup |AZ:L 1,m 1| ds.
4 + n,Mm— 00 h

Thus, in view of [ k™! (u) du = oo, Bihari’s inequality yields that, for each ¥1 <t < T

T
lim sup (IE < sup |AYS”’m\2) +E (/ |AZ§”"|2 ds)> =0,
n,m— oo 0<s<T t

we know that ((Y,g"7 Z?)tewa])neN* is Cauchy sequence in the space S? (91, T, R¥) x M? (91, T, R**¢) .

Let (Yz, Zt)te[191 7] be the limit of the sequence ((Yt", Z,Z‘)te[l91 T]) in the space S2 (191, T, Rk) X
' 1 nens
M? (191, T, RkXd). On the other hand, since Z;* converge in M? (191, T, RkXd) to Zy, then there exists

73



Mansouri and Saouli; AJPAS, 7(2): 59-85, 2020; Article no.AJPAS.56675

a subsequence which will denote Z* such that Vn, Z{* — Z;, dt ® dP — a.s. and sup,, | Z{'| is dt ® dP
integrable. Therefore by (H.3) (i) and (H.4), we have

[ (Y0, Z870) [ < e 2871+ [ (5,0,0) [+ ([Y]) < o0,
applying (H.1) and (H.3) (i), we have
lim |f (s, Y, 207) = f(s,Ys,Zs)| = lim |f(s,Ys, Z07") = f(5,Y5,Z) |
n— oo n— oo

< clim |Z!7' - Z| =0,
n— oo
thus, f(s,Y"™, Z2"!) converge a.e. to f(s,Ys, Zs). Then by Lebesgue’s dominated convergence

theorem, we have
T

lim |f (s,Y8, 2271 — f(s,Ys, Zs) |ds = 0.

n—oo +

From wich it follow that Y™ converge uniformly in ¢ € [91,T] to Y i.e, limy,— o0 (supﬁlgtST Y — Vs \) =
0. Now, we pass to the limit n — oo in (4.19) , we follows that (Y3, Zt),c(y, 7 Solve BDSDE (Ef’f‘g) .

Note that T'— 11 > 0 and depends only on ¢ and A, we can repeat the above operation in finite
steps to obtain a solution to the BDSDE (E*/9) on [92,91], [93,92], ..., and then on [0,7]. ™

Now, proof of Theorem 4.1. Firstly we approximate f (¢,Y:, Z¢) and £ by a sequence whose
elements satisfy the bound assumption in Lemma 4.3.

For each n > 1, define ¢, (z) = % for each = € R¥, and let
§’ﬂ =(4n (6) and f” (ta Y;fv Zt) = f (t7}/t7 Zt) - f (t7 07 0) + qn (f (tv 07 0)) I (423)

clearly, the f, satisfies (4.18), we have

lim E|¢, —¢[?=0 and lim E (/T |gn (f (5,0,0)) = £ (s,0,0) \st) =0. (4.24)
n— o0 n— o0 0

For each n > 1, let (Y{*, Z}) denote the unique solution to the following BDSDE

te[0,T)
T T T
Y =&, +/ I (8,YS, Z0)ds +/ g (s, Y, Zf)d%s — / ZrdWs, 0<t<T. (4.25)
t t t

In the sequel, for each n > 1 and m > 1, let AY;"™ =Y;" — Y™ and AZ"™ = Z — Z". Then
Vt € [0,T]

T
AV = gt [ AP (s AV AZET) ds
t

T T
+/ Ag™™ (s, AY"™ AZP™)dBs — / AZP"dWs, (4.26)
t t
where
AfT™ (s, AYS ™ AZP™) = fo (8, AY T+ Y AZPT + ZT) — o (8, Y, 2T,
Agh™ (s, AYV AZPT) =g (s, AYT Y AZPT + Z0) — g (s, YN ZT) .

By add and subtract, we get
(AYT AT (5, AV AZET)) = (AYT o (5, AYT A Y AZET + ZT) = (5, Y Z0)
+<AYSn,7n7fn (S,AYSn’7n + YSNL,AZ:’M + Z;n)
= Im (s AV Y AZET 4 ZTY).
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It follows from (H.2) and (H.3) (i) and (4.23) that dP x dt — a.e.,
(AY™ AL (s, AV AZE™))
= (AY"" f (s, AYS + YL AZST + Z0) = f (s, Y Z0) = f (s Y 28 + f (5, Y, Z4)
+AY™, gn (£ (5,0,0)) = gm (£ (5,0,0))),
< R (IAYDTP) 4+ e|AZDT AV 4 |AY ™ [ga (f (5,0,0)) = g (f (5.0,0))
Then the assumption (H.6) is satisfied for the generator A f™™ (s, AY,»™ AZ}™) of BDSDE (4.26)
with ¢ (u) =k (u), A = ¢, 00 = |ga (f (£,0,0)) = gm (f (£,0,0))].
It follows from (H.3) (i¢) that dP X dt — a.e.,
|[Ag™™ (s, AV AZET) T = g (s AV Y AZET 4+ 2 — g (s, Y 2
| AV P+ ol Azl

Then the generator Ag™™ (s, AY"™, AZ7™) of BDSDE (4.26) with, A = ¢, @ = v and 1, = 0.
satisfied the assumption (H.7).

IN

Thus, it follow from Proposition 3.1 (i) with 6 = 1 that there exists a constant K > 0 depending
only on J, A and ~ such that, for each 0 <t <T

T T
E ( sup |AYS”””|2) +E (/ |AZ™ ds) < OE[E, — EnlP + 29/ k (IE ( sup |AY;””|2)) ds
0<s<T t t 0<r<s

T
HOE [ a0 (£ (5,0.0) = 4 (F (5,0,0))* ds. (4.27)
t
where 0 = K exp (K (T —t)) . Since k (z) < A(1 + z), we have
n,m|2 T n,m|2 2 T n,m|2
JE(O;?;S)TMYS | >+]E(/t |[az™| ds> < OE|En — Eml +2AT9+2A9/t JE(O;:%JAYT | )ds

T
+6E/1 lan (f (5,0,0)) — am (f (s,0,0))[ ds.

Using (4.24), we obtain

T
E( sup |AYS”””|2) +E (/ |AZ§’m\2ds)
0<s<T t

IN

T
20E |¢|* + 2AT6 + er/ E ( sup \AY,."’m|2) ds
t

0<r<s
T
+ 291E/ |f (5,0,0)| ds.
t
Applying Growall’s lemma yields that for each t € [0, 7] and each n,m > 1

T T
]E< sup |ij’m|2> +]E</ ‘AZ?’m‘2d5> < (29AT+26]E\§|2+201E/ \f(s,0,0)\zds) exp (20AT)
0<s<T t t

< oo.

Taking the lim sup in (4.27) and by previous inequality, Fatou’s lemma, monotonicity and continuity
of k(-), we have

IN

0E ( limsup |&5 — smF)
n,m-— oo
T n,m |2
+ 26/ k| limsup E sup ‘AY,,,’ | ds
t n,m-—»oo s<r<T

T
+9E/ limsup |gn (f (5,0,0)) — gm (f (s,0,0))|? ds,
t m,m-—oo

T
= 29/ k| limsup E sup {AY:"’MF ds.
t n,m— oo s<r<T

1 T P
limsup E sup |AYT"’"L‘2 +/ |AZ;L’m}2dS
n,m—oo \t<r<T t
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Thus, in view of [ k™! (u) du = oo, Bihari’s inequality yields that for each 0 < ¢ < T
T
limsup]E( sup |AY,"™? +/ \AZ?’m|2ds> =0.
n,m—oco t<r<T t

We know that ((Yt", Z) is Cauchy sequence in the space S? (0, 7, R*) x M? (0, T, R¥*?) .

tE[O,T]) neN*

Let (Y, Zt)te[0 7] be the limit of the sequence ((Y{‘,Z{‘)te[o T]) . in the space S (O, T, Rk) X
, 1)) o ene
M? (0, T,R**?). Using (H.3) (i) and (H.4), we have
fn (Y20 = o 20+ [ (£,0,0) |+ o ([Y7])

< 0o,

applying (H.1), (H.3) and (4.23), we have fn(s, Y., Z7) converge a.e. to f(s,Ys,Zs). Then by
Lebesgue’s dominated convergence theorem, we have

n—00

T
lim |fn (875/.5’”72:)_f(S7Y97ZS)|dS:0'
t

from wich it follow that Y™ converge uniformly in ¢ to Y. Now, we pass to the limit n — oo in
(4.25), we deduce that (Y3, Zt),c(o 1 solve BDSDE (E&H9).

Thus we complete the proof of Theorem 4.1. [ |

5 Application to SPDEs

In this section we connect BDSDEs with weak monotonicity and general growth generators with
the correspondent SPDEs and give the Sobolev solution of the SPDEs.

Notation and Definition: CF set of function of class C*, whose partial derivatives of order less
then or equal to k are bounded. Given z € R%, b € C? (Rd,Rd) and o € C} (Rd,RdXd), denote by
(Xﬁ’””; t<s< T) the unique strong solution of the SDEs following

X9 =b(X0%)ds+ o (XO7)dWe, X7 =a. (5.1)

It’s well know that E (SUPtgng |X§’m|p) < oo for any p > 1, we recall that the stochastic flow
associated to the diffusion processus (Xﬁ’“”; t<s< T) is (Xﬁ’z; zeRY t<s< T) and the inverse
flow is denote by Xbe g — X" is differentiable and we denote by J (Xﬁz) the determinant of

the Jacobian matrix of X%*, which is positive and satisfies J Xb®) =1.
For ¢ € C*° (Rd) we define the process ¢; : Q x [0,7] x R = R by ¢; (s,z) = ¢ (Xﬁz) J (X;I) .

Let 7 : R* — R, be an integrable continues positif function and L2 (Rd, 7 (x) dx) be the weight L2
space with weight 7 (z) endowed with the following norm

HMﬁIAJM@Fﬂmm;

Let us take the weight 7 (z) = exp (F (z)), where F : R? — R is a continues, moreover we assume
that there exist some R > 0 such that F' € CF for || > R, we need the following result of generalized
equivalence of norm.
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Lemma 5.1. There exist two positive constants K1, k1 which depend on T, w, such that for any
t<s<Tand® € L" (2 xR? P (z)dx)

k1 </Rd |<I)(:c)|7r(x)dx> SIE(/RJ@(X?”C)M(:U)CZ:U) <K (/Rd|'1>(x)|7r(x)dx).

Moreover for any ¥ € L' (2 x [0, T] x R? x P®dt ® 7 (z) dz)

(// sx|dsw<>dx) (// (5, X5) | ds  ( )dz),
(/Rd/ sx|ds7r()d:v).

IN

IN

Proof: Using the change of variable y = X5, we get

E (/Rd | (X5%)| 7 () dx) /Rd 1 ()| E (w (X“f) J (Xty)) dy,
- [ [ ()] = (X2) (
Rd

) "

y) dy.

|®(y)|m(XEY)
m(y)
first claim follows. The second claim can be proved similarly. |

Now begin to study the following SPDEs

By Lemma 5.1 in Bally-Matoussi [5], k1 < E < K, for any y € R, 5 € [t,T], the

(PU) u(t,z) = hT(fC) Jr/s (Lu(r,z)+ f (r,z,u(r,z), 0" Vu(r,z)))dr
+/ g(r,z,u(r,z),c"Vu(r,z)) d§r, t<s<T,

where i
1 ) 9 . )
L= 5;(%;3‘) m +;b¢%, with (a;;) :==o0™.

Let H be the set of random fields {u (t,z),0 <t < T, = € R} such that for every (t,z), u (t,z) is
.7:5 T-measurable and

lull3 = E(/Rd /OT(|u (ryz) > + [(c*Vu) (r,z) |*)dr « () dm) < oo.

The couple (H, || - ||#) is a Banach space.

Definition 5.1. We say that u is a Sobolev solution to SPDE (77<f’9)), if u € H and for any
@ €Cr™([0,T] x RY)

/Rd'/STu(r,z)W(r,z)drd1+'/ﬂkdu(r,z)gp(r,z)dz—/]Rdh(:r:)gp(T,z)dz
- %/}Rd /ST o u(r,z) o™ ¢ (r,x) dez_/I:kd LT udiv( (b — A) @) (r,z) drdz (5.2)
= /]Rd v/sTf(TYZ,u('r,z),U*Vu(r,z))gp(r,z)drdz«kl/]Rd ./STg(r,:v,u(r,z),o—*vu(nz))%(nz)dgrdz

da;j
i=1 Ox,; °

where A is a d-vector whose coordinates are defined by A; := 3 Z
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In this section well study the Sobolev solution of (P(f ’g>) with weak monotonicity and general
growth. For f:[0,7] x RY x R* x R¥*? 5 R* ¢:[0,7] x R? x R¥ x RF*? 5 RF*! h: R? - R,

The main idea is to connect (P(f’9)> with the following BDSDE for each s € [t,T]
T
VI )+ [ XY 2 dr
S

T T
+/ g(r,Xﬁ’z7Yf‘I,Zﬁ’I)d§r—/ 25T AW, (5.3)

where (X5*;0 < s <T) is the solution of SDEs (5.1).
Our object consists to establish the existence and uniqueness of solutions u to SPDEs (P(f’g>> such
that u (s, Xﬁz) =Y}5* and 0*Vu (s, Xﬁz) = 70",

We consider the following assumptions (A):
(A.1) For (t,z) fixed dP x dt-a.e., x € R, 2 € R**? y — f (w,t,x,y, z) is continuous and

/ /T |f (t,2,0,0)|* dtr () dz < oo.
R JO

(A.2) f satisfies the weak monotonicity condition in y, i.e., there exist a nondecreasing and concave
function k() : RT — R with k(u) > 0 for u > 0, k(0) = 0 and [, k(u)du = +oo such that
dP x dt-a.e.Yy1,y2 € RF, 2 € R**¢ g € R?

<y1 - y27f (t,w,x,yl, Z) - f (t7w7$7y27’z)> S k (|y1 - y2|2) .

(A.3) i) f is Lipschitz in z, uniformly with respect to (w,t,z,y) i.e., there exists a constant ¢ > 0
such that dP x dt-a.e.,

’f(w7t7$7yzz) —f(w7t7337y»zl) | S C|Z_Z/‘-

i) [oa fOT lg (t,2,0,0)]> dtr (x) dz < co and for (t,z) fixed there exists a constant ¢ > 0 and a
constant 0 < a < % such that dP x dt-a.e.,

|g(w,t7x7y,z) -9 (w7t7$7y172/) | S C|y_y/| +a‘z_zl|'

(A.4) f have a general growth with respect to y, i.e., dP X dt-a.e., ¥ (z,y) € R* x R*

|f(t7w7xay70) } S }f(t#‘)ax?ovo) ‘ +§0 (|y|)7

where ¢ : R — R is increasing continuous function.
(A.5) h belongs to L* (R?, 7 (z) dz; R?Y).

Now by Lemma 5.1, Fubini’s theorem and using (A.1), (A.3)(i7) and (A.5), we have for a.e. € R?
T T
E (/ 7 (Xt 0.0)Par+ [ o (x5 0,0) P ar+ | (x;,@)f) <oo.  (5.4)

Hence, it follows from Theorem 4.1, that BDSDEs (5.3) admit a unique solution (YJ**, Z{*) such
that Y5%, Zb® are ]—"X‘g Y ]—"fT measurable for any s € [0, T7.
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Moreover, by Proposition 3.1 (i) it’s easy to check for each § > 0 that there exists a constant K > 0
depending only on d, A and « such that, for each 0 <t < T

yj*””f) +E (/tT

E <0§22T Zj’“:|2 ds> < (]E\h (XfT’”) 12+ 2/;T k (IE\Y:’Ilz) ds + %]E/;T (f (s,X;””,o,o)j2 ds

+2]E‘/tTg (S,Xivx’o,o) ds)chp(K (T —T)),

using (5.4) and since k (z) < A (1 + z), we have
2 r 2 T
E( sup Y7 +/ |Zo*] ds) §c+20AT+26A/ E (|Y2*) ds,

0<s<T t t

where 0 = K exp (K (T — T)) . Finally, applying Gronwall’s lemma, we obtain
T
E ( sup |Y;t’z|2 +/ ’Zz’z|2 ds) < (c+20AT) exp (20AT) < oo. (5.5)
0<s<T t

Now, we are state the main result of this section.

Theorem 5.1. Under hypothesis (A), the SPDEs (73<f’g)) admits a unique Sobolev solution u.
Moreover u (t, ) = Y,"°, where (Y;*I, Zﬁz) is the unique solution of the BDSDEFEs (5.3) and

t<s<T
U (S,X;’m) =Y and (0°Vu) (S,X;’m) =270 forae. (s,w,x) in[t,T] x Q x RY.  (5.6)

We first consider the following SPDEs:

oot u” (t,x) = h(z) + /T (Lu" (r,x) + f (r,z,u” (r,2),0"Vu" (r,z)) )dr
) s
+/Tg (ryz,u"™ (r,z),0"Vu" (r,z)) d%r, t<s<T.

We need the following results.
Proposition 5.1. Under the assumptions (A). Let (X“%) be the unique solution of SDEs (5.1)
and for a fired n € N*, let (Y"‘t’m, Z”’t’z) be the unique solution of the BDSDEs

T
)/Sn,t,:c — h (X;lx) +/ f (7", Xﬁ,ac7YTn,t,z7 Z:z,t,ac) d?”

T T
+/ g(r,Xﬁ’z,K"’t‘z,Zf‘t’z)d%r7/ Z0HT AW, (5.7)

t

Then for any s € [t,T)

t,x n.s t,x
y e X oyt A R L N < [s,T], = € R
Proof: The proof is similar to the proof of Proposition 3.4 in Q. Zhang and H. Zhao [10] . |

Using Proposition 3.1, by the same computation as in (5.5) , we have that the sequence (Y;*z’", Zﬁ“’")
are bounded in S? (0, T, ]Rk) x M? (o, T, RkXd), ie.,

T
supIE( sup }Yst’x’"}Q +/ |Z§’m’"|2ds> < o0. (5.8)
n 0<s<T t

Also by Proposition 3.1 applying with &k (-) = ¢(:), or =0 1, = 0, A = ¢ and v = «, we can proof

by the same computation as in Theorem 4.1, that (Y;’z’”, Zﬁ’l’")se[om is a Cauchy sequence in
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the space S2 (O,T7 Rk) x M? (O7 T, ka"l) , i.e., there exists a (Y;’I7 Zﬁz)
M? (0, T, R¥*%) such that

sepor € 8% (0,T,R) x

T
E < sup |[Yom —yhe|? +/ |zbmm — zbe|? ds> —0, asn— oo. (5.9)
t

0<s<T

Under the assumptions (A) if we define u” (t,x) = Y;""" and o*Vu™ (t,z) = Z;""". Then by a
direct application of Proposition 5.1, and Fubini’s Theorem, we have

u” (s,X;’x) S A o*vVu" (S,X;’x) =270 forae. se[t,T],z € R (5.10)
Theorem 5.2. Under hypothesis (A), if we define u™ (s,x) = Yo*"*. Then the SPDEs (’P<f’g‘“"))

admits a unique Sobolev solution u™, where (YS””S‘C”,Z;”’””)S
BDSDEs (5.7) and

6.7 is the unique solution of the

u" (s,Xst’x) =Y and oFVu" (s,Xﬁ’x) =Z15 for (s,w,x) in [t,T] x @ x R (5.11)

Proof: Existence. For each (s, z) € [t, T|®R?, define u" (s,x) = Yo" and 0" Vu" (s,z) = Z0"*,
where (Y05%, Z2207) € 8* (0, T, R*) x M? (0, T, R**?) is the solution of Eq (5.7). Then by (5.10)

u" (s,Xﬁ’z) =Yy, o vu" (s,Xﬁ’z) = zmh for ae.se[t,T], = eR"

Set
F"(s,z) = f (s,2,u” (s,2),0"Vu" (s,2)),

G" (s,z) =g (s,z,u" (t,z),0"Vu" (s,x)) .
Then (Y07, Z20") € 82 (0, T,R*) x M? (0,T,R**%) solve

T T T
YR = b (XET) +/ P (T,Xﬁ’z)dr—k/ G" (r, X% d%r—/ Z00 AW,
s s t

Moreover, by Lemma 5.1 and (5.8), we have

]E(/Rd /tT (‘u" (s,x)‘2+|0'*Vu" (s,x)‘z) dsn'(ac)dx) < i]E (/Rd /tT (

< 0.

w2
Y ,L‘ n

|2
Z;L’t"’| ) dsm (z) dac) s

From (A.3) (¢) and (A.4), we have

E T|F“’ (s,z)}2ds7r(:c)dz < 2E i (c|a‘*Vu" (s,z)|2+\f(s,z,0,0)|2+<p(|un (s,z)})z) ds7 (z) dz
Jrd J¢ Jrd Jt
< oo.

And from (A.3) (i¢) , we have

E (/Rd /tT G™ (5, 2) 2 dsr (x) dx) < 0.

Using a some ideas as in the proof of Theorem 2.1 in [5] similar to the argument as in section 4 in
[10], we know that u™ (¢,z) is the Sobolev solution of the following SPDE:

u™(t,x) = h(z)+ fsT (Lu™ (r,x) + F™ (r,z) )dr
{ +[FG" (r2)dB,, t<s<T. (5.12)

Noting that by the definition of F" (r,z) and G™ (r, z), from (5.11), we have that u" is the Sobolev
solution of Eq (’P(fyg,u"))'
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Uniqueness: Let u" be a solution of Eq (P<f’9’“n)). Define the same notation in the existence

part for F" and G", since u™ is a solution, so E (f]Rd ftT (Ju™ (s, z)|> + |o* Vu" (s, x)|2) dsm () dm) <

oo. From a similar computation as in existence part, we have

E (/Rd /tT (1" s, 0)F + 16" (5,2)) ds 7 () dm) < 0.

Then, for (5.11) it follows from Proposition 2.3 in [3] that, for and ¢ € C° (]Rd), ae. s € [tT], as.
' T
./mzri/S u (T,z)d¢t(r,z)dac+/mdu (ryx) ¢t (ryz)de  — /Rdh(a:)qﬁt (T,z)dzf/s /Wu (r, ) L ¢t (r, @) drdz
T n
= /]Rd/; F" (r,z) ¢¢ (r, z) drdz
T
* /IRd / G™ (r,2) 6 (r,2) dB rda.

Now using ¢: (r,z) = ¢ ( z) J (Xt E) and by a change of variable, we get
/ u” (r,x)de = / u” (r, Xﬁl) ¢ (z) dz,
Rd R
/ h@o ey = [ h(XE) 6 (@) d
RrRd

/Rd /STF" (r,z) ¢ (1, @) drdax /Rd/ (5, X7°7) ¢ (x) drde,

L] e eoseaiba = [ [ 6 xi)swasa.

by a change of variable y = X»® and integration by part formula, we obtain
T n _ T wom t,x T n *
/Rd/; u" (r,z)do¢ (v, x) doe = ./Rd /s (e"vVu™) (7‘, X, ) ¢ (x) dW,«dzJﬁ/Rd/s u" (r,z) LT ¢t (1, x) drdz.

Hence,

/}Rd u" (r, X;’T) d(z)de = ./]Rd h (Xt’m) ¢ (z) dz +/ /T Fn s, Xt’m) ¢ (z) drdz

+/Rd/ stT ¢(z)d§ dzf/ / o*vu" )(T,X:L‘m)d)(z)dWsz.
From the arbitrariness of ¢ we know that {u (7’7 Xﬁ“) ,(6"Vu™) (7"7 Xﬁ”) ,t<r< T} is a solution
of the following BDSDE

T T T
YT = h(X3T) +/ F"™ (r, X7") dr +/ G" (r, XL") dB —/ ZrhTdW,, t < s < T.
t

Then from the definitions of F™ and G" it follows that {u” (r, Xﬁz) , (6*Vu™) (7‘, Xﬁz) ,t<r< T}
solve BDSDE (5.7).

If there is another solution @™ to Eq. (P(f’g’”n>>, then by the same procedure, we can find another
solution (Y?””,Zﬁ”“") solve the BDSDE (5.7), where
a" (s, X0%) = ymhe, VA" (s, X07) = ZrhT o foraeset,T], z € RY.
By Theorem 4.1, the solution of Eq. (5.7) is unique, therefore
ymhT = ymhe, for a.e.s € [t,T], = € R™.

Now, applying Lemma 5.1 again, we have
1 e t tx|?
7 Yn, T Yn, ,T
k1 </Rd/t ‘ s ¢

E (/R /tT 1" (s,2) — u” (s, 2)|° ds (@) dx)

So 4" (s,x) = u" (s,z), for a.e. s €[0,T], z € R? a.s..Uniqueness is proved. [ |

ds (z) dx) =0.

IN
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Proposition 5.2. Under assumptions (A), let (Ytt‘z, Z:z) be the solution of Eq. (5.3). If we define
u(s,x) = YO, then o*Vu (s, z) exists for a.e. s € [t,T], z € R? a.s., and

u(s, X"y = YI*, o Vu(s, X" = Z2", for ae. s € [t,T], = € R%. (5.13)
Proof: See Proposition 4.2 in Q. Zhang, and H. Zhao [10] |
In the rest part of this section, we study Eq (P<f’g)) . Then by Theorem 5.2, Proposition 5.2,

Lemma 5.1 and estimation (5.9), we have
T
/]Rd /t (}un (s, z) —u (s, CL‘)|2 + ‘J*Vun (s,2) — " Vu (s,z)|2) dsm (z) dz

< (L (e ) e

— 0, as n — oco. (5.14)

ARVATA (S,X;‘z> — 0" Vu (S,X;’ﬁ)‘2> dsm (x) dz) s

With (5.14) we prove the Theorem 5.1 in this section.

Proof of Theorem 5.1: Existence, by Lemma 5.1 and (5.13), we see that
o Vu (t,z) = ZP*, for a.e. t€[0,T], z € R

Also, by Lemma 5.1 and (5.5), we have

E(/Rd/f(|u<s,z)|2+4U*vu(s,z>¢2)dm(z)dm) < iﬁ(/m/f(

< o.

z|2
Y;‘L‘ +

z|2
Z;J‘ ) dsm (z) d:r:) s

Now we will prove that u satisfies the definition 5.1. Let ¢ € C2*°([0,T] x R?), since for any n, u"
is a Sobolev solution to the problem (PY9“")) we then have

/Rd /STun (r,x) w (T,ac)drdﬂc-F/Rd u"™ (r,:c);p(r,:):)dx—-/md h(x) @ (T, x) dx
- % /Rd /ST o™ u" (r,z) 0¥ ¢ (r,x) drde — ./ugd /ST u"div( (b~ A) @) (r, @) drdx (515)
_ /Rd /ST F(rm,u” (m3), 0t VU (r 2))e (ry @) drds + /Rd /ST g(ry @, u™ (r,2) , 0" VU™ (r, @) (r, w) dB - da,

By proving that along a subsequence (5.15) converges to (5.2) in L? (), we have that w (t,x)
satisfies (5.2). We only need to show that along a subsequence as n — oo

Jza ng (f (rz,u” (r2), 0" Vu™ (r,2)) — f (r,z,u(r,z),0*Vu (r,z)) )¢ (r,z) drdz — 0,
fRd fST (g (rz,u” (r,2),0"Vu" (r,z)) — g (r,z,u(r,z),0"Vu(r,z)) )gp (r,x) d%Tdm — 0.

Firstly. Since ¢ € C2° then ¢ is belong in L2 (Rd x [s,T],dt ® dz) and by Cauchy-Schwartz
inequality, we have

T 2
/Rd / (f (ryz,u™ (r,2), 0" Vu" (r,2)) — f (r,z,u (r,z) 0" Vu(r,z)) )¢ (r,z) drdz

T n xg, n . 2 T | (r,2)?
/Rd/‘; |f ('r,a:,u (r,z),0" Vu (r,z)) —f('r,a:,u('r,z),cr Vu(r,:v))‘ 7 (x) d'rdz/Rd/‘; Wd'rdz,

T
o [, [ 1 e ey 0" U () = f (rieu(rie) 0" Vu (r @) 27 (2) drda.
rd Js

Also we have by Lemma 5.1, and by definition of u™ (r, X;%), c*Vu" (r, X;>%) that,
T
[ 17 G () 079" () = £ (v ,2) 07V (r,0) P (0) i,
Rd Js

1 T
< B[ ]Iyt 2 - f vt 20 P (o) da,
Rd Js
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using (A.3) (i) and (a + b)* < 2a® + 2b*, we have
IE/ /T [f (ry @, Y05, 25" —f (r2, Y57, 2257 |Pdrr (z) de < QC]E/ /T |Zzm=® — 25" 2 drr () do
rd Js e T oo - Jrd Js " "
T a 3 s, s,
+2JE/Rd/S If (ry2, Y, 5%, 25%) — f (r,2, Y,", 257) |2drr (z) da.

We only need to prove that
r 2
E/ / |f (r,a, Y, Z0%) = f (r,2, Y20, Z0%) |Pdrm (@) do — 0, as n — oco.
R Js
Applying assumption (A.1), we have
lim |f (r,z, """, Z2%) — f (r,2, Y7, 22%) [P = 0.
n— o0

Since IEfRd ftT |Z§’I‘"|2ds7r (z)dr < oo, then there exists a subsequence which we still denote
ZH®" — 7" such that E [, ftT ‘Zﬁ’zf dsm (x) dx < o0, using (5.8), (A.3) (¢) and (A.4), we have

2

]E/ / |f (T,x,YTTL"‘"l,Zi’“E) ‘er'/r(ac)d:): < ]E/ / c‘Zf,’£|2+ \f(r,x,O,O)\Q-Fap sup ‘Yr"'é’ﬂ drrm (x) dx,

rd Js rd Js t<r<T
< oo.

According to the Lebesgue’s dominated convergence Theorem, it follows that
T 2
IE/ / |f (r,z, Y58 Z2%) — f(r, 2, Y, ", Z257F) | drm (z)dx — 0, as n — oo,
Rd Js
which implies that

"li}mm /Rd /ST f (r, z,u” (r,x), 0" Vu" (r, x)) @(r,x)drde = /IKd /ST f (r,x,u (r,x), 0" Vu (r, ac)) @ (r,z)drdz.

Secondly It remains to prove that

T
[ ] stran ) .o"vur (o) g () dB
R Js
tends to
T
//g(T,LB,U(T,l‘),J*VU(T,QS))L,O(T,JJ)dETdI,
Rd Js

as n tends to co. Arguing as in the proof of Theorem 4.1, we get the following limit in probability as
n — oo, fOT g (r7 xXhr ym (r, Xﬁz) ,o Vu" (r, Xﬁz)) d%r — fOTg (r, Xh* (s,Xf’z) ,0'Vu (r7 Xﬁm))

dB,.
By Lemma 5.1, (5.5) and (5.8), we have

fa

i.e fST (g(r,z,u™ (r,z),0*Vu"™ (r,z)) — g(r, @, u(r,z), 0" Vu (r,z)))e (r,z) 7 (z) dgr belongs to L' (]Rd, 1 (z) dx) .
Hence, using Lemma 5.1 we get, for every s € [0, 7]

T
/ (9 (ryz,u™ (r,z), 0" Vu™ (r,z)) — g (r,z,u(r,z), 0" Vu(r,z)))e (r,z) 7 (z) dEr P (z) dz < oo,

a1 (z) dx

/le ‘/T (g (ryz,u™ (r,2), o*vu™ (r, z)) —g(r,z,u(r,z), o*Vu (r, z)) ) (r,z) 7 (x) dET
s

< % Ij{d E ‘/ST (g (r, X,f,’z, u” (r, X,f,’z) ,ot v (r, Xf,’z)) -9 (r, X;‘,’I, u (r, X,f,’z) Lo Vu (r, X,t’z))) @ (r, X,f,’z)

T (ijm) dE,ﬂTil (z) dx

= i /Rd ]E/T (g (r, Xﬁ‘z,YTn’t’z, Z:’t’m) —g ('r, X:’I,Yrt’m, Zﬁ’m)) © (’V‘, X:’T) T (X:‘T) dgrrr_l (z) dx.

s
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Since

and

sup,, ]ELT (g (r, xbe ymte Z,:"t’r) -9 (r, xbe yhe, Z,f.’z)) w(r, X2®)m (Xf,’z) dET < oo,
fST (g (7“7 X,t«’zy Yf’t’zy Z:’t’z) -9 (1”, Xf,‘z, YTt’I, Z,E’I)) 7 (r, Xfxm) 7r (Xf"'z) dgr converges to 0 in probability,

it follows according to the Lebesgue’s dominated convergence theorem that
r t t t t t t t t §
117rln]E/S (g (r, XE2, Y0 Z0005Y g (r X52 V55 Z0%)) o (r, XE*) m (X25) d B = 0.

Therefore u(t, z) satisfies (5.2), i.e. it is a Sobolev solution of (P¥9)). Theorem 5.1. is proved. M

6 Conclusion

In this paper we studied the BDSDEs and SPDEs. We introduced a BDSDE with weak monotonicity
and general growth generators and a square integrable terminal datum. We studied the relationship
between BDSDEs and SPDEs in this case, and we give the Sobolev solutions to some semilinear
stochastic partial differential equations (SPDEs) with a general growth and a weak monotonicity
generators. By probabilistic solution.
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